
Symbolic Model Checking of Probabilistic Knowledge∗

[Extended Abstract]

Xiaowei Huang, Cheng Luo, and Ron van der Meyden
Computer Science and Engineering

University of New South Wales, Australia
{xiaoweih,luoc,meyden}@cse.unsw.edu.au

ABSTRACT
This paper describes an algorithm for model checking a fragment of
the logic of knowledge and probability in multi-agent systems, with
respect to a perfect recall interpretation of knowledge and agents’
subjective probability. The algorithm has been implemented in
the epistemic model checker MCK. Some experiments with the
implemented algorithm are reported, in which some properties of
agents’ probabilistic knowledge are verified in two security proto-
cols: Chaum’s Dining Cryptographers protocol, and a protocol for
Oblivious Transfer due to Rivest.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification; F.4.1
[Mathematical Logic]: Modal Logic; G.3 [Mathematics of Com-
puting]: Probability and Statistics

General Terms
Theory

Keywords
Model Checking, Logic of Knowledge, Probability

1. INTRODUCTION
Model checking [7] is an approach to the verification of systems

designs, in which one describes the system to be verified as a model
of some logic, expresses the property to verified as a formula in that
logic, and then checks using automated algorithms that the formula
holds in the model. In general, this verification problem has high
computational complexity, but a range of heuristic algorithms have

∗This paper appears in Proc. Conf. on Theoretical Aspects of Ra-
tionality and Knowledge, TARK 2011, pp. 177-186. Work sup-
ported by Australian Research Council Linkage Grant LP0882961
and Defence Research and Development Canada (Valcartier) con-
tract W7701-082453
ACM COPYRIGHT NOTICE. Permission to make digital or hard copies
of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commer-
cial advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to re-
distribute to lists, requires prior specific permission and/or a fee. Request
permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or
permissions@acm.org. ACM acknowledges that this contribution was co-
authored by an affiliate of the Canadian National Government. As such, the
Crown in Right of Canada retains an equal interest in the copyright. Reprint
requests should be forwarded to ACM, and reprints must include clear attri-
bution to ACM and the Canadian National Government. TARK 2011, July
12-14, 2011, Groningen, The Netherlands. Copyright c©2011 ACM. ISBN
978-1-4503-0707-9, $10.00.

been developed that render the approach feasible in practice for
problems of industrial relevance. When feasible, model checking
has advantages over other approaches to verification: compared to
testing – which gives only a partial guarantee of correctness – it
yields a complete guarantee of correctness (or a guarantee that a
counter-example to correctness will be found); compared to theo-
rem proving approaches – which are laborious and require highly
trained staff – it is fully automated.

Model checking has been most extensively studied for the case
where the system can be represented as a finite state automaton, and
the specification expressed in a linear or branching time temporal
logic; this type of model checking is now a standard verification
methodology in computer hardware development. Model checking
has also been studied for temporal logics in which the temporal op-
erators are extended with probabilistic expressiveness, in the form
of a type of objective probability: the models considered are ei-
ther discrete-time Markov chains, continuous-time Markov chains
or Markov Decision processes [15]. More recently, model checkers
have emerged for which the base logic is a logic of knowledge and
time [11, 18, 16, 26] or dynamic update logic [30].

To date, there has been no implemented model checking sys-
tem that deals with the logic of knowledge, time and the subjec-
tive probability, i.e., probability relative to agent knowledge. The
model checking system that we develop for this combination in
this paper is based on the logic of knowledge and probability [10],
which adds to the logic of knowledge the ability to express facts
about probability (implicitly) conditioned on what an agent knows,
using expressions such as “Agent i’s probability of formula φ is
greater than 1/2". We follow one of the semantics of Halpern and
Tuttle [14], in which agent’s probabilistic knowledge is determined
using the assumption of synchronous perfect recall. The models
that we handle are in the form of discrete-time Markov chains. Our
approach to model checking this logic is a generalisation of an ap-
proach, due to van der Meyden and Su [28], using symbolic model
checking techniques for model checking a fragment of the logic of
knowledge and time with perfect recall.

The structure of the paper is as follows. We introduce the seman-
tics for the logic of knowledge, probability and time in Section 2. In
Section 3, we describe a fragment of this logic, and our approach
to model checking this fragment. Section 4 briefly describes the
implementation of the algorithm in the model checker MCK. Sec-
tion 5 then gives a number of applications of the implemented sys-
tem to verification of security protocols. We discuss related work
in Section 6 and make some concluding remarks in Section 7.

2. PROBABILISTIC KNOWLEDGE
We describe in this section the semantic setting for the model

checking problem we consider. We largely follow the definitions of

probabilistic interpreted systems [12], in which we model a set of
agents Agt = {1, . . . , n} operating in an environment e. At all times,
each agent is assumed to be in some local state, which records all
the information that the agent can access at that time. The environ-
ment e records “everything else that is relevant". Let S be the set
of environment states and let Li be the set of local states of agent
i ∈ Agt. A global state of a multi-agent system is a (n + 1)-tuple
s = (se, s1, . . . , sn) such that se ∈ S and si ∈ Li for all i ∈ Agt.

Time is represented discretely using the natural numbers N. A
run is a function r : N → S × L1 × . . . × Ln from time to global
states. A pair (r,m) consisting of a run r and time m is called a
point. If r(m) = (se, s1, . . . , sn) then we define re(m) = se and
ri(m) = si for i ∈ Agt. If r is a run and m a time, we write re[0..m]
for re(0) . . . re(m). A system is a set R of runs. We call R × N the
set of points of the system R. Relative to a system R, we define the
set Ki(r,m) = {(r′,m′) ∈ R × N | r′i (m

′) = ri(m)} to be the set of
points that are, for agent i, indistinguishable from the point (r,m),
and R(U) = {r ∈ R | ∃m : (r,m) ∈ U} to be the set of runs in
R going through some point in the set U ⊆ R × N. Agents have
synchronous perfect recall in system R if there exists a set O (of
observations) such that for each point (r,m) of R and agent i, the
local state ri(m) is a sequence of exactly (m+1) elements of O, and
ri(m + 1) = ri(m) · o for some o ∈ O.

A probability space is a triple (W, F, µ) such that W is a set, called
the carrier, F ⊆ P(W) is a set of measurable sets in W, closed
under union and complementation, and µ : F → [0, 1] is a proba-
bility measure, such that µ(W) = 1 and µ(U ∪ V) = µ(U) + µ(V)
if U ∩ V = ∅. As usual, we define the conditional probability
µ(U |V) = µ(U ∩ V)/µ(V) when µ(V) , 0.

A probabilistic interpreted system is a tuple (R, PR1, . . . , PRn, π)
such that R is a system, each PRi is a function mapping each point
(r,m) of R to a probability space PRi(r,m) in which the carrier is a
set of points of R, and π : R × N→ P(Prop) is an interpretation of
some set Prop of atomic propositions.

We will work with systems in which agents have a common prior
on the set of runs and synchronous perfect recall. LetR be a system,
let P = (R, FR, µR) be a probability space on the system R, and let π
be an interpretation on R. We assume that for each point (r,m) of R
and agent i, the setR(Ki(r,m)) is measurable and µR(R(Ki(r,m))) >
0. we then derive a probabilistic interpreted system I(R,P, π) =
(R, PR1, . . . , PRn, π) such that PRi associates with each point (r,m)
the probability space PRi(r,m) = (Ki(r,m), Fi,r,m, µr,m,i) such that
Fi,r,m is the set of U ∈ P(Ki(r,m)) such that R(U) ∈ FR, and

µr,m,i(U) = µR(R(U) | R(Ki(r,m))) .

It is easily shown that it follows from the assumptions that PRi(r,m)
is a probability space. Intuitively, at each point, each agent has a
probability space in which the carrier is the set of points Ki(r,m)
that it considers possible, and which is related to the prior on runs
by a type of temporal conditioning. (See [12] for a detailed expla-
nation of these definitions and this point.)

To specify properties of probabilistic interpreted systems, we
work with a logic that combines temporal operators, knowledge
operators, and probabilistic operators. Its syntax is given by the
grammar

φ ::= p | ¬φ | φ1 ∧ φ2 | Xφ | Kiφ | L(P1, . . . , Pk) ./ c

where p ∈ Prop, c is a rational constant, ./ is a relation sym-
bol in the set {≤, <,=, >,≥}, and L(P1, . . . , Pk) is a rational lin-
ear combination of the P j, each of which is of one of the forms
Priφ, Pri(φ1|φ2), Prioriφ or Priori(φ1|φ2). Intuitively, formula
Kiφ expresses that agent i knows φ, Xφ expresses that φ holds at
the next moment of time, the expression Priφ represents agent i’s

current probability of φ, the expression Pri(φ1|φ2) represents agent
i’s current probability of φ1 under the condition φ2, the expression
Prioriφ represents agent i’s prior probability of φ, Priori(φ1|φ2)
represents agent i’s prior probability of φ1 under the condition φ2,
and L(P1, . . . , Pk) ./ c expresses that this linear combination of
current and prior probabilities stands in the relation ./ to c. The
semantics of the language in a system I = I(R,P, π) is given by
interpreting formulas φ at points (r,m) of I, using a satisfaction re-
lation I, (r,m) |= φ. We first interpret the probability expressions
at points of I as in Table 1.

The satisfaction relation is then defined recursively as follows,
omitting the obvious boolean cases:

1. I, (r,m) |= p if p ∈ π(r,m)

2. I, (r,m) |= Xφ if I, (r,m + 1) |= φ

3. I, (r,m) |= Kiφ if I, (r′,m′) |= φ for all (r′,m′) ∈ Ki(r,m).

4. I, (r,m) |= L(P1, ..., Pk) ./ c if L(c1, ..., ck) ./ c, where

[P j]I,(r,m) = c j for j = 1 . . . k.

We already noted above that some assumptions on P are required
for the construction of I = I(R,P, π). The above semantics ad-
ditionally assumes that the sets whose probability is evaluated in
Table 1 are measurable. We introduce a more concrete setting in
what follows that ensures these assumptions are met.

Although they provide a coherent semantic framework, proba-
bilistic interpreted systems are infinite structures, and therefore not
suitable as input for a model checking algorithm. We therefore
work with a type of finite model called an interpreted partially ob-
served discrete-time Markov chain, or PO-DTMC for short. A fi-
nite PO-DTMC for n agents is a tuple M = (S , PI, PT,O1, ...,On, π),
where S is a finite set of states, PI : S → [0..1] is an initial proba-
bility function such that

∑
s∈S PI(s) = 1, component PT : S × S →

[0, 1] is a probability transition matrix, such that
∑

s′∈S PT (s, s′) =
1 for all s ∈ S , and for each agent i ∈ Agt, we have an observation
function Oi : S → O for agent i. Finally, π : S → P(Prop) is
an interpretation of the atomic propositions Prop at the states. We
treat the set of states S as the states of the environment rather than
as the set of global states. Intuitively, Oi(s) is the observation that
agent i makes when the system is in state s; agents’ local states will
be derived from these observations.

We write ki(s) = {s′ ∈ S | Oi(s′) = Oi(s)} for the set of states
that are observationally indistinguishable to agent i from state s.
We write s

p
→ s′ if PT (s, s′) = p > 0, and s → s′ if PT (s, s′) >

0. A path from a state s is a finite or infinite sequence of states
ρ = s0 s1 . . . such that s0 = s and sk → sk+1 for all k less than the
length of ρ. Given a path ρ, we use ρ(m) to denote its (m + 1)-th
state. A fullpath from a state s is an infinite path from s. A path ρ
is initialized if PI(ρ(0)) > 0.

We may construct several different probabilistic interpreted sys-
tems from each PO-DTMC, depending on what agents’ remember
of their observations. In this paper, we concentrate on a definition
that assumes agents have synchronous perfect recall, denoted spr.
Recall that runs map time to global states consisting of a state of the
environment and a local state for each agent, and we interpret the
states of the PO-DTMC as states of the environment. Thus, to con-
struct a run, we use the observations to construct the local states.
Given an initialized fullpath ρ, we obtain a run ρspr by defining the
components at each time m as follows. The environment state at
time m is ρspre (m) = ρ(m), and the local state of agent i at time m
is ρspri (m) = Oi(ρ(0)) . . .Oi(ρ(m)), representing that the agent re-
members all its observations. Note that ρspre [0..m] = ρ(0) . . . ρ(m).

[Priφ]I,(r,m) = µr,m,i({(r′,m′) ∈ Ki(r,m) | I, (r′,m′) |= φ})

[Prioriφ]I,(r,m) = µr,0,i({(r′, 0) ∈ Ki(r, 0) | I, (r′, 0) |= φ})

[Pri(φ1|φ2)]I,(r,m) = [Pri(φ1 ∧ φ2)]I,(r,m) ÷ [Priφ2]I,(r,m), if [Priφ2]I,(r,m) , 0

[Priori(φ1|φ2)]I,(r,m) = [Priori(φ1 ∧ φ2)]I,(r,m) ÷ [Prioriφ2]I,(r,m), if [Prioriφ2]I,(r,m) , 0

Table 1: Interpreted system semantics of probabilistic operators

We now define a probability space on the set of runs we generate
as above from the environment, using a well-known construction.
Let R be the set of runs in M. Given a finite initialized path ρ of
length m + 1, write R(ρ) = {r ∈ R | re[0 . . .m] = ρ} for the set of
runs with prefix ρ for the environment part. (One may view this as
a cone of runs over prefix ρ.) Let FR be the minimal algebra with
basis the sets R(ρ) for ρ a finite initialized path of M, i.e., the set of
all sets of runs that can be constructed from the basis using union
and complementation. Suppose we define the measure µR on the
basis sets by

µR(R(ρ)) = PI(ρ(0)) ×
m−1∏
i=0

pi

when ρ(i)
pi
→ ρ(i+ 1) for 0 ≤ i ≤ m− 1. There is a unique extension

of µR to FR that satisfies the constraints on probability measures
(i.e., finite additivity and universality), and we also denote this by
µR. It can then be shown that P(M) = (R, FR, µR) is a probability
space on R.

The system M gives us an interpretation π on its states, and we
may lift this to an interpretation on the points (r,m) ofR by defining
π(r,m) = π(re(m)). Using the construction above, we then obtain
the probabilistic interpreted system I(M) = I(R,P(M), π). We
noted above that the construction of a system I(R,P, π) requires an
assumption on P, and moreover, the measurability of sets arising
during the evaluation of a formula introduces a further assumption.
For the systems I(R,P(M), π) and the language we consider in this
paper, these assumptions are met, as is shown in the following re-
sult.

PROPOSITION 1. Let M be a finite PO-DTMC. Then the sets
R(Ki(r,m)) are measurable and have non-zero measure. Also, for
all formulas φ, the sets {(r′,m′) ∈ Ki(r,m) | I(M), (r′,m′) |= φ} are
measurable in PRi(r,m).

We will be interested in the problem of model checking formulas
in this system. A formula φ is said to hold in M, written M |= φ,
if I(M), (r, 0) |= φ for all r ∈ R. The model checking problem is
then to determine, given a PO-DTMC M and a formula φ, whether
M |= φ.

3. A SYMBOLIC MODEL CHECKING AL-
GORITHM

The question of model checking the logic of knowledge and time
(without probabilities) with respect to perfect recall has been stud-
ied in a number of works [27, 19], which identify various frag-
ments for which the problem is decidable. Decidability does not
imply practical feasibility, however, and for this further restric-
tions and special algorithms are required. An algorithm that has
proved useful in practice was introduced by van der Meyden and
Su [28]; it works on formulas of the form Xkφ where φ is a formula
in which the only modal operator is Ki, for a fixed agent i. While

restricted, this algorithm has been successfully applied to interest-
ing case studies including security protocols [28, 1], card games
[29] and cache coherency [2]. A typical application is to verify for-
mulas of the form Xk(li ⇔ Kiφ), where φ is a global property and
li is a predicate local to agent i; this class of formulas is useful for
verifying implementations of knowledge-based programs [9].

In this section, we generalize this algorithm to the language of
the present paper, in which we add probabilistic expressiveness.
The generalization works for formulas of the form of the form Xdϕ
with the only modal operators in ϕ being the knowledge operator
Ki and the probability operators Pri and Priori, for a single, fixed
agent i. An example of such a formula is

Xd(Kiϕ1 ⇒ Priϕ2 ≤ c)

expressing that after d steps, if agent i knows the fact ϕ1 then it
knows ϕ2 with a probability no more than c. These properties
are useful in characterizing the posterior probability on agent i’s
knowledge after some number of steps.

Note that the number of possible paths of length d in a system
with states S is potentially as large as |S |d, so that specifications
of the form we consider refer to a structure that grows exponen-
tially with d in the worst case; indeed, the number of states S
already grows exponentially in the number of boolean variables
used to define a state. A naive implementation of model checking
would therefore need to work with exponentially large structures,
and would not be practical. The idea underlying our algorithm is
to work with symbolic representations of certain functions that en-
code the information required for model checking. Because they
condense symmetries, these symbolic representations are, in prac-
tice, often more compact than the information they represent (al-
though there is not a guarantee of this in general – the technique is
merely heuristic). We first define the functions we represent, and
later discuss the symbolic representation (multi-terminal OBDD’s)
that the algorithm uses to encode these functions.

Let i be the agent whose modal operators occur in the formula we
wish to evaluate. For each number k ≥ 0 and ϕ a formula in which
the only modal operators are knowledge and probability operators
of agent i, we define several functions Tk, Tk

ϕ, P
k, Pk

ϕ: each takes in
as input k + 1 observations o0...ok of agent i, and a state s ∈ S . The
definitions refer to Rk(o0...ok, s), which is defined to be the set of
runs of I(M) such that ri(k) = o0...ok and re(k) = s. The functions
Tk, Tk

ϕ return a value in {0, 1}, which we may interpret as either a
boolean value or a real number, and the functions Pk, Pk

ϕ return a
value in the real interval [0, 1].

DEFINITION 1.

1. Let Tk(o0...ok, s) = 1 if Rk(o0...ok, s) is nonempty, otherwise
Tk(o0...ok, s) = 0.

2. Let Tk
ϕ(o0...ok, s) = 1 if there exists r ∈ Rk(o0...ok, s) such that

I(M), (r, k) |= ϕ, otherwise Tk
ϕ(o0...ok, s) = 0.

3. Let Pk(o0...ok, s) = µR(Rk(o0...ok, s)).

4. Let Pk
ϕ(o0...ok, s) = µR({r ∈ Rk(o0...ok, s) | I(M), (r, k) |= ϕ}).

The following theorem shows that we may characterize the model
checking problem using the functions Tk and Tk

ϕ.

THEOREM 1. Let M be a PO-DTMC with states S and set of
observations O for the unique agent whose modalities occur in the
atemporal formula ϕ. Then M |=spr Xdϕ is equivalent to the truth
of ∀s ∈ S , o0, ..., od ∈ Od+1 : (Td(o0...od, s)⇒ Td

ϕ(o0...od, s)).

One of the keys to our algorithm is then the fact that the func-
tions in Definition 1 satisfy some equations that enable them to be
constructed by means of a mutual recursion, that can be encoded
using a symbolic representation that we describe later.

THEOREM 2. The functions Tk, Pk satisfy following equations:

1. T0(o0, s) = (PI(s) > 0) ∧ (Oi(s) = o0)

2. Tk+1(o0...ok+1, s) = ∃t ∈ S : (Tk(o0...ok, t)∧ (t → s)∧ (Oi(s) =
ok+1))

3. P0(o0, s) = (Oi(s) = o0) × PI(s)

4. Pk+1(o0...ok+1, s) =
∑

t∈S P
k(o0...ok, t) × PT (t, s) × (Oi(s) =

ok+1)

The functions Tk
φ, P

k
φ satisfy the following:

1. Tk
p(o0...ok, s) = Tk(o0...ok, s) ∧ (p ∈ π(s))

2. Tk
ϕ1∧ϕ2

(o0...ok, s) = Tk
ϕ1

(o0...ok, s) ∧ Tk
ϕ2

(o0...ok, s)

3. Tk
¬ϕ(o0...ok, s) = Tk(o0...ok, s) ∧ ¬Tk

ϕ(o0...ok, s)

4. Tk
Kiϕ

(o0...ok, s) = Tk(o0...ok, s) ∧ ∀t ∈ S : (Tk(o0...ok, t) ⇒
Tk
ϕ(o0...ok, t))

5. Tk
L(P1 ,...,Pm)./c(o0...ok, s) = L(C1(o0...ok, s), . . . ,Cm(o0...ok, s)) ./

c, where

C j(o0...ok, s) =

∑
s∈S P

k
ϕ j

(o0...ok, s)∑
s∈S P

k(o0...ok, s)
if P j = Priϕ j,

C j(o0...ok, s) =

∑
s∈S P

0
ϕ j

(o0, s)∑
s∈S P

0(o0, s)
if P j = Prioriϕ j,

C j(o0...ok, s) =

∑
s∈S P

k
ϕ j∧ψ j

(o0...ok, s)∑
s∈S P

k
ψ j

(o0...ok, s)
if P j = Pri(ϕ j | ψ j), and

C j(o0...ok, s) =

∑
s∈S P

0
ϕ j∧ψ j

(o0, s)∑
s∈S P

0
ψ j

(o0, s)
if P j = Priori(ϕ j | ψ j).

6. Pk
ϕ(o0...ok, s) = Tk

ϕ(o0...ok, s) × Pk(o0...ok, s)

We remark that the expressions for Tk
φ contain occurrences of

the term Tk(o0...ok, s). In the context of the right hand side of the
formula in Theorem 1, these terms always evaluate to 1 and may be
eliminated. This is an optimization done in our algorithm.

a a

b b

0 01 1 0 1

b b

0

0 0

0

0 0

1

1
1 1

1

1

(Decision Tree) (Reduced OBDD)

Figure 1: A decision tree and its reduced OBDD

3.1 Symbolic Data Structures
As we noted above, the size of the set of runs of a given length k

grows exponentially. The same applies to the tabular representation
of the functions Tk and Pk. Our symbolic algorithm attempts to deal
with this exponential growth by representing these functions more
compactly than as an input-output table, using two types of data
structures: (reduced) ordered binary decision diagrams (OBDD) [3]
and multi-terminal binary decision diagrams (MTBDD) [6]. These
structures are defined as follows.

Let V be a set of variables. A V-assignment is a function s :
V → {0, 1}. Write Assgts(V) for the set of all V-assignments, and
s[v 7→ x] for the function that is identical to s except that it takes
value x on input v. A V-indexed boolean function is a mapping
f : Assgts(V) → {0, 1}. Note that such functions are able to repre-
sent sets X ⊆ Assgts(V) by their characteristic functions fX , map-
ping s to 1 just in case s ∈ X. One way to represent such a function
f is using a binary tree of height n, with each level corresponding
to one of the variables in V , and leaves labelled from {0, 1}. This
tree can in turn be thought of as a finite state automaton on alphabet
{0, 1}. Reduced1 OBDD’s more compactly represent such a func-
tion as a dag of height n, with binary branching, by applying the
usual finite state automaton minimization algorithm. A very simple
example of this for the function f (a, b, c) = a xor b is illustrated
in Figure 1. In some cases, the degree of compaction obtained in
the minimal dag representation is considerable. We note that the
amount of compaction obtained is sensitive to the variable ordering
used, and finding a variable ordering that minimizes the result is
NP-hard, though there exist good heuristics, such as sifting [23].

Given this minimal representation of V-indexed boolean func-
tions, it is moreover possible to compute (in practice, often in rea-
sonable time) some operations on these functions, by means of al-
gorithms that take as input the reduced OBDD representation of
the input functions and returns the reduced OBDD representation
of the result. The operations for which this can be done include the
following:

• Boolean operations∧,¬, defined pointwise on functions. E.g.,
if f , g : Assgts(V) → {0, 1}, then f ∧ g : Assgts(V) → {0, 1}
is defined by (f ∧ g)(s) = f (s) ∧ g(s).

• Boolean quantification ∃,∀, e.g., if f : Assgts(V) → {0, 1}
and v ∈ V then ∃v(f) : Assgts(V \ {v}) → {0, 1} maps s ∈
Assgts(V \ {v}) to f (s[v 7→ 0]) ∨ f (s[v 7→ 1]).

(Reduced) MTBDD’s generalize (reduced) OBDD’s by allowing
finitely many real numbers as the leaves, instead of the two values
0, 1. This gives a compact representation for a V-indexed function,
i.e.., a mapping f : Assgts(V) → R. As with OBDD’s, we may
perform certain operations on the represented functions directly at
the level of their reduced OBDD representations, e.g.,
1Since we always reduce, we usually elide this word in what fol-
lows.

• Arithmetic operations +,−,×,÷, etc. For instance, if f , g :
Assgts(V) → R, then f × g : Assgts(V) → R is defined by
(f × g)(s) = f (s) × g(s).

• Summation operation
∑

. If f : Assgts(V) → R and V ′ ⊆ V
then

∑
(f ,V ′) : Assgts(V \ V ′) → R such that

∑
(f ,V ′)(s) =∑

s′∈Assgts(V′) f (s ∪ s′).

• Transformation operation 2bdd. If f : Assgts(V) → R then
2bdd(f) : Assgts(V) → {0, 1} such that 2bdd(f)(s) = 1 if
f (s) , 0 and 2bdd(f)(s) = 0 otherwise.

Our algorithm for model checking probabilistic knowledge relies
on an MTBDD representation of the model M as the input to the
model checking problem. To represent relations, we use the set of
“primed" versions of the state variables Prop, defined by Prop′ =
{v′ | v ∈ Prop}.

1. The initial probability PI is represented as the MTBDD of
the function fPI : Assgts(Prop) → [0, 1] such that fPI(s) =
PI(s).

2. The probabilistic transition relation PT is represented by the
MTBDD of the function fPT : Assgts(Prop∪Prop′)→ [0, 1]
such that if s ∈ Assgts(Prop) and s′ ∈ Assgts(Prop′), then
fPT (s ∪ s′) = PT (s, s′). The transition relation→ is then the
function 2bdd(PT).

3. Assuming S ⊆ Assgts(Prop), the set of states S can be rep-
resented by the MTBDD of its characteristic function fS :
Assgts(Prop) → {0, 1}. Furthermore, the observation func-
tions Oi are associated with indistinguishability relations ∼i

on states, defined by s ∼i s′ if Oi(s) = Oi(s′). These can be
represented as boolean functions f∼i : Assgts(Prop∪Prop′)→
{0, 1} such that if s ∈ Assgts(Prop) and s′ ∈ Assgts(Prop′),
then f∼i (s ∪ s′) = 1 iff s ∼i s′. We also assume that each
agent i observes some set of variables Obsi ⊂ Prop, so that
s ∼i s′ is equivalent to s � Obsi = s′ � Obsi.

Given this input, the symbolic algorithm proceeds by construct-
ing an MTBDD representation for the universally quantified for-
mula in Theorem 1, using the recurrences of Theorem 2 for terms
of the form Tk(o0 . . . ok, s) and Pk(o0 . . . ok, s). Each argument o j

here corresponds to a set of MTBDD variables Obsi, j in one-to-
one correspondence to Obsi, and the argument s corresponds to the
variables Prop. The recurrences can then each be straightforwardly
represented using the MTBDD operations over MTBDD’s over the
appropriate set of variable.

We give just one example of this representation here, for recur-
rence 4 of Theorem 2. Suppose we have an MTBDD representation
rep1 of the function Pk(o0...ok, s) using variables (∪ j=0...kObsi, j) ∪
Prop, representation rep2 of PT (s, s′) using variables Prop∪Prop′,
and representation rep3 of (Oi(s) = ok+1) using variables Prop. We
treat each of these as MTBDD’s over the set of variables

(∪ j=0...kObsi, j) ∪ Prop ∪ Prop′ .

The encoding of the function Pk+1(o0...ok+1, s) is then the result of
the MTBDD expression

(
∑

(rep1 × rep2 × rep3[Prop′/Prop],Prop))[Prop/Prop′],

where rep[Prop/Prop′] relabels the variables in the MTBDD by
replacing each p′ ∈ Prop′ by the corresponding variable p, and
similarly for the converse operation.

4. IMPLEMENTATION IN MCK
We have implemented the symbolic algorithm describe above as

an extension of MCK, a model checker for the logic of knowledge
and time [11]. MCK takes as input a script that describes a multi-
agent system, in which the behaviour of agents is represented us-
ing a simple programming language. The script declares a set of
agents, a set of variables shared by the agents, and describes how
transitions occur as a function of actions chosen by the agents, by
means of a program. Agents choose their actions by executing a
protocol, also in the form of a program. This program may declare
further variables that are local to the agent executing it. It also in-
dicates which of the local and shared variables are observable to
the agent. Finally, the program describes how the agent chooses its
actions as a function of these variables at each step of execution.
States of the system are derived as assignments to the shared, local
and program counter variables. Initial states are described using a
boolean formula over these variables.

In order to develop the probabilistic extension of MCK, we re-
place the non-deterministic if construct in the MCK programming
language by a weighted if construct. The syntax of the latter is of
the form

if w1 : φ1 → P1 [] w2 : φ2 → P2 [] . . . [] wk : φk → Pk fi

where the wi are rational numbers, the φi are boolean expressions
and the Pi are programs. If all weights are equal, the prefix “wi :”
may be elided. Intuitively, this construct corresponds to a proba-
bilistic transition to the programs Pi, and is executed from state s
as follows. Let w =

∑
i=1...k, s|=φi

wi. Then if s 6|= φi, we make a
transition to Pi with probability 0, otherwise we make the transi-
tion to Pi with probability wi/w. (If all φi are false, we skip over
the statement.)

The formal semantics of the extended MCK scripts construct a
PO-DTMC from the input script. Examples of input scripts in the
extended language are given in the following section.

The implementation of the MTBDD-based model checking algo-
rithm described above uses the MTBDD capabilities of the CUDD
package [25].

5. APPLICATIONS
To investigate the application of the algorithm described above,

we have used the MCK implementation to verify several security
properties in two protocols: Chaum’s Dining Cryptographers pro-
tocol [5] and an oblivious transfer protocol due to Rivest [22].
These protocols have previously been the subject of analysis by
epistemic model checking (starting with [28], which uses an algo-
rithm that we have generalized in this paper), so it is interesting
to compare the epistemic versions (which use only on the operator
Ki) with the probabilistic approach of the present paper. We re-
port performance results for our implementation. All experiments
in the paper were conducted on an iMac computer with 3.06GHz
Intel Core i3 processor and 4GB memory.

5.1 Oblivious Transfer Protocol
The objectives of an oblivious transfer protocol are as follows:

Alice has two secrets m0 and m1. Bob would like to learn one of
these secrets, but does not wish to reveal to Alice which secret he
chooses. Various approaches have been proposed by which this
may be achieved. In Rivest’s solution [22], a trusted third party
Ted is used, who helps Alice and Bob by providing some random
material, that they use once they decide to run the protocol. (The
point is that Ted’s participation is not required at runtime: if this
were allowed then there is of course a trivial solution in which Alice

sends Ted her messages, and Bob requests the message he wants
from Ted.) The random material consists of two random strings
r0, r1 of the same length as Alice’s messages, and a random bit d.
Identical copies of these values are delivered by Ted to both Alice
and Bob. To request a string c, Bob then sends Alice the value
e = c ⊕ d (where ⊕ is the exclusive-or operation, which we assume
operates pointwise on strings of equal length.). Alice responds with
the messages f0 = m0⊕re and f1 = m1⊕r1−e. From this information,
Bob is able to compute mc as fc⊕ rd, but this exchange leaves Alice
ignorant of which message Bob chose, and leaves Bob ignorant of
the value of Alice’s other message.

The following is precise description of the protocol in the MCK
programming language for the case where Alice’s message has
length 2 bits. We first declare the variables required and their types.
The expression “Bool[n]” denotes the type of Boolean vectors of
length n. Comments are prefixed by “--”.

-- Alices two messages:
m0: Bool[2]
m1: Bool[2]

-- c is Bob’s choice of message to receive
c: Bool

-- Bob’s reception buffer
mc: Bool[2]

-- Random numbers generated by Ted
r0 : Bool[2]
r1 : Bool[2]
d : Bool

-- rd = if d then r1 else r0
rd : Bool[2]

-- a value computed by Bob and sent to Alice
e : Bool
-- values computed by Alice and sent to Bob
f0 : Bool[2]
f1 : Bool[2]

Since not all assignments to these variables constitute a valid ini-
tial state, we next define the valid initial states as all states satisfying
a formula over these variables:

init_cond =
-- (1) rd = if d then r1 else r0
(neg d =>((r0[0] <=> rd[0]) /\ (r0[1] <=> rd[1])))
/\ (d =>((r1[0] <=> rd[0]) /\ (r1[1] <=> rd[1])))
-- (2) not m0=m1
/\ (neg (m0[0] <=> m1[0]) \/ neg (m0[1] <=> m1[1]))

The semantics of this construct places a uniform distribution over
the set of global states that satisfy the initial condition.

We then declare the agents in the system:

agent Alice "alice" (r0, r1, m0, m1, f0, f1, e)
agent Bob "bob" (rd, d, c, f0, f1, mc)

Each of these statements first gives the name of the agent, then
(in quotes) the name of the protocol being executed by the agent,
and then lists the variables to which that protocol has access. For
example, the above statements say that Alice has access to variables
r0 and r1, but Bob does not.

MCK splits the description of state transitions into two parts:
in each step, each agent’s protocol is used to select an action for
each agent (this choice may be probabilistic, using the weighted
if statement introduced above). These choices are then provided
as input to the transitions clause, another program that computes

the values of global variables in the next state from the values in
the current state and the agent’s actions. This program may also use
the weighted if statement. In our modelling of Rivest’s protocol,
most of the work is done in the transitions clause rather than in the
agent’s protocols:

transitions
begin
if Bob.SendRequest -> e := d xor c
-- Alice sends f0 = m0 xor r_e and f1 = m1 xor r_{1-e}
[] Alice.SendMessages /\ neg e -> begin

f0[0]:= m0[0] xor r0[0];
f0[1]:= m0[1] xor r0[1];
f1[0]:= m1[0] xor r1[0];
f1[1]:= m1[1] xor r1[1]
end

[] Alice.SendMessages /\ e -> begin
f0[0]:= m0[0] xor r1[0];
f0[1]:= m0[1] xor r1[1];
f1[0]:= m1[0] xor r0[0];
f1[1]:= m1[1] xor r0[1]
end

-- Bob computes mc = f_c xor rd
[] Bob.Compute /\ neg c -> begin

mc[0]:= f0[0] xor rd[0];
mc[1]:= f0[1] xor rd[1]
end

[] Bob.Compute /\ c -> begin
mc[0]:= f1[0] xor rd[0];
mc[1]:= f1[1] xor rd[1]
end

fi
end

Here Alice.SendMessages is a proposition indicating that
Alice has chosen to perform her action SendMessages in this
step. Superficially, the transitions clause uses the weighted
if statement, but we note that since the conditions prove to be
mutually exclusive in all runs, the actual probabilities in the model
come entirely from the distribution over the initial states.

The agents’ protocols simply select the appropriate action de-
pending on the stage of the protocol. In the first step Bob performs
the action Sendrequest, next Alice performs SendMessages,
and finally Bob performs Compute.

protocol "alice" (
r0 : observable Bool[2],
r1: observable Bool[2],
m0 : observable Bool[2],
m1: observable Bool[2],
f0 : observable Bool[2],
f1: observable Bool[2],
e: observable Bool
)

begin
skip; << SendMessages >>; skip
end

protocol "bob" (
rd: observable Bool[2],
d: observable Bool,
c: observable Bool,
f0: observable Bool[2],
f1: observable Bool[2],
mc: observable Bool[2])
begin
<< SendRequest >>; skip; << Compute >>
end

The notation “<< . >>” is used to signify an action. The label
observable is used to indicate that a variable is a part of the
agent’s observation in a global state.

(1) X3((c = 0⇒ PrBob(mr = m0) = 1) ∧ (c = 1⇒ PrBob(mr = m1) = 1)

(2) X3(PrAlice(c = 0) = PrAlice(c = 1))

(3) X3((c = 1) ∧ (m1 , m′) ∧ (m1 , m′′)⇒ (PrBob(m0 = m′) = PrBob(m0 = m′′))
(for constant messages m′, m′′)

Table 2: Properties of the Oblivious Transfer Protocol

The objectives of the protocol can be captured by the formu-
las in Table 2. Formula (1) says that Bob knows that the message
mr (which the protocol uses to represent the message that Bob re-
ceives) is equal to the message that he requested. Formula (2) says
that from Alice’s point of view, the probability of either choice c by
Bob is the same. Formula (3) says that if c = 1, i.e., Bob chooses to
receive m1, then Bob does not learn the value of the other message
m0. Since it is assumed that m0,m1, Bob does know that m0 is
not equal to the message m1 he has received. The formula says that
from Bob’s point of view, if he chooses message m1, then Bob’s
considers no fixed value m′ of m0 more probable than any other
fixed value m′′. (Appealing to symmetry, we model check this for
just two possible fixed values m′, m′′.)

We have used our implementation to verify that the protocol sat-
isfies all three formulas. To test how well our algorithm scales, we
have performed experiments in which we parameterize the protocol
on the length of messages m0,m1, represented as Boolean vectors
of length n. For our modelling, the state-space of the protocol itself
grows as 27n+c (in the initial state, there are 8 boolean vectors of
length n, but the value of rd is dependent) so that the expected per-
formance of a naive algorithm that explicitly generates the entire
state-space in order to evaluate the formulae would be exponential.

Figure 2 plots the runtimes for specification (1) in a base 2 log-
scale. For purposes of comparison with non-probabilistic epistemic
model checking, we also plot the runtimes obtained using the algo-
rithm of [28] on the epistemic logic formulation

X2((c = 0⇒ KBob(mr = m0)) ∧ (c = 1⇒ KBob(mr = m1))

on a variant of the model in which the initial probabilities are ig-
nored. In both cases, the sifting optimization was used during BDD
construction (invoked in MCK with the flag -rs). Fitting a straight
line to the data yields an approximation of y = 0.24x + 1.2 (with
norm of residuals 1.7) for the purely epistemic specification and
y = 0.24x + 2 (with norm of residuals 1.9) for the probabilis-
tic specification (1). Compared to the expected curve of at least
y = 7x + c for a brute force model checking approach based on
explicit generation of all states and traces, this suggests that our
symbolic model checking approach yields a significant optimiza-
tion that brings problems of considerable scale into the range of
feasibility. (Note that the largest of our examples involve more than
27×35 = 5.7×1073 states.) Interestingly, in this example, the addition
of probabilistic model checking capability has come at only a small
cost over the cost of epistemic model checking. The runtimes for all
three specifications together turns out to be only slightly larger than
those for just formula (1), since much of the MTBDD construction
is shared between specifications.

5.2 The Dining Cryptographers Protocol
The Dining Cryptographers protocol [5] is intended to allow anon-

ymous message transmission. Chaum introduced it by the follow-
ing story. Three cryptographers are sitting down to dinner at their
favorite three-star restaurant. Their waiter informs them that ar-

5 10 15 20 25 30 35
2

4

8

16

32

64

128

256

512

1024

2048

Message Length (no. of bits)

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
,
in

 L
o
g
2
−

s
c
a
le

)

Epistemic Specification

Probabilistic Specification (1)

Figure 2: Oblivious Transfer Protocol, Runtime

rangements have been made for the bill to be paid anonymously.
One of the cryptographers might be paying for the dinner, or it
might have been the NSA (US National Security Agency). The
three cryptographers respect each other’s right to make an anony-
mous payment, but they wonder if the NSA is paying. In order to
resolve this question, they devise a protocol that operates as fol-
lows: each flips a coin, and privately shares the outcome with their
neighbour to the right around the (circular) table. They then each
publicly announce whether the outcome of their own coin and the
coin shared by their neighbour to the left are the same, except that
if they paid for the dinner, they invert their answer. The answer
to the question about the NSA can then be determined from the
exclusive-or of the public announcements, and it can be shown that
in case one of the cryptographers paid, their identity is not revealed
to the others. The idea generalizes to n cryptographers in a ring
(indeed, to connected graphs of cryptographers). In the following,
we assume n cryptographers in a ring and let i, j, k ∈ {1, . . . , n}.

The anonymity property has been represented in previous work
on epistemic analysis of the protocol using the formula (1) of Ta-
ble 3 which says that, in case agent i pays, agent j , i cannot elim-
inate the possibility that any other agent k < {i, j} paid. Here d is
the number of steps taken to complete the protocol (which depends
on the details of the modelling).

While this formula gives some interesting information about the
protocol, it does not provide a completely satisfactory analysis from
the point of view of security. For example if cryptographer 1 as-
cribes probability 0.999 to paid2 and probability 0.001 to paid3,
then both are possible, but for all practical purposes it is as good as
known that paid2. Chaum, indeed, shows that the protocol satisfies
a stronger probabilistic anonymity property.

(1) Xd(paidi ⇒ (
∧

k<{i, j} ¬K j(¬paidk))) (4) Xd(paidi ⇒
∧

k<{i, j}(Pr j paidi ≤ Pr j paidk))

(2) Xd(paidi ⇒ Pr j paidi ≤ 1 − ε) (5) Xd((K j
∨

i, j paidi)⇒
∧

i, j(Pr j paidi = Prior j(paidi |
∨

k, j paidk)))

(3) Xd(paidi ⇒ Pr j paidi ≤ 0.5)

Table 3: Anonymity Properties of the Dining Cryptographers Protocol

In the subsequent literature [21, 13] on anonymity protocols, sev-
eral different probabilistic definitions of anonymity have been pro-
posed:

1. A sender is possibly innocent if, from the attacker’s point of
view, there is a nontrivial probability that the real sender is
someone else. For the DC protocol we can express this by
the formula (2) of Table 3, where ε is a

small positive number.

2. A sender is probably innocent if, from the attacker’s point of
view, the sender appears no more likely to be the originator
of the message than to not be the originator. The formula for
this is (3).

3. A sender is beyond suspicion if, though the attacker can see
the evidence of a sent message, the sender appears no more
likely to be the originator of the message than any other po-
tential sender in the system. This can be expressed as for-
mula (4).

4. Conditional Anonymity [13] in the cryptographers protocol
can be characterized by formula (5). Intuitively, this for-
mula says that all though the protocol reveals whether one
of the cryptographers paid, that is all the new information
that any cryptographer learns about who is the culprit: the
probability ascribed to the payer being the culprit is not in-
creased over i’s prior for this any more than follows from
just this new knowledge. (Note that the protocol satisfies
Xd((K j

∨
i, j paidi) ∨ K j

∧
i, j ¬paidi).)

Besides these different notions of anonymity, the literature has
considered the effect of deviations from uniform probability distri-
butions [4]. There are two sources of probability in the protocol:
the prior probability of any of the cryptographers being the payer
(which might, e.g., assign a higher probability to rich Adi over poor
David), and the coin tosses.

We use the notation w1 : w2 : . . . : wk to denote the distribu-
tion in which the i-th component has probability wi/(w1 + . . .wk).
thus, a prior of n : 1 : 1 : 1 : 1 means that, in a protocol of 4 cryp-
tographers, with probability n

n+4 , the cryptographer 1 pays, with
probability 1

n+4 , other agents pay, and with probability 1
n+4 , no one

pays. A coin might be fair or unfair: a fair coin gives a half-to-half
chance for each side, while a unfair coin gives different chances for
heads and tails. A n : 1 coin means that there is probability n

n+1 that
it lands heads and probability 1

n+1 that it lands tails.
We have experimentally studied the effectiveness of our algo-

rithm for checking these properties. Figure 3 compares the run-
times, for different numbers of cryptographers, for the nondeter-
ministic specification (1) solved by the algorithm proposed in [28],
with those for the probabilistic specification (2), with fair coins,
solved by the algorithm of the present paper. (Very similar runtimes
are found for the other probabilistic specifications.) The results in-
dicate that the move from nondeterministic to a probabilistic model
checking does come at the cost of increased runtime and a steeper

3 4 5 6
0.25

1

4

16

64

256

1024

4096

16384

65535

Number of Cryptographers

R
u

n
ti
m

e
 (

s
e

c
o

n
d

s
,

in
 L

o
g

2
−

s
c
a

le
)

Epistemic Specification

Probabilistic Specification

Figure 3: Dining Cryptographers Protocol, Runtime

slope. Both approaches appear to grow at an exponential rate, so in
the case of this protocol it is less clear that the symbolic approach
has yielded significant performance benefits. (However, [28] shows
that an alternate modelling that points to possible optimizations of
the algorithm of that paper allows larger numbers of agents to be
more efficiently handled, and we expect that similar results could
be obtained for the probabilistic case.)

Table 4 shows the experimental results on the truth of anonymity
properties (2)-(5) on probabilistic dining cryptographer protocols,
where ε is fixed at 0.1 for formula (2). We can see that, beyond
suspicion is the most vulnerable anonymity degree in that small
changes to the parameters (i.e., coins or priors) as described would
break it. For the possible innocence and probable innocence, they
will eventually be broken, with the change of either of the parame-
ters of the protocol. Between them, the probable innocence is more
vulnerable. This result corresponds with the observation in [21].

Table 5 shows the experimental results on the truth of formula
(2) with the different value of ε. As the degree of bias in either the
prior or the coins increases, we see that we need to decrease ε to
smaller numbers in order for possible innocence to hold.

6. RELATED WORK
There already exist a number of probabilistic model checkers

based on symbolic techniques. Most notably, PRISM [15], based
on OBDD and MTBDD, has implemented a comprehensive set of
symbolic model checking algorithms on various probabilistic mod-
els of complete information. The difference with our work is that
PRISM, in effect, works just with the prior measure µR on runs.
To express agent knowledge in PRISM, it is necessary to specify a
formula representing a specific observation-sequence on which to
condition the prior, whereas our approach has an implicit quantifi-
cation over all possible observation sequences, and updates agent
knowledge to the current time.

Protocols Anonymity Degrees
Coin Prior (2) (3) (4) (5)
1:1 1:1:1:1:1 Y Y Y Y
2:1 1:1:1:1:1 Y Y
3:1 1:1:1:1:1 Y
11:1 1:1:1:1:1
1:1 2:1:1:1:1 Y Y Y
1:1 3:1:1:1:1 Y Y
1:1 19:1:1:1:1 Y

Table 4: Anonymity Properties (ε = 0.1)

Protocols Formula (2)
Coin Prior ε = 0.5 ε = 0.05 ε = 0.005
1:1 1:1:1:1 Y Y Y
2:1 1:1:1:1 Y Y

20:1 1:1:1:1 Y
200:1 1:1:1:1

1:1 2:1:1:1 Y Y
1:1 20:1:1:1 Y
1:1 200:1:1:1

Table 5: Possible Innocence of different ε

Partially observable Markov decision processes (POMDP) [17],
which generalize PO-DTMC, have been widely studied in AI, but
the focus is generally on heuristic approaches to the discovery of
optimal strategies that can be taken by an agent. Belief space in
this area corresponds to agent’s perfect recall subjective probabil-
ity, but is generally represented explicitly rather than symbolically.
This area also does not focus on the general class of specifications
we consider. Towards model checking both probability and knowl-
edge, [8] works on a logic where the semantics of knowledge and
probability are orthogonal and the knowledge is interpreted on cur-
rent observation. However, the temporal dimension and perfect re-
call semantics in our work are not considered.

Security properties like those in the protocols we study have
been previously considered from the perspective of both probabilis-
tic epistemic logic and probabilistic model checking. To analyze
anonymity protocols like the dining cryptographers protocol, [13]
proposes some properties based on the probabilistic knowledge of
the agents. We have shown in the paper that our algorithm can
verify formulas expressing those properties. A different approach
to specification of anonymity is taken in [4], which analyzes the
Dining cryptographers protocol by concentrating on the conditional
probability P(o|a), expressing the probability of observations o un-
der the condition of system behaviors a. PRISM has been used
to analyze some security protocols, e.g., the crowds protocol [24]
and probabilistic contract signing protocols [20]. These analyses
concentrate on the objective aspects of the system, instead of the
subjective view of agents as in this paper.

7. CONCLUSIONS
We have shown in this paper that model checking perfect recall

probabilistic knowledge is feasible in at least some simple exam-
ples. This is just a first step, and we believe that much can be done
to optimize the performance of our algorithm by eliminating some
obvious redundancies prior to MTBDD construction. Another in-
teresting direction is to broaden the scope of the formulas that can
be handled, to encompass a richer temporal expressiveness. We
plan to pursue these directions in future research.

8. REFERENCES
[1] O. I. Al-Bataineh and R. van der Meyden. Abstraction for

epistemic model checking of dining cryptographers-based
protocols. In Proc. Conf. on Theoretical Aspects of
Knowledge and Rationality, 2011.

[2] K. Baukus and R. van der Meyden. A knowledge based
analysis of cache coherence. In Proc. 6th Int. Conf. on
Formal Engineering Methods, volume 3308 of LNCS, pages
99–114. Springer, 2004.

[3] R. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers,

C-35(8):677–691, 1986.
[4] K. Chatzikokolakis, C. Palamidessi, and P. Panangaden.

Anonymity protocols as noisy channels. Information and
Computation, 206(2-4):378–401, 2008.

[5] D. Chaum. The dining cryptographers problem:
unconditional sender and recipient untraceability. J. Cryptol.,
1:65–75, March 1988.

[6] E. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, and
X. Zhao. Multi-terminal binary decision diagrams: An
efficient data structure for matrix representation. Formal
Methods in System Design, 10(2):149–169, 1997.

[7] E. Clarke, O. Grumberg, and D. Peled. Model Checking. The
MIT Press, 1999.

[8] C. A. D. M. Delgado and M. R. F. Benevides. Verification of
epistemic properties in probabilistic multi-agent systems. In
Proc. 7th German Conf. on Multiagent System Technologies,
MATES, volume 5774 of LNCS, pages 16–28. Springer,
2009.

[9] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning
About Knowledge. The MIT Press, 1995.

[10] R. Fagin and J. Y. Halpern. Reasoning about knowledge and
probability. J. ACM, 41:340–367, March 1994.

[11] P. Gammie and R. van der Meyden. MCK: Model checking
the logic of knowledge. In Proc. Conf. on Computer-Aided
Verification, CAV, pages 479–483, 2004.

[12] J. Y. Halpern. Reasoning about Uncertainty. MIT Press,
2003.

[13] J. Y. Halpern and K. R. O’Neill. Anonymity and information
hiding in multiagent systems. Journal of Computer Security,
13(3):483–514, 2005.

[14] J. Y. Halpern and M. R. Tuttle. Knowledge, probability, and
adversaries. J. ACM, 40:917–960, 1993.

[15] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker.
PRISM: A tool for automatic verification of probabilistic
systems. In Proc. Conf on Tools and Algorithms for the
Construction and Analysis of Systems, number 3920 in
LNCS, pages 441–444. Springer, 2006.

[16] M. Kacprzak, W. Nabiałek, A. Niewiadomski, W. Penczek,
A. Półrola, M. Szreter, B. Woźna, and A. Zbrzezny. Verics
2007 - a model checker for knowledge and real-time.
Fundamenta Informaticae, 85(1):313–328, 2008.

[17] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra.
Planning and acting in partially observable stochastic
domains. Artificial Intelligence, 101(1-2):99–134, 1998.

[18] A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: a model
checker for the verification of multi-agent systems. In Proc.
Conf. on Computer-Aided Verification, pages 682–688, 2009.

[19] N. O. G. Nikolay V. Shilov. Model checking knowledge and

fixpoints. In Fixed Points in Computer Science, pages 25–39,
2002.

[20] G. Norman and V. Shmatikov. Analysis of probabilistic
contract signing. Journal of Computer Security,
14(6):561–589, 2006.

[21] M. K. Reiter and A. D. Rubin. Crowds: anonymity for web
transactions. ACM Trans. Inf. Syst. Secur., 1(1):66–92, 1998.

[22] R. L. Rivest. Unconditionally secure commitment and
oblivious transfer schemes using private channels and a
trusted initializer. Unpublished manuscript, 1999.

[23] R. Rudell. Dynamic variable ordering for ordered binary
decision diagrams. In Proc. IEEE/ACM Int. Conf. on
Computer-aided design, 1993.

[24] V. Shmatikov. Probabilistic model checking of an anonymity
system. Journal of Computer Security, 12(3-4):355–377,
2004.

[25] F. Somenzi. CUDD: CU Decision Diagram Package.
http://vlsi.colorado.edu/∼fabio/CUDD.

[26] K. Su, A. Sattar, and X. Luo. Model checking temporal
logics of knowledge via OBDDs. The Computer Journal,
50(4):403–420, 2007.

[27] R. van der Meyden and N. V. Shilov. Model checking
knowledge and time in systems with perfect recall. In Proc.
Conf. on Foundations of Software Technology and
Theoretical Computer Science, volume 1738 of LNCS, pages
432–445, 1999.

[28] R. van der Meyden and K. Su. Symbolic model checking the
knowledge of the dining cryptographers. In 17th IEEE
workshop on Computer Security Foundations, pages
280–291, 2004.

[29] H. van Ditmarsch, W. van der Hoek, R. van der Meyden, and
J. Ruan. Model checking Russian cards. In ENTCS 149(2),
pages 105–123, 2006.

[30] J. van Eijck. Dynamic epistemic modelling. Technical Report
E 0424, CWI. Software Engineering [SEN], 2004.

