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Abstract. Blockchain systems and smart contracts provide ways to se-
curely implement multi-party transactions without the use of trusted
intermediaries, which currently underpin many commercial transactions.
However, they do so by transferring trust to computer systems, rais-
ing the question of whether code can be trusted. Experience with high
value losses resulting from incorrect code has already shown that formal
verification of smart contracts is likely to be beneficial. This note inves-
tigates the specification and verification of a simple form of multi-party
transaction, atomic swaps. It is argued that logics with the ability to
express properties of strategies of players in a multi-agent setting are
conceptually useful for this purpose, although ultimately, for our specific
examples, the less expressive setting of temporal logic suffices for verifi-
cation of concrete implementations. This is illustrated through a number
of examples of the use of a model checker to verify atomic swap smart
contracts in on-chain and cross-chain settings.

1 Introduction

Many commercial transactions presently make use of intermediaries, independent
of the interacting parties. The role of these intermediaries is to overcome deficits
of trust between the transacting parties, ensuring that none are able to act
in a way that causes the others losses due to deviations from agreed terms of
exchange.

One of the main potential benefits of blockchain technology is its ability to
eliminate the use of trusted intermediaries in multiparty interactions, enabling
parties to engage in reliable peer-to-peer transactions without having to place
trust in third parties. The ability to ensure atomicity of transactions composed
of multiple independent exchanges is one significant example of this capability.

While blockchain and smart contract solutions have the attractive property of
being able to enforce such atomic transactions, they do come with risks of their
own. Trust placed in a person is not in fact eliminated, rather, it is replaced
by trust in the correct behaviour of the smart contract code. In effect, the fact
that there is an intermediary in the transaction is not changed, but a human
intermediary is replaced by an intermediary composed of smart contract code
executing on a blockchain platform.
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Trust in code is not always warranted: code can be complex, and behave in
unexpected ways. This is particularly the case when, as in the case of smart
contracts on the blockchain, code is open to inspection, and malicious agents
may interact with it. There have already been a number of instances where large
losses have been incurred as a result of poorly written smart contracts, that
were vulnerable to attacks enabling the attackers to either steal assets [Pop16],
or make them unavailable [Ltd17] to the rightful owners. There is therefore a
need for smart contracts, which may control large amounts of monetary value,
to be subjected to rigorous quality assurance before trust is warranted.

The strongest form of quality assurance used in computer science uses for-
mal methods, involving the use of precise, mathematically grounded models to
rigorously represent specifications and implementations, and to prove that the
implementations meet the specifications. To ensure that the reasoning in these
proofs is correct, they are represented in formal logics, and reasoning steps are
checked (or even automatically constructed) using software tools. While such
tools may themselves contain errors, the level of attention to detail that they
provide is far beyond human capacity for tedious checking of large volumes of
reasoning steps, and the methodology has been highly successful in identifying
errors that had escaped human attention.

There is significant interest in the blockchain community in the application
of formal methods to blockchain systems and smart contracts. The first step in
such an application is to develop mathematically precise specifications of the
desired behaviour and properties of the systems to be developed. In this note,
we conduct a case study of one of the simplest cases of a smart contract, in order
to develop an understanding of the types of specifications that are required in
this area.

Specifically, we consider the case of an atomic swap of digital assets. The
scenario is very simple: Alice and Bob each own an asset, and they would like
to exchange ownership. We explain this scenario informally, and sketch code
for a simple smart contract implementing an atomic swap in Section 2. We
then consider a number of potential approaches for formal specifications against
which such code might be judged for correctness. In Section 3 we consider the
suitability of pre-condition/post-condition specifications. Section 4 argues that
a richer form of specification captures the intended behaviour better, by making
use of logics that contain constructs relating to strategies played by agents in
a multi-agent setting. We argue that these constructs provide a conceptually
useful high level language in which to express issues of concern in smart contract
specification, but also that they have some limitations, and may ultimately be
eliminable when it comes to verifying concrete implementations.

We illustrate this in Section 5, where we show that it is possible to au-
tomatically verify that a concrete implementation of atomic swap satisfies its
specification using just temporal logic model checking, without making use of
strategic operators. In Section 6, we go on to apply the methodology of Sec-
tion 5 to a harder problem: cross-chain atomic swaps, in which the assets to be



swapped reside on different blockchains. Section 7 concludes with a discussion
of questions for future consideration and related work.

2 Atomic Swaps

Suppose Alice holds an asset a and Bob holds an asset b. They would like to
execute a swap, in order to reach a state where Alice holds b and Bob holds
a. The problem that this presents is that one of the parties may not behave as
expected. If Alice first transfers a to Bob, then she is at risk that Bob will not
uphold his end of the bargain, and transfer b to Alice. Alice would then face the
loss of a without compensation. There is a similar problem if Bob first makes the
transfer to Alice. (Alice and Bob’s recourse to the courts to enforce the exchange
contract may not be effective in a blockchain setting, where Alice and Bob may
know each others’ identity only via their public keys, in which case they would
not even know who should be served with a legal claim.)

One commercially applied solution to this problem is for Alice and Bob to
make use of an intermediary known as an “escrow agent”. We will call this agent
“Esther” here. Alice and Bob each transfers their asset to Esther, and once she
has received both a and b, Esther transfers b to Alice and a to Bob. This solution
no longer requires that Alice and Bob trust each other, but it does require that
both trust that Esther will act in their best interests. Were she malicious, Esther
could cause many forms of harm. She could abscond with both Alice and Bob’s
assets herself, transfer a to Bob before receiving b from Bob (enabling Bob to
abscond with both assets), or transfer just one of the assets and retain the other
herself. Other more subtle forms of malice might be possible on Esther’s part,
like retaining the assets for an extended period before transferring them in order
to collect part of their revenue streams for herself. This solution is only effective
if Alice and Bob can justifiably believe that Esther is not malicious in any of
these ways. Finding a person who can be trusted in this way may be a challenge,
particularly if Alice and Bob live far from each other. Even if they can find an
appropriate Esther, she is only human, so might still behave maliciously even if
she has been trustworthy in the past.

The promise of blockchain and smart contract technology for this problem
(at least for digital, or digitally represented, assets) is that they enable Esther
to be replaced by a computer program that is in-corruptible and does not act
with malicious intent. Both Alice and Bob can carefully inspect this program
and form the justified belief that it behaves in exactly the way that they were
expecting of Esther. If this program runs on blockchain platform that Alice and
Bob trust will reliably execute this programs exactly according to its specified
semantics, then they can be satisfied that their transaction will be executed
without risk of loss.

Figure 1 shows the code for such an “escrow” smart contract. Rather than
use any specific smart contract programming language, we write psuedo-code.
Intuitively, the code consists defines a collection of functions that may be called
by any agent. The function initialise is called automatically when the smart



contract is initiated on the blockchain, and sets up initial values of the local
variables depositedA, depositedB, which are intended to represent whether
Alice and Bob, respectively, have transferred the expected asset to the smart
contract. We assume that initialise can only be called at initiation, and has
null effect if anyone attempts to call it at any other time.

Contract Escrow

{

depositedA, depositedB : Bool

initialise { depositedA := False ; depositedB := False }

depositA { if sender = Alice and value = a then depositedA := True }

depositB { if sender = Bob and value = b then depositedB := True }

finalise { if depositedA and depositedB

then { depositedA := False; depositedB := False;

send(a,B); send(b,A) } }

cancelA { if depositedA then { depositedA := False; send(a,A) } }

cancelB { if depositedB then { depositedB := False; send(b,B) } }

}

Fig. 1. An atomic exchange smart contract

The function depositA allows Alice to transfer the asset a to the smart
contract. The keyword sender denotes the agent who is calling a function. We
assume that a function call may be made with an asset attached - the effect of
attaching an asset with a function call is for the asset to be transferred to the
smart contract. The smart contract code may check the value of the attached
asset using the keyword value. Thus, the code for depositA checks that the
function has been called by Alice and has asset a attached. If so, then Alice
is credited with the deposit by setting depositedA to be true, otherwise this
function call has no effect. There is a similar function depositB allowing Bob to
deposit his asset.

If all goes well, and both assets have been deposited, then the function
finalise may be called by any agent (but presumably, will be called by ei-
ther Alice or Bob, since noone else stands to gain anything by doing so) and has
the effect of transferring the two assets back to Alice and Bob in such a way as
to effect the swap.

It may happen however, that Alice deposits her asset, but Bob does not. This
would be a problem for Alice, since the asset is then no longer under her control,



but under the control of the smart contract, but she has received nothing in
return. To protect Alice against the eventuality that Bob does not deposit his
asset (or does not do some in a timely fashion), there is a function cancelA that
enables Alice to cancel her participation in the exchange and recover her asset
a. A similar function is available to Bob.

We abstract cryptographic concerns from our presentation - typically Alice
and Bob would be represented via their public keys, and their instructions to
perform actions in the smart contract would be sent as cryptographically signed
messages. Note that blockchain systems do not provide guarantees with respect
to the order of execution of messages submitted for processing by the agents -
this is under the control of network operators (who are typically called “miners”
in the area.) Smart contract code is typically reactive, i.e., the state of the smart
contract changes only when some agent (or another smart contract) sends it a
message - there are no spontaneous events such as events triggered by timers.

The escrow smart contract is relatively short, but it already displays some
complexity, with several functions maintaining an internal state that consists
of assets held by the contract, as well as variables used for book-keeping of
those assets. One might wonder if there are any unexpected interactions be-
tween these functions, and whether, in combination, they capture the possible
behaviours that Alice and Bob expect of their interaction. The code already has
some implicit invariants that underly its correctness. For example, why it is safe
for the send operations to be performed in finalise, sendA and sendB? The
reason is that the functions interact in such a way as to ensure that the following
statement is an invariant that holds in all states reachable from any sequence
of calls: if depositedA, then the smart contract holds asset a, and similarly, if
depositedB, then the smart contract holds asset b. Even if one considers this
obvious for this contract, for even a marginally more complex contract, it would
be desirable to have an independent specification against which the code could
be evaluated for correctness.

3 Pre-condition/Post-condition specifications

One commonly used form of formal specification of code is the use of pre-
conditions and post-conditions. In the refinement calculus [Mor94,BvW98] no-
tation, these can be written using statements in the form [pre, post], where pre
and post are formulas that assert some property of the state of the system. The
intuitive meaning of this statement is that it is a specification of a program.
A concrete program P implements (or refines) this statement if, whenever it is
executed from an initial state satisfying the pre-condition pre, at termination
the program is in a state satisfying the post-condition post. There are weak
and strong version of this semantics: in the weak (partial completeness) seman-
tics, termination is not guaranteed, in the strong, the program is required to
terminate whenever started at a state satisfying φ.

It would appear at first that this specification approach can be used to specify
the Escrow smart contract. Write holds(x, y) to mean that agent x holds asset



y. Then (abbreviating Alice and Bob respectively as A and B) we could try to
specify the goal of Alice and Bob’s exchange by the statement

[holds(A, a) ∧ holds(B, b), holds(A, b) ∧ holds(B, a)] (1)

which is satisfied by a program that (provided it is started in the correct initial
state) guarantees on termination that the assets have been swapped.

Unfortunately, this specification is too strong to be implemented in a blockchain
setting. Pre-condition/Post-condition specifications are applicable to settings
with a single “thread”, or locus of control, and this is not the case on the
blockchain, where we need to consider not only the execution of smart con-
tract code, but also the actions of other agents in the system, in this case Alice
and Bob. Evidently, action by both Alice and Bob is required to bring the smart
contract of Figure 1 to the desired final state, and there is nothing that the con-
tract can do on its own to ensure that Alice and Bob each execute their part of
the deal. Indeed, in order to apply precondition/post-condition specifications, we
first need to clarify what we mean by termination in such a multi-agent setting.
For the moment, we take a terminated state to be one reached by executing an
action called “finalise”, and assume that the other actions are disabled after this
function has been called. (This can easily be programmed into the smart con-
tract by adding a variable done that is initially false and set true by finalise

when this is called in a state where depositedA and depositedB hold.)
We could attempt to interpret the specification (1) with the weak (partial

completeness) semantics in order to cover the possibility that Alice or Bob does
not play their part, and treat such a behaviour as a case of non-termination.
However, this is also unsatisfactory. Consider a variant of the contract of Fig-
ure 1, in which we delete the actions cancelA and cancelB. This satisfies the
weak interpretation of specification 1, since now the only way to reach the final
state is for both Alice and Bob to deposit their assets and then call finalise.
Failure by either Alice or Bob to play their part is treated as non-termination,
and the specification has nothing to say about this eventuality. However, from
Alice and Bob’s perspective, this is a fatal deficiency of the specification: this
variant of their contract allows a run in which Alice deposits her asset, but Bob
does not, with the effect that Alice has forever lost control of her asset, without
compensation.

Since it seems to be necessary to accommodate the possibility that the im-
plementation terminates without the exchange having occurred, one might be
tempted to weaken the specification to the following[

holds(A, a) ∧ holds(B, b),
(holds(A, b) ∧ holds(B, a))
∨(holds(A, a) ∧ holds(B, b))

]
,

which allows that on termination, the system has reverted to its original state.
However, this also does not capture our intent for the system. There is a very
simple program (skip) which implements this specification just by doing nothing!
Clearly, this is not what Alice and Bob intend: they do wish to engage in the
exchange, but to do in a way that protects them from malicious behaviour by the



other. At the very least, some additional constraint would need to be included
in the formal specification to capture this. It is not at all clear how to express
Alice and Bob’s preference within a pre-condition/post-condition specification.

4 Logics with Quantification over Strategies

Temporal logics [Eme90] contain operators that express properties of a world
whose state changes over time. They have been found useful for specifying and
reasoning about concurrent systems, and are widely used for verification of such
systems, particularly in the context of computer hardware development. There
are several variants of such logics: linear time logics are concerned with what
happens in a single history, and branching time logics take the view that time
has a tree-like structure, with multiple possible futures at each instant.

Specification of concurrent settings involving multiple, possibly adversarial
agents has been addressed in some types of logic called alternating temporal logic
[AHK02], and the more general strategy logic [CHP10]. These are extensions
of branching time temporal logics. The semantic setting for these logics is an
environment, called a concurrent game structure in the literature, in which some
set of agents are each equipped with a set of actions that they may perform. At
each moment of time, agents that are scheduled to act select one of their actions
to perform, and a concurrent game structure describes how the selected actions
cause a state transition.

A strategy for an agent is a rule for selecting an action of the agent in each
possible state of the system. For example, the set of conditions in Figure 2 give
a strategy for Alice in the environment created by the atomic exchange contract
of Figure 1. Here the construct do . . . od is a nondeterministic loop statement,
consisting of a set of clauses C → A. The statement executes by repeatedly
performing one of the actions A for which the condition C is true. If there are
several possible such actions, the choice is made non-deterministically.

do

holds(A,a) -> depositA;

depositedA and depositedB -> finalise;

otherwise -> skip

od

Fig. 2. A strategy for Alice

Alternating temporal logic introduced a specification construct 〈〈G〉〉φ, in
which G is a set of agent names, and φ is formula. Intuitively, the formula 〈〈G〉〉φ
says that the group of agents G has a strategy that guarantees, whatever the
other agents in the system do, that the formula φ will hold. The formula φ states



some property of the future. For example, φ could be the formula Eventually ψ,
which holds if ψ is true at some time in the future.

Using this construct, we can capture more of the requirements discussed
above. Write I for the initial condition holds(A, a) ∧ holds(B, b) and F for the
desired final condition holds(A, b) ∧ holds(B, a). Then the formula

〈〈A,B〉〉(I ⇒ Eventually F )

says “Alice and Bob have a strategy that, if started in a state satisfying I,
guarantees that (whatever any other agent does) eventually F .”

We can also express the idea that Alice should be able to recover her asset
by some means (even if Bob is not cooperating) using the formula

〈〈A〉〉Eventually holds(A, a) .

This says “Alice has a strategy that ensures (whatever any other agent does) that
eventually Alice holds asset A”. Obviously, this would be true trivially (without
Alice having to do anything) at any time that Alice already holds a, but it also
ensures that Alice has some course of action that guarantees that she recovers
a in case, e.g., a has been placed under the control of a smart contract.

However, this latter requirement may not be realisable. In a blockchain im-
plementation of the smart contract of Figure 1, Alice’s strategy for recovering
her asset (after she has already called depositA), would be to send message
invoking action cancelA. This message will take some time to spread through
the miner network, and it may take some additional time before a miner chooses
to incorporate it into a block. In the mean time, Bob may have been able to call
finalse (preceded by depositB), and effect the swap. Miners may have chosen
to prioritise Bob’s messages. This means that the action actually under Alice’s
control (sending the request) is not guaranteed to eventually make holds(A, a)
true. However, in the event that Bob “wins” this race, the contract does result in
holds(A, b) being true. From Alice’s point of view, this was her initial objective
in doing business with Bob, so she should be satisfied, even if her attempt to
cancel failed. (The point of the cancellation facility is to prevent her asset being
locked in the contract as a result of Bob’s potential malice,) This suggests that
the weaker formula

〈〈A〉〉Eventually (holds(A, a) ∨ holds(A, b))

is a more satisfactory way to express Alice’s ability to recover from malicious
activity by Bob: it may be paraphrased as “Alice may recover an asset”. A
symmetric formula

〈〈B〉〉Eventually (holds(B, b) ∨ holds(B, a))

expresses Bob’s ability to recover an asset. We write RecoverableA and RecoverableB

for these formulas, respectively.
Let us now combine these pieces, with some qualification. We do not require

Alice and Bob to have the ability to recover their assets in all possible situations.



For example, if Alice decides not to cooperate with Bob, and transfers her asset
to Carol instead, then she then has no right to expect to recover her asset. Alice
needs to be protected from Bob’s malice only so long as she is engaged in her
interaction with Bob. This suggests combining our requirements into a single
formula as follows:

〈〈A,B〉〉
(
I ⇒

(
Eventually F ∧
(RecoverableA ∧ RecoverableB) Awaiting F

))
We use here a binary temporal construction α Awaiting β, the meaning of which
is that formula α continues to hold up to the moment that formula β holds. It
allows that β never holds, in which case α holds forever.1

However, this formula is still not quite what we want. It says that Alice and
Bob retain the ability to recover an asset, so long as both are playing the strategy
intended to eventually result in the final condition F , up to the moment that this
final condition holds. But what of a situation where Alice plays her part, but Bob
is malicious from the start? Here we are not in the scope of a situation (covered
by the operator 〈〈A,B〉〉) where both Alice and Bob cooperate. The formula is
therefore silent on this situation, and leaves it completely open whether Alice
can recover if this happens. In attempting to constrain the situations ensuring
recovery, we have gone too far. What we need instead is that Alice is protected
from all possible behaviours of Bob, just based on the fact that Alice has been
playing her part to cooperate with Bob.

To express this, we seem to need a richer language with the expressiveness
to name stategies. This expressiveness was introduced in a class of logics known
as strategy logic [CHP10]. This class of logics contain operators similar to the
following.2

– ∃α :p(φ), expressing that there exists a strategy (named α) for player p, such
that formula φ holds.

– �φ, expressing that whatever strategy any player plays from the present
state onwards, φ holds,

– p plays α, expressing that from the present moment onwards, player p plays
strategy α.

Note that, when G is the set of agents {p1, . . . , pn}, the alternating temporal
logic formula 〈〈G〉〉φ is equivalent to

∃α1 :p1 . . . ∃αn :pn�((
∧

i=1...n

pi plays αi) ⇒ φ) .

1 Expressing this in linear time temporal logic, α Awaiting β is (α Until β) ∨
Always (α ∧ ¬β), which says that either α Until β (meaning β holds at some time
in the future, and α holds at every moment up until that time), or Always (α∧¬β)
(meaning that α is true and β false, now and at all times in the future). We do not
use the stronger formula α Until β here to allow for easier comparison with a later
formula, which has contexts where we cannot guarantee that β will ever hold.

2 Since our focus at this point is just to identify what kind of expressiveness we need,
we avoid a commitment to any specific logic, or going into formal details of the
semantics.



Using these constructs, we can write the following:

∃α :A∃β :B

I ⇒

�((A plays α ∧B plays β) ⇒ Eventually F )∧
�(A plays α⇒ (RecoverableA Awaiting F )) ∧
�(B plays β ⇒ (RecoverableB Awaiting F ))


Intuitively, here α and β are Alice and Bob’s strategies when they cooperate.
The first of the three inner formulas therefore says that the final condition F is
guaranteed to eventually hold if they both cooperate. The following two formulas
say that, each is assured, based just on the fact that they are playing their coop-
erative strategy, and independent of what the other agent (or any third party)
does, that until such time as the final condition F holds, they have retained the
ability to recover one or the other asset by executing some strategy.

This significantly improves our specification of the atomic swap. However,
there remains a subtle issue. Recall that the formula RecoverableA says that
there is a strategy by which A can eventually recover an asset. It does not say
that A knows what this strategy is. This strategy may also vary from moment
to moment, while A is waiting to determine whether Bob is cooperating, and
has not yet decided to attempt to recover an asset. There is a difference between
knowing that there exists something satisfying some property, and there existing
something that is known to satisfy some property! This distinction is well known
in the philosophy literature as the de dicto - de re distinction.

Particularly once we introduce cryptographic constructs, this distinction mat-
ters. Suppose we modify the smart contract of Figure 1 by adding a 256 bit in-
teger variable hash, enable Bob (but not Alice) to set this variable at most once
using a new function setHashB, and modify Alice’s operation cancel so that it
has an effect only if Alice provides a string that hashes under the SHA-256 hash
function to the value of hash. The modifications are shown in Figure 3.

hash : Int256

initialise { depositedA := False ; depositedB := False ; hash := 0}

setHashB(h:Int256) { if sender = Bob and hash = 0 then { hash:= h } }

cancelA(x:String) { if depositedA and sha256(x) = hash

then { depositedA := False; send(a,A) } }

Fig. 3. A variant of actions in the atomic exchange smart contract

It is now the case that while cooperating, and before F holds, Alice will have
always have a strategy for recovery of an asset: the strategy is to call cancelA
with a string whose hash is hash. In case Bob manages to update the value from
0 to a new value (which he can do at most once), Alice should repeat this with



the inverse of the new value. However, cryptographic hash functions like SHA-
256 have the property of requiring large amounts of computation to compute an
inverse. Therefore, this strategy may not be immediately known to Alice, and
she may need to conduct an infeasible amount of computation to discover such
a string! (Alternately she could call cancelA with all strings in succession until
one work, but this again requires a very large expected effort, as well as a very
high expected cost in transaction fees in a blockchain setting that charges her
for each call.) It would therefore be misleading to say that Alice is protected
against Bob’s malice because she has a strategy for recovery of an asset.

There exist proposals for strategy logics that add operators that talk about
what agents know as well as what they are able to do ([HvdM18] is one re-
cent work, with references to others), but it is not clear that they resolve this
particular problem.3 Instead, we resolve it by making the implicitly quantified
strategy in Recoverablei explicit, and moving it to the the front of the formula.
For i = A,B, write Recoverablei(α) for the formula

�(i plays α⇒ Eventually (holds(i, a) ∨ holds(i, b)) .

This says that strategy α can be played by agent i to recover one of the two
assets. Then we can overcome the issue of agent’s not knowing the correct current
value of a strategy that changes from state to state by means of the alternate
specification

∃α, αR :A∃β, βR :B(Swap(α, αR, β, βR))

where Swap(α, αR, β, βR) is the formula

I ⇒

�((A plays α ∧B plays β) ⇒ Eventually F )∧
�(A plays α⇒ (RecoverableA(αR) Awaiting F )) ∧
�(B plays β ⇒ (RecoverableB(βR) Awaiting F ))


Here α and β are Alice and Bob’s strategies when they cooperate, and αR and
βR are the strategies that Alice and Bob can play to recover an asset should they
decide the other is not cooperating. We have finessed the de dicto - de re issue
by identifying specific strategy pairs (α, αR) and (β, βR). If the specification is
valid, witnessed by these strategies, then Alice and Bob, provided with these
strategy pairs, will know what to do.

5 Model checking an atomic swap

The specification we have developed above uses quantification over strategies.
This is appropriate for an abstract specification of a swap contract: it gives
maximum flexibility to the implementer to decide what concrete operations the

3 For one thing, according to the usual semantics of knowledge, agents have unbounded
computational powers, so these logics would in fact (contrary to intuition) state that
Alice knows a strategy for recovering an asset when this requires solving a hash
puzzle.



smart contract should provide, and how the agents should use those operations
in order to achieve the desired effect.

On the other hand, the complexity of automated verification is, in general,
higher for logics containing quantification over strategies than it is for the less
expressive temporal logics on which they build. Quantification over strategies
involves a version of the synthesis problem, that of finding a strategy satisfying
a given property, from a potentially infinite set of possibilities. In multi-agent
settings, this problem is computationally undecidable in its most general forms
[PR90], and decidable cases tend to be highly restricted, but still computationally
infeasible.

However, for our purposes, this complexity can be avoided. While the specifi-
cation asks for the existence of a set of strategies, an implementation can be asked
to deliver not only a smart contract satisfying the specification, but also a set of
concrete strategies α, αR, β, βR that witness the claim of existence. Verification
of the claim amounts to checking that the formula Swap(α, αR, β, βR) holds for
these strategies. This formula has no remaining strategic operators, but only
temporal operators, making it amenable to automated verification using model
checking technology.

We demonstrate this by verifying the smart contract of Figure 1 with respect
to a set of strategies for Alice and Bob. The strategies are that each either
cooperates, transferring their asset to the smart contract and calling finalise

when it holds both, or recovers by calling their cancel action. We have used the
model checker MCK [GvdM04], but expect that it could be carried out without
difficulty in other model checking systems.4 The complete text of our MCK
model is given in Appendix A.5 MCK verifies the formulas in under a second.

A few issues arise in this exercise. One is how to represent the smart contract
and the agent strategies. MCK provides a modelling language that separates sys-
tems into an environment (similar to the concurrent game structures used in the
semantics of alternating temporal and strategy logics) and protocols executed
by each of a number of agents. We use the environment to model the smart
contract, and encode the possible strategies in the agent protocols. The environ-
ment’s encoding of the smart contract is a straightforward transcription of the
code of Figure 1.

Since the specification involves agents potentially switching from one strat-
egy to another during the course of a run, we do not model each strategy as an
individual protocol. Instead, we construct a single protocol for Alice that encodes
the rules for the cooperating strategy α, the recovery strategy αR, as well as a
strategy in which Alice chooses her actions nondeterministically. This nondeter-
ministic protocol covers all possible behaviours of Alice, and is included in order
to enable reasoning about the situation where Alice acts maliciously. A variable
strategyA taking a value in the set of constants {Cooperate,Recover,Random}

4 The principal novelty of MCK is that it supports specification that concern the
knowledge of agents, but we do not use this facility in the present paper.

5 The MCK scripts discussed in this paper are also available as examples in the MCK
web app at http://cgi.cse.unsw.edu.au/~mck/mckform/.



is used to select Alice’s choice of strategy at each moment of time. This vari-
able is assigned a value non-deterministically, and Alice’s protocol then selects
Alice’s action in accordance with the corresponding strategy for Alice. We can
then express “Alice plays the cooperation strategy α at all times in the future”
by a formula Always(strategyA = Cooperate). Some minor modelling details
that motivate a small change to the formulas are discussed in the appendix.

6 Cross Chain Swaps

We considered above a swap performed in the context of a single blockchain. The
blockchain community has also developed an approach to cross-chain swaps,
in which the assets to be swapped exist on different blockchain systems. The
specification approach discussed above continues to apply, but implementing it
in such a setting is a harder problem. If Alice and Bob’s assets reside on different
blockchains, then we can no longer have them deposit both assets into the control
of a single smart contract - we need to use a number of interoperating smart
contracts residing on different chains.

A solution that has been proposed [Wikb,Wika] uses a combination of hash
and time locks. A time lock is a constraint stating that an action (e.g., pay an
asset to some party) cannot be performed until a specified time. A hash lock
is an output value y of a cryptographic hash function h, and requires that the
caller of an action supply a value x such that h(x) = y in order to execute the
action.

Suppose now that Alice’s asset a resides on a blockchain BCA, and Bob’s
asset b resides on another BCB . A protocol for executing the swap then proceeds
as follows:

1. Alice generates a random value s from a space large enough that Bob will
not be able to guess it in a feasible amount of time. She keeps this secret
until a later step of the protocol.

2. Alice creates a smart contract on BCA with hash lock h(s) and time lock tA
such that if Bob provides s before tA then the asset a will be transferred to
Bob, else a will revert to Alice after tA.

3. Since Bob, can now see the value of h(s), he is able to create a smart contract
on BCB with hash lock h(s) and time lock tB such that if Alice provides s
before tA then the asset b will be transferred to Alice, else will revert to Bob
after tB .

4. Before tB , Alice uses s to collect b from Bob’s smart contract. This reveals
s onto Bob’s blockchain.

5. Before tA, Bob uses s to collect a from Alice’s smart contract.

In order to be correct, the times tA and tB need to be selected so that the
network delays in having smart contracts logged and actions executed on smart
contracts is taken into account, and the agents get adequate time to collect the
assets before the timeouts. In particular, we need that tA is an adequate amount



greater than the latest time tB that Alice might collect asset b and reveal the
secret, to allow Bob to also collect asset a.

We have also modelled this protocol in MCK, and verified that it satisfies our
specification. (Verification runs in about 17 seconds in this case.) The details are
given in Appendix B. In this case, the main issue arising in the exercise is that if
we are to stay in the domain of temporal logic model checking, it is necessary to
abstract the hash lock, and the way that inhibits the performance of an action
until the agent knows the secret. We have done so by means of a boolean variable
that records whether Alice has revealed the secret in collecting b. This is a simple
instance of the “perfect cryptography” assumptions that are commonly made in
model checking cryptographic protocols.

A more realistic modelling would encode the hash function more explicitly
(e.g., as a random oracle, or more ambitiously, as actual code) and state the
specification probabilistically. A difficulty with such a more accurate model is
that the computational cost of automated verification of probabilistic specifica-
tions is inherently higher than that of discrete specifications (if not undecidable),
and such an approach will tend to require semi-automated theorem proving with
larger amounts of human input to the verification process. We note, however,
that there are correctness results for the abstract “perfect cryptography” models
of the kind we have used, and we suggest that this is the preferred route for au-
tomated verification of protocols involving hash-locks. We leave a more detailed
exploration of this issue for future work.

7 Discussion

Our examination of the question of how to specify an atomic swap smart con-
tracts suggests that while pre-condition/post-condition specifications do not suf-
fice, ideas from logics with quantification over strategies are conceptually useful
for stating requirements, but in practice temporal logic verification methods may
suffice for verifying concrete implementations of smart contracts, and the strate-
gies that are used to operate them. We conclude by discussing some issues we
have left unaddressed, which provide questions for future work.

One issue that our specifications have not covered is the question of what is
permitted to vary besides control of the assets a and b. It can be expected that
some other things will vary in any implementation. For example, in order to
execute the smart contracts involved, Alice and/or Bob are likely to have to pay
transaction fees, so their holding of crypto-currency is also likely to have to vary.
It may be desirable to place some bound on their total costs. On the other hand,
beyond this, we would not want an implementation that requires Alice and Bob
to incur losses in their holdings of other assets. It would therefore be desirable to
add a statement to the specification indicating exactly what is allowed to vary
in a solution. In the refinement calculus, this is often done by means of a frame
specification. For example, a pre-condition/post-condition specification [φ, ψ]X
asks for a program satisfying [φ, ψ], while modifying no more than the variables
in the set X. It would be desirable to add such a constraint to our specifications,



but temporal logic and its extensions usually lack the expressive power for such
constraints. Some steps in this direction have been taken in the exploration of
connection between temporal logics and separation logic [Bro13], and it would
be interesting to explore this direction for our context.

In our model checking exercise, we have verified a concrete implementation
that talks only about Alice and Bob’s holdings of a and b, so it seems reasonable
that it follows that a frame condition stating that nothing else varies will be
true of this implementation. However, it would be desirable to have a precise
statement of this claim. For one thing, an implementation containing actions
whose execution requires all the available time and/or space in a block will
prevent other actions being performed, so it is not true that a smart contract
runs entirely free from interference with other contracts on a disjoint set of assets,
particularly when these have deadlines of their own.

Various improvements are possible to our modelling, that we have not pur-
sued since they are orthogonal to our main objective of eliciting the type of
specification and verification required for the smart contracts we consider. We
have not attempted to build an accurate model of the way that agents submit
their transaction to the network, or the way that miners select those transac-
tions for execution. Our models assume that agents offer an action for execution
at each step, and can retract those actions instantaneously. In a real network
there would be delays, uncertainties and transaction costs in doing so. Duplicate
or conflicting transactions offering different transaction fees is something that
may need to be incorporated in the miner model. In this event, it may then
become relevant to consider game theoretic analysis: we expect that miners will
opt to take a higher transaction fee, although a miner who has not yet received
a message offering a higher gas price may still use a lower price transaction.

We have considered only bilateral swaps in this paper. Herlihy [Her18] gener-
alises from two-party swap protocols to an arbitrary number of parties with a set
of transfers represented using a directed acyclic graph. His protocol uses multi-
signature hash-locks, where a chain of signatures on the secret is required to
open a hash-lock. To verify this protocol using temporal logic techniques would
require an additional abstraction to be made to represent which agents have
signed a particular message. While we do not think that this would be difficult
to model, it would be an interesting direction to explore.

Finally, what we have verified in our work is an abstract model of smart
contract code rather than code in a native blockchain smart contract language.
It would be beneficial to bridge this gap. Two approaches are possible. One is
to verify an abstract modelling notation that comes equipped with a correct-
ness preserving translation to native blockchain code. The other is to have a
tool that verifies temporal specifications directly on blockchain code. We note
however, that what needs to be verified is not just the smart contract, but also
the strategies for operating it, and the latter are off-chain, and generally repre-
sented in some other language. A further complication is that in the multi-chain
setting, we need to deal with multiple, possibly quite distinct smart contract
languages for each chain. This suggests that the former route, of conducting



verification using notations that abstract from chain-specific details, may be the
cleaner route to pursue. A further benefit of this would be that it could provide
automated support for correct implementation of details that are abstracted by
the framework for verification purposes, such as the hash locks and signatures.
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A MCK model of an on-chain swap contract

The following gives MCK code for the on-chain swap contract and the strategies
that operate it. The codes starts by declaring a number of types and defining
the environment, by listing a number of variables that make up the environment



state. The MCK statement init_cond is used to constrain initial states of the
environment: all states that satisfy the condition in this statement are initial.
Note that since the variables strategyA, strategyB are not mentioned, they
may take any value in an initial state. The define statements can be understood
as macro definitions. An agent statement introduces an agent and identifies the
protocol that the agent uses to choose its actions. The protocol arguments in
this statement are used to alias the protocol’s parameter variables to variables
in the environment.

The transitions statement gives (nondeterministic) code that is used to
make a single transition of the environment state, depending on actions that
have been selected by the agents as inputs to the transition. In protocols, an
action a is denoted by <<a>>. In the environment, there is a corresponding
atomic proposition (i.e., boolean variable) i.a for each agent i, representing the
fact that the agent is performing action a in the current state transition. For
example, in our model, Alice has an action Deposit, and there is a corresponding
atomic proposition Alice.Deposit.

A statement if ... fi is a Dijkstra style nondeterministic guarded choice
statement. A statement [[vars|φ]] also nondeterministic. The list of variables
vars in its left hand side are all the variables whose value may change when
running this statement. The formula φ in the right hand side gives a condition
on a pair (s, s′), where s, s′ are states of the environment, through use of state
variables to refer to component s and “primed” version of state variables to
refer to s′. Started in a state s, this statement can make a transition to any
state s′ (in which only the variables in vars may have been changed) such
that the pair (s, s′) satisfies the formula φ. For the particular application of
this statement, [[ strategyA,strategyB, turn | True ]] has the effect of
non-deterministically selecting values for each of the listed variables.

The model schedules one of the agents to have its choice of action executed in
each transition. The variable turn indicates the scheduled agent. Each statement
fairness gives a condition that must be true infinitely often in each run. Thus
fairness = turn == AliceP says that Alice is treated fairly in the sense that
she gets infinitely many turns in each run (but she may have to wait an arbitrary
amount of time between turns).

This is followed by statements spec_obs, which give the formulas to be model
checked. (The component obs in this keyword indicates the semantics to be
used for knowledge modalities - since there are none in our specification, this
is irrelevant here.) The formulas are those from the body of the paper, using
MCK’s notation (consistent with the literature) for the temporal operators: A
says “on all runs from the present state”, G says “at all future times”, F says
“at some future time”, and αUβ says α holds up until some future time where
β holds.

The specifications contain one minor deviation from the formulas given above:
we need a reformulation of the formula

A plays α⇒ (RecoverableA(αR) Awaiting F ) .



(A revised version of the MCK scripting under development will help to avoid
this deviation.) The reason for this is that we encode agents’ choice of strategy
as a state variable, and the specifics of MCK’s execution model, in which, at
each transition, the state is used to select agent actions which are then used
as inputs to the environment transition code. On a run where A plays α, at
a point where A switches to playing αR, she is already committed to playing
α for the next step. Thus, rather than saying that A always plays α, we talk
about what happens when A switches to playing αR in a situation where she has
always played α in the past. For this, it is convenient to also build in a variable
playedCoopA that tracks whether Alice cooperated at all times in the past.

type Strategy = {Cooperate,Recover,Random}

type Holder = {AliceH,BobH,Contract,Other}

type Player = {AliceP,BobP}

done : Bool

depositedA : Bool

holdera : Holder

depositedB : Bool

holderb: Holder

strategyA : Strategy

strategyB : Strategy

turn : Player

{- the following track whether a player has always

cooperated up to the present time -}

playedCoopA : Bool

playedCoopB : Bool

define swapped = holdera == BobH /\ holderb == AliceH

define alice_safe = holdera == AliceH \/ holderb == AliceH

define bob_safe = holdera == BobH \/ holderb == BobH

init_cond = holdera == AliceH /\ holderb == BobH /\

playedCoopA /\ playedCoopB /\

neg (done \/ depositedA \/ depositedB )

agent Alice "player" (strategyA,depositedA,depositedA,depositedB)

agent Bob "player" (strategyB,depositedB,depositedA,depositedB)



transitions

begin

-- process Alice or Bob’s action, if it is their turn

if

turn == AliceP ->

if

Alice.Deposit /\ holdera == AliceH ->

begin depositedA := True ; holdera := Contract end

[] Alice.Cancel /\ holdera == Contract ->

begin depositedA := False; holdera := AliceH end

[] Alice.Finalize /\ depositedA /\ depositedB ->

begin depositedA := False ; depositedB := False ;

holdera := BobH ; holderb := AliceH end

-- GiveToOther means give away one of your assets

[] Alice.GiveToOther /\ holdera == AliceH -> holdera := Other

[] Alice.GiveToOther /\ holderb == AliceH -> holderb := Other

[] otherwise -> skip

fi

[] turn == BobP ->

if

Bob.Deposit /\ holderb == BobH ->

begin depositedB := True ; holderb:= Contract end

[] Bob.Cancel /\ holderb == Contract /\ depositedB ->

begin depositedB := False; holderb := BobH end

[] Bob.Finalize /\ depositedA /\ depositedB ->

begin depositedA := False ; depositedB := False ;

holdera := BobH ; holderb := AliceH end

-- GiveToOther means give away one of your assets

[] Bob.GiveToOther /\ holdera == BobH -> holdera := Other

[] Bob.GiveToOther /\ holderb == BobH -> holderb := Other

[] otherwise -> skip

fi

fi ;

-- update the record of whether a player has always cooperated

if strategyA /= Cooperate -> playedCoopA := False fi ;

if strategyB /= Cooperate -> playedCoopB := False fi ;

-- nondeterministically select each player’s strategy, and whose turn it is

[[ strategyA,strategyB, turn | True ]]



end

-- Both Alice and Bob get infinitely many turns in each run

fairness = turn == AliceP

fairness = turn == BobP

spec_obs = "If Alice and Bob always play Cooperate,

then eventually the swap is successful"

A( (G(strategyA == Cooperate /\ strategyB == Cooperate)) => F swapped)

{- In the following, note "A awaiting B" is "(A until B) or (always A and not B)" -}

spec_obs = "If Alice has always cooperated to now, then she can get an asset back

by playing recover, awaiting such time as the swap has occurred"

A( ( (playedCoopA => ((G strategyA == Recover) => F alice_safe)) U swapped )

\/

G ( (playedCoopA => ((G strategyA == Recover) => F alice_safe))

/\

neg swapped ))

spec_obs = "If Bob has always cooperated to now, then he can get an asset back

by playing recover, awaiting such time as the swap has occurred"

A( ( (playedCoopB => ((G strategyB == Recover) => F bob_safe)) U swapped )

\/

G ( (playedCoopB => ((G strategyB == Recover) => F bob_safe))

/\

neg swapped ))

{- Note that because a finalise operation might race with a cancel operation, recovery

of your own asset is not guaranteed! -}

spec_obs = "(FALSE) Alice is always able to ensure that she will eventually hold asset a,

by playing strategy Recover"

A( ( (playedCoopA => ((G strategyA == Recover) => F holdera == AliceH )) U swapped )

\/

G ( (playedCoopA => ((G strategyA == Recover) => F holdera == AliceH))

/\

neg swapped ))

spec_obs = "(FALSE) Bob is always able to ensure that he will eventually hold asset b,



by playing strategy Recover"

A( ( (playedCoopB => ((G strategyB == Recover) => F holderb == BobH )) U swapped )

\/

G ( (playedCoopB => ((G strategyB == Recover) => F holderb == BobH))

/\

neg swapped ))

protocol "player" (strategy : Strategy, deposited : Bool,

depositedA : Bool ,depositedB : Bool)

begin

do

strategy == Cooperate /\ neg deposited -> <<Deposit>>

[] strategy == Cooperate /\ depositedA /\ depositedB -> <<Finalize>>

[] strategy == Recover /\ deposited -> <<Cancel>>

[] strategy == Random -> <<Deposit>>

[] strategy == Random -> <<Cancel>>

[] strategy == Random -> <<Finalize>>

[] strategy == Random -> <<Skip>>

[] strategy == Random -> <<GiveToOther>>

[] otherwise -> <<Skip>>

od

end

B MCK model of a cross-chain atomic swap protocol

The following is MCK code for a cross-chain atomic swap protocol using hashed
time locks (with the hash checking and knowledge of the secret abstracted using a
single boolean variable rather than a large range of possible values for the secret).
Because of the timeouts, we are able to combine the Cooperate strategy and the
Recover strategy into a single strategy for each player, in which they perform the
recovery action in case their smart contract times out without the other player
having claimed the asset. This also allows for a simpler, stronger specification
statement concerning recovery. All the specifications in the following script are
verified to hold.

type Strategy = {Cooperate,Recover,Random}

type Holder = {AliceH,BobH,ContractA,ContractB,Other}

type Player = {AliceP,BobP}



type Time = {0..20}

{-

The secret x is abstracted - type Secret is used to model

whether a player knows the secret. If so, their Claim action is effective

-}

type Secret = {Known,Unknown}

holdera : Holder

holderb: Holder

strategyA : Strategy

strategyB : Strategy

turn : Player

time : Time

{- the following model each player’s view of Alice’s secret -}

viewSecretA : Secret

viewSecretB : Secret

{- Whether an asset has been paid into the contract.

These are used to prevent paying the asset into the contract

once again in the event it is recovered. -}

depositedA : Bool

depositedB : Bool

timeoutA : Time

timeoutB : Time

-- the following track whether a player has always cooperated up to the present time

playedCoopA : Bool

playedCoopB : Bool

define swapped = holdera == BobH /\ holderb == AliceH

define alice_safe = holdera == AliceH \/ holderb == AliceH

define bob_safe = holdera == BobH \/ holderb == BobH

init_cond = holdera == AliceH /\ holderb == BobH /\

viewSecretA == Unknown /\ viewSecretB == Unknown /\

playedCoopA /\ playedCoopB /\ time == 0 /\

-- (constant) timeouts for Alice and Bob’s contracts



timeoutA == 8 /\ timeoutB == 6 /\ turn == AliceP /\

neg (depositedA \/ depositedB)

agent Alice "playerA" (strategyA,holdera,holderb,viewSecretA,

time,timeoutA,depositedA)

agent Bob "playerB" (strategyB,holderb,holdera,viewSecretB,

time,timeoutB,depositedB)

transitions

begin

-- process Alice or Bob’s action, if it is their turn

if

turn == AliceP ->

if

Alice.Generate -> viewSecretA := Known

[] Alice.Deposit /\ holdera == AliceH ->

begin holdera := ContractA ; depositedA := True end

-- when Alice claims from Bob’s contract, she reveals the secret to Bob

[] Alice.Claim /\ viewSecretA == Known ->

begin

if holderb == ContractB -> holderb := AliceH fi ;

viewSecretB := Known

end

[] Alice.Recover /\ holdera == ContractA /\ time >= timeoutA ->

holdera := AliceH

-- GiveToOther means give away one of your assets

[] Alice.GiveToOther /\ holdera == AliceH -> holdera := Other

[] Alice.GiveToOther /\ holderb == AliceH -> holderb := Other

[] otherwise -> skip

fi

[] turn == BobP ->

if

Bob.Deposit /\ holderb == BobH ->

begin holderb:= ContractB ; depositedB := True end

[] Bob.Claim /\ viewSecretB == Known /\ holdera == ContractA ->

holdera := BobH

[] Bob.Recover /\ holderb == ContractB /\ time >= timeoutB ->

holderb := BobH



-- GiveToOther means give away one of your assets

[] Bob.GiveToOther /\ holdera == BobH -> holdera := Other

[] Bob.GiveToOther /\ holderb == BobH -> holderb := Other

[] otherwise -> skip

fi

fi ;

-- update the record of whether a player has always cooperated

if strategyA /= Cooperate -> playedCoopA := False fi ;

if strategyB /= Cooperate -> playedCoopB := False fi ;

-- Assume the two chains are synchronised, modelled by round robin scheduling

if turn == AliceP -> turn := BobP

[] turn == BobP -> turn := AliceP

fi ;

-- randomly select the strategy followed by each player at each step.

[[ strategyA,strategyB | True ]] ;

-- tick the clock

time := time + 1

end

spec_obs = "If Alice and Bob always play Cooperate,

then eventually the swap is successful"

A( (G(strategyA == Cooperate /\ strategyB == Cooperate)) => F swapped)

spec_obs = "If Alice always cooperates, she is always eventually safe"

A( (G strategyA == Cooperate) => G F alice_safe )

spec_obs = "If Bob always cooperates, he is always eventually safe"

A( (G strategyB == Cooperate) => G F bob_safe )

protocol "playerA" (strategy : Strategy,

holder_mine : Holder,

holder_other : Holder,

viewSecret : Secret,

time : Time,

timeout: Time,

deposited: Bool)

begin

do

strategy == Cooperate ->



if -- generate a secret (which becomes Known)

viewSecret == Unknown -> <<Generate>>

-- unless you have done so before, deposit your asset

[] viewSecret == Known /\ holder_mine == AliceH /\

neg deposited -> <<Deposit>>

-- make a claim as soon as you know the secret and Bob has deposited

[] viewSecret == Known /\ holder_other == ContractB -> <<Claim>>

-- try to recover your own asset at the earliest time after the timeout

[] holder_mine == ContractA /\ time >= timeout -> <<Recover>>

fi

[] strategy == Random -> <<Generate>>

[] strategy == Random -> <<Deposit>>

[] strategy == Random -> <<Claim>>

[] strategy == Random -> <<Recover>>

[] strategy == Random -> <<Skip>>

[] strategy == Random -> <<GiveToOther>>

[] otherwise -> <<Skip>>

od

end

protocol "playerB" (strategy : Strategy,

holder_mine : Holder,

holder_other : Holder,

viewSecret : Secret,

time : Time,

timeout: Time,

deposited : Bool )

begin

do

strategy == Cooperate ->

if -- once you see Alice has made her deposit, make yours

holder_mine == BobH /\ holder_other == ContractA /\

neg deposited -> <<Deposit>>

-- make a claim as soon as you know the secret

[] viewSecret == Known /\ holder_other == ContractA -> <<Claim>>

-- try to recover your own at the earliest possible time

[] holder_mine == ContractB /\ time >= timeout -> <<Recover>>

fi

[] strategy == Random -> <<Deposit>>

[] strategy == Random -> <<Claim>>



[] strategy == Random -> <<Recover>>

[] strategy == Random -> <<Skip>>

[] strategy == Random -> <<GiveToOther>>

[] otherwise -> <<Skip>>

od

end


