
Symbolic Synthesis of Knowledge-based Program
Implementations with Synchronous Semantics

X. Huang
xiaoweih@cse.unsw.edu.au

R. van der Meyden
meyden@cse.unsw.edu.au

ABSTRACT
This paper deals with the automated synthesis of implementations
of knowledge-based programs with respect to two synchronous se-
mantics (clock and synchronous perfect recall). An approach to
the synthesis problem based on the use of symbolic representa-
tions is described. The method has been implemented as an ex-
tension to the model checker MCK. Two applications of the imple-
mented synthesis system are presented: the muddy children puzzle
(where performance is compared to an explicit state method for a
related problem implemented in the model checker DEMO), and a
knowledge-based program for a dynamic leader election problem
in a ring of processes.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification; F.4.1
[Mathematical Logic]: Modal Logic

General Terms
Theory, Verification

Keywords
Synthesis, Logic of Knowledge, Knowledge-based Programs

1. INTRODUCTION
One of the main motivations for the application of epistemic

logic in computer science has been the observation that it provides
a beneficial level of abstraction through which to view distributed
systems. A range of problems in distributed computing have been
studied from this perspective, including protocols for agreement
[17, 8, 9, 27], message transmission [19], atomic commitment [15,
25], clock synchronization [26, 28], leader election [18], and secure
communication [35, 1, 2, 24, 36].

Many of these analyses are based on first expressing the solution
to a problem in terms of the relation between an agent’s actions
and its knowledge, and then seeking to understand the conditions
under which the agent has the requisite knowledge. A first codifica-
tion of the approach was the semantic notion of knowledge-based
protocols of [16], and the idea was refined and given a syntactic
basis in the knowledge-based programs of [11, 10]. The latter pro-
vide a simple guarded command programming notation (in the style
of Unity [7]), in which the guards in conditional statements are
not just expressions over the agent’s local variables, but may also

TARK 2013, Chennai, India.
Copyright 2013 by the authors.

contain formulas of epistemic logic asserting some property of the
agent’s knowledge.

Although knowledge-based programs resemble standard programs,
they do not have a straightforward operational semantics. Instead,
they are semantically more like a specification, in that they stand
in an implementation relation to standard programs. To obtain an
implementation, one must replace the knowledge conditions in the
program by expressions in the agents’ local variables that are equiv-
alent, when running the resulting standard program. Because of
the fixpoint nature of this semantics, in general, a knowledge-based
program could have no, one, or many behaviourally distinct imple-
mentations. There are, however, some syntactic and semantic con-
ditions under which implementations are guaranteed to be unique
[11]. One of these is that the formulas appearing in the knowledge
conditions are free of temporal operators and that the semantics of
the knowledge operators is synchronous, in the sense that agents
always know the current time.

The early literature on knowledge in distributed computing and
knowledge-based programs is confined to “pencil and paper" anal-
yses. In recent years, automated tool support for knowledge-based
analysis has begun to be developed, in the form of epistemic model
checkers [13, 23, 30, 20, 37], which are able to automatically verify
whether standard programs satisfy epistemic specifications. These
model checkers have been applied to a number of case studies in
which it is verified that a proposed implementation of a knowledge-
based program is indeed an implementation [3, 2, 24]. However,
the approach applied in these studies still requires that the proposed
implementation be derived manually. Since the implementations
may make use of subtle sources of information, this can be a highly
nontrivial task, although the examples automatically constructed by
the model checker when checking an incorrect implementation can
provide useful information to guide the search [3, 1].

Our contribution in this paper is to develop the first practical tool
for automated synthesis of knowledge-based program implementa-
tions, by extending methods from epistemic model checking. The
main contributions of the paper are as follows:

1. We develop a practical syntax for knowledge-based programs
that extends the Unity style programs of [11] to encompass
use of knowledge in assignment statements, as well as se-
quential structure.

2. We show how existing symbolic techniques for epistemic
model checking may be extended to yield an approach to au-
tomated synthesis of knowledge-based program implemen-
tations. Our techniques work for the special case of atempo-
ral knowledge-based programs with respect to two distinct
synchronous semantics for knowledge, the clock and syn-
chronous perfect recall semantics, in which, as noted above,
unique implementations are guaranteed to exist.

3. We have implemented these algorithms as an extension of
the epistemic model checker MCK. One benefit of building
on the existing model checking technology is that properties
of the implementation derived can directly be verified, with
many of the computational steps required for verification al-
ready performed by the synthesis procedure.

4. We conduct a number of validation case studies of knowledge-
based program implementation using the resulting tool, con-
sidering two types of examples. In the first, the muddy chil-
dren puzzle, we compare the performance of our symbolic
synthesis approach to the performance of the model checker
DEMO. DEMO does not synthesize implementations of know-
ledge-based programs, but solves a closely related model
checking problem using an explicit state rather than symbolic
technique. The second example we consider is a knowledge-
based program for a leader election protocol in a ring of pro-
cesses.

The structure of the paper is as follows. In Section 2, we review
the basics of epistemic model checking and a symbolic technique
used in the implementation of such systems. We develop a syntax
and semantics for knowledge-based programs in Section 3. Sec-
tion 4 describes the basis for a symbolically implementable proce-
dure for synthesis of knowledge-based program implementations.
The application of this procedure to a number of examples is dis-
cussed in Section 5. Section 6 discusses related work, and we make
some concluding remarks in Section 7.

2. EPISTEMIC MODEL CHECKING
In this section, we recall the background we require from epis-

temic logic (following [10]) and epistemic model checking (follow-
ing [34]).

Let Prop be a set of atomic proposition and let Ags be a finite
set of agents. The temporal-epistemic logic that we work with has
the syntax

φ ::= p | ¬φ | φ1 ∧ φ2 | Xφ | Kiφ

where p ∈ Prop and i ∈ Ags. Intuitively, formula Xφ expresses
that φ holds at the next time, and Kiφ expresses that agent i knows
that φ holds. A formula is atemporal if it does not make use of the
temporal operator X.

At all times, each agent i is assumed to be in some local state that
records all the information that it can access at that time. The en-
vironment e records “everything else that is relevant”. Let S be the
set of environment states and let Li be the set of local states of agent
i. A global state s of a multi-agent system is a tuple (se, s1, ..., sn)
such that se ∈ S and si ∈ Li for all i ∈ Ags.

A run r is a function from time to global states, i.e., r : N →
S × L1 × ... × Ln. A pair (r,m) consisting of a run r and a time m is
called a point. A system R is a set of runs. We call R ×N the set of
points of R. If r(m) = (se, s1, .., sn) then for x ∈ Ags ∪ {e} we write
rx(m) for sx and rx(0..m) for rx(0)...rx(m). Relative to a system R,
we define the setKi(r,m) = {(r′,m′) ∈ R×N | ri(m) = r′i (m

′)} to be
the set of points that are indistinguishable from the point (r,m) for
agent i.

An interpreted system I is a tuple (R, π) such that R is a system
and π : R × N → P(Prop) is an assignment giving an interpreta-
tion to the atomic propositions at each point. Given an interpreted
system I, a point (r,m), and a formula φ, we define the relation
I, (r,m) |= φ inductively by

• I, (r,m) |= p if p ∈ π(r,m)

• I, (r,m) |= ¬φ if not I, (r,m) |= φ

• I, (r,m) |= φ1 ∧ φ2 if I, (r,m) |= φ1 and I, (r,m) |= φ2

• I, (r,m) |= Xφ if I, (r,m + 1) |= φ

• I, (r,m) |= Kiφ if I, (r′,m′) |= φ for all points (r′,m′) ∈
Ki(r,m)

Since interpreted systems are infinite structures and for model
checking we require a finite input, we generate interpreted systems
from finite structures. A (finite state) transition model M for agents
Ags is a tuple M = (S , I, {Oi}i∈Ags,→, π), where S is a (finite) set
of states, I ⊆ S is the set of initial states, each Oi : S → O is
a function representing the observation that agent i makes at each
state, →⊆ S 2 is a serial transition relation over states in S , and
π : S → P(Prop) is a propositional assignment. Let ki(s) = {s′ ∈
S | Oi(s) = Oi(s′)} be the set of states that are indistinguishable
from state s for agent i, based on its observation.

A path ρ from a state s of M is a finite or infinite sequence of
states s0 s1..., such that s0 = s and sk → sk+1 for all k < |ρ| − 1,
where |ρ| is the total number of states in ρ. Given a path ρ, we use
ρ(m) to denote its (m + 1)-th state. A fullpath from a state s is an
infinite path from s. A path ρ is initialized if ρ(0) ∈ I.

To obtain a system from a finite state transition model M, we
treat the states of M as the states of the environment, and obtain
runs from paths by adding local states at each point. This can be
done in a variety of ways, representing different levels to which
agents recall their observations. We call the level of recall a view
and deal with the views obs, clk and spr representing recall only
of the current observation, recall of the current observation and the
time and synchronous perfect recall, respectively.

For each initialized fullpath ρ and viewV ∈ {obs, clk, spr}, we
define a run ρV. The state of the environment at time m is given by
ρVe (m) = ρ(m) in each case, and the agents’ local states are assigned
as follows:

• V = obs: the local state of agent i at time m is ρobsi (m) =

Oi(ρ(m));

• V = clk: the local state of agent i at time m is ρclki (m) =

(m,Oi(ρ(m)));

• V = spr: the local state of agent i at time m is ρspri (m) =

Oi(ρ(0))...Oi(ρ(m)).

Given a system M and a viewV, we writeRV(M) for the set of runs
ρV where ρ is an initialized full-path of M. The interpretation π of
M lifts to an interpretation πV on the global states in RV(M), de-
fined by πV((s, l1, . . . , ln)) = π(s). We define the interpreted system
obtained from M using view V by IV(M) = (RV(M), πV). Given
a finite model M, a view V, and a formula φ, we write M |=V φ if
IV(M), (r, 0) |= φ for all r ∈ RV(M).

The model checking problem is to determine, given a finite state
transition model M, a viewV and a temporal epistemic formula φ,
whether IV(M) |= φ. Epistemic model checkers are software sys-
tems that solve this problem. A number of such systems have been
implemented. MCK [13] supports all three views, MCMAS [23],
Verics [20] and MCTK [30] work with the observational view. These
systems use a variety of temporal logics for the temporal expres-
siveness in formulas. MCK supports a superset of the language
defined above.

Before concluding this section, we define a presentation of stan-
dard S5n Kripke-structures that will be used later. An epistemic
model is a tuple M = (S , {Oi}i∈Ags, π), where the components are of
the same type as the similarly named components in state transition
models. Given a model M, a state s ∈ S , and an atemporal formula
φ, the relation M, s |= φ can be recursively defined as follows:

a a

b b

0 01 1 0 1

b b

0

0 0

0

0 0

1

1
1 1

1

1

(Decision Tree) (Reduced OBDD)

Figure 1: A decision tree and its reduced OBDD

• M, s |= p if p ∈ π(s)

• M, s |= ¬φ if not M, s |= φ

• M, s |= φ1 ∧ φ2 if M, s |= φ1 and M, s |= φ2

• M, s |= Kiφ if M, s′ |= φ for all states s′ such that Oi(s) =

Oi(s′)

It is easily seen that for formulas ψ that are boolean combinations
of formulas of the form Kiφ (for a fixed i), for all s, s′ ∈ S with
Oi(s) = Oi(s′) we have M, s |= ψ iff M, s′ |= ψ, i.e., the truth value of
ψ depends only on Oi(s). For o ∈ Oi(S), we may therefore define
the relation M, o |=i ψ if M, s |= ψ for some (equivalently, all) s ∈ S
with Oi(s) = o.

2.1 Symbolic Data Structures
MCK supports a number of different algorithmic approaches to

solving the epistemic model checking problem. One of these is
based on symbolic model checking using (reduced) ordered binary
decision diagrams (OBDD) [6]. These are data structures defined
as follows.

Let V be a set of variables. A V-assignment is a function s :
V → {0, 1}. Write Assgts(V) for the set of all V-assignments, and
s[v 7→ x] for the function that is identical to s except that it takes
value x on input v. A V-indexed boolean function is a mapping
f : Assgts(V) → {0, 1}. Note that such functions are able to repre-
sent sets X ⊆ Assgts(V) by their characteristic functions fX , map-
ping s to 1 just in case s ∈ X. One way to represent such a function
f is using a binary tree of height n, with each level corresponding
to one of the variables in V , and leaves labelled from {0, 1}. This
tree can in turn be thought of as a finite state automaton on alphabet
{0, 1}. Reduced ordered binary decision diagrams (BDD’s in the se-
quel) more compactly represent such a function as a dag of height
n, with binary branching, by applying the usual finite state automa-
ton minimization algorithm. A very simple example of this for the
function f (a, b, c) = a xor b is illustrated in Figure 1. In some
cases, the degree of compaction obtained in the minimal dag repre-
sentation is considerable. We note that the amount of compaction
obtained is sensitive to the variable ordering used, and finding a
variable ordering that minimizes the result is NP-hard, though there
exist good heuristics, such as sifting [29].

Given this minimal representation of V-indexed boolean func-
tions, it is moreover possible to compute (in practice, often in rea-
sonable time) some operations on these functions, by means of al-
gorithms that take as input the BDD representation of the input
functions and returns the BDD representation of the result. The
operations for which this can be done include the following:

• Boolean operations∧,¬, defined pointwise on functions. E.g.,
if f , g : Assgts(V) → {0, 1}, then f ∧ g : Assgts(V) → {0, 1}
is defined by (f ∧ g)(s) = f (s) ∧ g(s).

• Boolean quantification ∃,∀, e.g., if f : Assgts(V) → {0, 1}
and v ∈ V then ∃v(f) : Assgts(V \ {v}) → {0, 1} maps s ∈
Assgts(V \ {v}) to f (s[v 7→ 0]) ∨ f (s[v 7→ 1]).

• variable substitution: if f : Assgts(V) → {0, 1} and U ⊆ V
and U′ are sets with U′ ∩ (V \ U) = ∅, and σ : U → U′ is a
bijection, then fσ : Assgts((V \ U) ∪ U′) → {0, 1} maps s :
Assgts((V \U)∪U′) to s′, where s′(v) is s(v) when v ∈ V \U
and s(σ−1(v)) when v ∈ U′.

Symbolic model checking, as implemented in MCK, then pro-
ceeds using BDD representations of sets and relations relevant to
model checking. For example, the set I of initial states of a sys-
tem can be represented as a BDD-encoded boolean function fI in-
dexed by the state variables V . Relations can be represented using
“primed" versions of the state variables V , defined by V ′ = {v′ | v ∈
V}. A relation such as the transition relation→ of a model can then
be represented as a function f→ indexed by variables V ∪ V ′, such
that if s and t are assignments to V , we have s→ t iff f→(s∪ t′) = 1,
where t′ is obtained from t by renaming each variable v to its primed
counterpart v′. Operations such as the composition of a relation
and a set can then be performed at the level of the BDD represen-
tation, e.g. {t ∈ S | s ∈ I ∧ s → t} is represented by the function
∃V(fI × 1V′ ∧ f→)σ on V , where fI × 1V′ trivially extends fI by
adding (irrelevant) variables V ′, and σ renames the variables V ′ to
the variables V by removing the prime symbol.

3. KNOWLEDGE-BASED PROGRAMS
Knowledge-based analyses of systems typically concern the in-

teraction between agents’ knowledge and their actions. Knowledge-
based programs [11, 10] have been proposed to capture such rela-
tionships in a program-like notation, with actions chosen according
to conditions expressed in epistemic logic.

The original presentation of knowledge-based programs used a
very simplified (Unity style [7]) programming notation, consisting
of a single infinitely repeated do loop containing a set of guarded
statements of the form φ→ a where φ is an epistemic formula and a
an action. We develop here a slightly richer and more structured no-
tation, using sequential composition and an epistemic assignment
statement. The notation is based on the modelling notation already
employed by MCK. We focus on atemporal programs with a syn-
chronous semantics for knowledge (either the clock or synchronous
perfect recall semantics), since this is a case in which unique im-
plementations are guaranteed to exist.

Since, in general, even atemporal knowledge-based programs
may not have finite state implementations under the perfect recall
semantics, we also limit ourselves to terminating programs, so omit
looping from the language. Our handling of parallelism and ac-
tions (signals) is somewhat in the spirit of synchronous languages
such as Esterel [5]. To give the semantics of knowledge-based pro-
grams, we use a formulation based on [32], which allows flexibility
in choice of view based on a notion of environment that replaces the
notion of context of [11, 10].

3.1 Standard Programs: Syntax
Define a standard program over a set V of variables and a set

A of atomic statements to be either the terminated program ε or a
sequence P of the form stat1 ; . . . ; statk, where the stati are sim-
ple statements and ‘;’ denotes sequential composition. Each simple
statement stati is either an atomic statement in A or a nondetermin-
istic branching statement of the form

if g1 → a1 [] g2 → a2 [] . . . [] gk → ak fi

where each ai is an atomic statement in A and the gi are boolean
expressions over V called guards. Intuitively, a nondeterministic
branching statement executes by performing one of the assignments
ai for which the corresponding guard gi is true. If several guards
hold simultaneously, one of the corresponding actions is selected
nondeterministically. We treat P as identical to P; ε. The length of
a program is the number of simple statements it contains. We use
standard programs to describe both the behavior of agents and the
environment in which they operate. The type of atomic statements
used in these two cases is different.

Environment models are used to represent how states of the envi-
ronment are affected by actions of the agents. Formally, we define
an environment model to be a tupleMe = (Ags,Acts,Vare, Inite, τ)
where Ags is a set of agents, Acts is a set of actions available to the
agents, Vare is a set of (boolean) environment variables1, Inite is an
initial condition, in the form of a boolean formula over Vare, and τ
is a transitions clause for the environment e, expressed in the form
of a standard program.

In addition to the environment variables Vare, an additional set
ActVar(Me) = {i.a | i ∈ Ags, a ∈ Acts} of (boolean) action vari-
ables are generated for each modelMe. Intuitively, i.a represents
that agent i performs action a. The transitions clause is a standard
program over the set of variables in Vare ∪ ActVar(Me) and the
set of atomic actions of the form x := expr, where x ∈ Vare and
expr is a boolean expresssion over Vare ∪ ActVar(Me). The state-
ment x := expr represents that the value of the expression expr, is
assigned to the variable x.

Protocols are used to describe the behaviour of the agents. A pro-
tocol for agent i in environment modelMe (of length m) is a tuple
Proti = (PVari,LVari,OVari, Initi,Actsi,Progi) where PVari ⊆ Vare

is a set of parameter variables2, LVari is a set of local variables,
OVari ⊆ PVari ∪ LVari is a set of observable variables, Initi is an
initial condition, in the form of a formula over LVari, and Progi is
standard program of length m. The guards in Progi are over the set
of variables PVari ∪ LVari. The atomic statements in P have the
form

� a | x1 := expr1, ..., xm := exprm �

where a ∈ Acts∪ {nil} and each x1 := ei is an assignment statement
with xi in LVari and ei an expression over PVari∪LVari. Intuitively,
such an atomic statement is executed by emitting action a as a sig-
nal to the environment: when agent i performs the action, the vari-
able i.a is set to be true (and all other action variables i.b set to be
false.) The environment transition clause then runs to update the
environment variables. Concurrently, the statement performs the
simultaneous assignment x1 := expr1, ..., xm := exprm in a single
step of computation. That is, the expressions ei are first evaluated
in the state from which the atomic statement is performed, and their
values are then simultaneously assigned to the variables xi. We ab-
breviate an atomic statement of the form � nil | x := expr � to
x := expr, and also abbreviate� nil | � to skip.

A joint protocol (of length m) is a tuple Prot associating a proto-
col Proti (of length at most m) with each i ∈ Ags. A system model
is a pair S = (Me,Prot) consisting of an environment model Me

and a joint protocol Prot for Me. This represents a set of agents
running particular protocols in the context of a given environment.
1To simplify the presentation we assume here all variables are
boolean; our implementation also allows variables to have a de-
clared finite type.
2In the concrete MCK syntax these may be given using new vari-
ables in a parameter declaration as aliases for environment vari-
ables. This allows sharing of protocol code between agents run-
ning similar programs but with different parameter bindings; see
the examples below.

3.2 Standard Programs: Semantics
We now show how a system model generates a finite state tran-

sition model. To do so, we first convert the system model into a
simple form of parallel program and provide these programs with
an operational semantics.

We assume we are given a system model S = (Me,Prot), where
Me = (Ags,Acts,Vare, Inite, τ) and

Proti = (PVari,LVari,OVari, Initi,Actsi,Progi)

for i ∈ Ags. We define global states with respect to this model to be
boolean assignments s over the set of variables Vare ∪

⋃
i∈Ags LVari.

We also define the parallel program

Prog(S) = τ ||i∈Ags Progi .

This is an expression representing |Ags| + 1 components, i.e., the
specially identified environment component τ, a program over en-
vironment variables, and the |Ags| components Progi, representing
programs associated to the agents.

Intuitively, the operational semantics of these parallel statements
defines a transition relation on global states. The definition of the
transition relation is given in three stages, captured in the following
rule:∧

i∈Ags (s, Pi) ↪→ � ai | αi �; P′i , (s ∪ a, τ) −→∗ (s′ ∪ a, ε),
θ = {x 7→ e(s) |“x := e” ∈ αi, i ∈ Ags}

(s, τ||i∈AgsPi)→ (s′θ, τ||iP′i)

The explanation of this statement is as follows: in the first stage,
given a global state s, with its remaining computation represented
by program Pi, each agent i first generates an atomic statement
a =� ai | αi � as well as a program P′i , to be run after this atomic
statement has executed. This is represented formally by a relation
(s, Pi) ↪→ a; P′i . In the second stage, the actions in these state-
ments are then combined into a joint atomic action a, viewed as
an assignment making the action variables i.ai true for i ∈ Ags,
and all other action variables false. This assignment is added to the
current global state, and the environment program τ then causes
a transition of the environment state, expressed by the statement
(τ, s ∪ a) −→∗ (s′ ∪ a, ε) that represents that the environment pro-
gram τ, when executed with respect to joint action a, runs to termi-
nation having caused the global state to change from s to s′ (only
the environment variables change during the running of τ). Finally,
the local states are updated, by executing the assignments αi locally
at each agent. This is captured by first defining the substitution θ
that defines the update to be performed, based on the values e(s) of
expressions e in the state s, and then applying that substitution to
the global state s′ (represented by s′θ).

The relations used above are defined by the following rules:

(s, ε) ↪→ skip; ε (s, a; P) ↪→ a; P
s |= gi

(s, if g1 → a1 [] . . . [] gm → am fi; P) ↪→ ai; P

s |=
∧

i∈Ags ¬gi

(s, if g1 → a1 [] . . . [] gm → am fi; P) ↪→ skip; P
(s, P) ↪→ x := e; P′, θ = [x 7→ e(s)]

(s, P)→ (sθ, P′)

(The rules for ↪→ apply to both the environment program and
the agent protocols; the last rule applies only to steps of the envi-
ronment computation.)

We can now define a model M(S) = (S , I, {Oi}I∈Ags,→, π) for
each system model S. The components are given as follows: S is

the set of pairs (s, τ||i∈AgsPi), where s is a global state of S and each
Pi is a protocol for agent i, the set I is the set of pairs (s,Prog(S))
such that s |= Inite ∧

∧
i∈Ags Initi, the function Oi is defined by

Oi((s, τ||i∈AgsPi)) = s � OVari, the transition relation→ is as defined
above, and π associates each variable with its value, i.e. v ∈ π(s) iff
s(v) = 1.

Note that, given a view V, we obtain from M(S) an interpreted
system IV(M(S)). We use this construction of interpreted systems
to give semantics to knowledge based programs.

3.3 Knowledge-based protocols
The syntax of knowledge-based protocols is given as a general-

ization of the definitions above. A knowledge-based protocol for
agent i in environmentMe, is a tuple

Pi = (PVari,LVari,OVari, Initi,Actsi, Progi) ,

where the components are exactly as for a protocol for agent i in
environmentMe, except that in the program Progi, both the guards
g in conditional statements and the expressions e in the assignments
in atomic statements may be formulas of the logic of knowledge.
Figure 2(a) gives an example of such a program, (corresponding
to a stage of the well-known “Muddy Children" problem, which
we discuss in more detail in Section 5). A joint knowledge-based
protocol is a tuple P = {Pi}i∈Ags consisting of a knowledge-based
protocol Pi for each agent i.

To give semantics to knowledge-based protocols, we define a re-
lation of implementation between knowledge-based protocols and
standard protocols. Intuitively, an implementation is a standard
protocol that is structurally similar to the knowledge-based proto-
col, except that knowledge formulas have been replaced by expres-
sions in the local variables, where such expressions are equivalent
to the knowledge formulas. To make sense of this equivalence we
need to evaluate the knowledge formulas in an interpreted system:
for this we take the system generated by the standard protocol.

We first give the semantics with respect to the clock view. Note
that since programs are sequences stat1; . . . ; statm of simple state-
ments, each such simple statement can be associated with a time of
occurrence, viz., stati occurs at time i − 1. In case stati is a condi-
tional statement if g1 → a1 [] . . . [] gk → ak fi we also say that each
of the atomic statements a j occur at time i − 1. (Intuitively, it takes
no time to evaluate the guard g j.) Given a knowledge-based pro-
gram Progi, we transform it into its skeleton, denoted skell(Progi),
by replacing each knowledge formula φ in a guard g or assigned
expression e, occurring at time t, by a new variable vt

φ, whose name
indicates both the time t and the formula being replaced. (More pre-
cisely, we replace the maximal subformulas φ that contain knowl-
edge operators but do not contain “non-observable" variables in
PVari \ OVari.) Let skellVar(Progi) be the set of such new vari-
ables in skell(Progi). We define skell(P) = {skell(Progi)}i∈Ags and
skellVar(P) = ∪i∈AgsskellVar(Progi).

Next, let θ be a substitution mapping each skeleton variable vt
φ ∈

skellVar(Progi), for i ∈ Ags, to a boolean expression on the observ-
able variables of agent i’s protocol Pi. If we apply this substitution
to skell(Progi), we obtain a standard program skell(Progi)θ. We
write Piθ for the result of replacing the knowledge-based program
Progi in Pi by Progiθ. This is a standard protocol for agent i.

Similarly, if P = {Pi}i∈Ags is a joint knowledge-based protocol,
and θ is a substitution satisfying the condition above for all agents i,
we write Pθ for the joint standard protocol {Piθ}i∈Ags. We now define
Pθ to be an implementation of the joint knowledge-based protocol
Pwith respect to the view clk if Iclk(M(Me, Pθ)) |= Xt(φ⇔ θ(vt

φ))
for all vt

φ ∈ skellVar(P). That is, in the system obtained with respect
to the view clk by running the standard protocol Pθ in the envi-

ronment Me, each knowledge formula φ in P is equivalent to the
concrete expression θ(vt

φ) on the local state variables that replaces
it in the standard protocol (at the time t that this formula is relevant
to the behaviour of the program).

Since the definition of implementation of a knowledge-based
program is stated as a constraint on substitutions, it is not clear
whether there exist any substitutions satisfying this constraint, or
whether such substitutions are unique. The following theorem states
that in fact, given our assumptions, there is essentially a unique im-
plementation.

THEOREM 1. If P is a joint atemporal knowledge-based pro-
tocol for environment Me, then there exists a substitution θ such
that skell(P)θ is an implementation of P inMe with respect to clk.
Moreover, for all substitutions θ, θ′ such that skell(P)θ and skell(P)θ′

are implementations of P inMe with respect to clk, we have that
Iclk(M(Me, Pθ)) |= Xt(θ(vt

φ)⇔ θ′(vt
φ)) for all vt

φ ∈ skellVar(P).

The result is similar to a result of [11]. Note that although θ(vt
φ)

and θ′(vt
φ) may be distinct formulas, they are equivalent, in the

context of any implementation, at the time of their relevance to
the behaviour of the implementation. It follows that the systems
Iclk(M(Me, Pθ)) andIclk(M(Me, Pθ

′)) are isomorphic with respect
to the variables ofMe and P.

We now consider the synchronous perfect recall semantics. In
this case, an agent’s knowledge is semantically defined using not
just the agent’s current observation, but also using its past observa-
tions. Implementations of knowledge-based programs with respect
to this semantics are therefore permitted to refer to these past ob-
servations. To enable this, we first introduce some new “history"
variables to represent the past observations, and then state the per-
fect recall semantics as an application of the clock semantics.

Given a joint knowledge-based program P of length m, let Ph be
the knowledge based program obtained after making the following
modifications to P:

1. if OVari is the set of observable variables for agent i, replace
this by the set OVarh

i = OVari∪{v@k | v ∈ OVari, 0 ≤ k < m};

2. replace LVari by LVari ∪ {v@k | v ∈ OVari, 0 ≤ k < m};

3. replace each atomic statement � a | α � at time k in Progi
by the statement � a | α, β �, where β is the collection of
assignments v@k := v for v ∈ LVari.

Intuitively, each variable v@k is a new local observable variable
that records the value of the original observable variable v of agent
i at time k. We now define an implementation of P in Me with
respect to the synchronous perfect recall semantics to be an im-
plementation of Ph inMe with respect to the clock semantics. By
Theorem 1, such implementations are also guaranteed to exist and
are behaviourally unique.

4. SYNTHESIS
The semantics for knowledge-based programs requires that the

(semantically unique) implementing substitution θ for all knowl-
edge conditions be given, and then verified for correctness. We
now describe an incremental construction of this substitution that
serves as the basis for our symbolic synthesis procedure. For the
remainder of this section we fix an environment model Me and a
joint knowledge-based program P. Let N be the maximal time of
occurrence of any knowledge condition in P. Let skell(Progi) =

stati
1; . . . stati

m.
For the clock semantics, we work with epistemic Kripke struc-

tures M(S) = (S , {Oi}, π), where S is a set of assignments to Vare ∪

(a)
if Kimuddyi ∨ Ki¬muddyi →� SayYes | �

[] ¬(Kimuddyi ∨ Ki¬muddyi)→� SayNo | � fi (b)
if v0

Kimuddyi∨Ki¬muddyi
→� SayYes | �

[] v0
¬(Kimuddyi∨Ki¬muddyi)

→� SayNo | � fi

Figure 2: A knowledge-based program (a) and its skeleton (b)

⋃
i∈Ags LVari, the observation functions are just restrictions to the

observable variables, i.e., Oi(s) = s � OVari, and and π is just the
trivial interpretation on S , i.e., v ∈ π(s) iff s(v) = 1.

In particular, for k = 0 . . .N we define structures Mk = M(S k) by
defining the sets S k. At the same time, we define the substitution θ.
These definitions proceed inductively, as follows. First, we define
S 0 to be the set of assignments s such that s |= Inite ∧

∧
i∈Ags Initi.

This determines M0.
Assuming that Mk has been constructed, we next define the im-

plementation θ(vk
φ) of each knowledge condition φ in Progi at time

k. This implementation is required to be a boolean expression over
the set OVari of observable variables for agent i. Rather than give
this formula explicitly, we characterize it by describing the assign-
ments o to these variables on which the formula is satisfied. For
vk
φ ∈ skellVar(Progi), we let θ(vk

φ) be any formula such that for all
o = Oi(s) with s ∈ S k, we have o |= θ(vk

φ) iff Mk, o |=i φ. (This does
not necessarily uniquely define θ(vk

φ) on all possible observations,
but leaves some flexibility to optimize the size of the formula by
choosing its value appropriately on the “don’t-care” observations,
applying ideas familiar from digital circuit design theory [21].)

Next, we define

S k+1 = {t | ∃s ∈ S k((s, τ ||i∈Ags stati
kθ) −→ (t, τ ||i∈Ags ε))} .

That is, we run the k-th step of the knowledge-based programs us-
ing the implementations of the knowledge conditions as just de-
fined from Mk, using the operational semantics −→ for standard
programs. (Note that the substitution θ has not yet been completely
defined, but it has already been sufficiently defined to provide a
value for each vk

φ in stati
k, so that stati

kθ is a standard program not
containing any skeleton variables v j

ψ.) This now gives the structure
Mk+1 = M(S k+1).

The following result states that the substitution obtained by this
process provides an implementation of P.

THEOREM 2. Let θ be the substitution defined above. Then Pθ
implements P inMe with respect to the view clk.

The iteration using the epistemic structures Mk in this construc-
tion is a generalization of an algorithm already in use in MCK for
model checking standard programs with respect to specifications of
the form Xkφ, with φ an atemporal formula, interpreted with respect
to the clock semantics. In the case of standard programs, the substi-
tution θ is the empty substitution, and the construction simplifies to
the existing algorithm in that case. The existing algorithm was al-
ready implemented symbolically using BDD’s (see section 2.1) to
represent the structures Mk, and the implementation is easily gen-
eralized to cover the extensions above. The main change is that
it is now required at each stage to evaluate the applicable knowl-
edge formulas φ in the structures Mk. This is done using an ex-
isting algorithm that computes a BDD representation of the set of
states of Mk satisfying φ, given the BDD representation of Mk. The
concrete condition θ(vk

φ) is then extracted as a boolean expression
over observable variables that holds in Mk at the same assignments
to observable variables as the formula φ. (Note that since φ is a
boolean combination of observable variables and formulas Kiψ, its
satisfaction depends only on observable variables.)

Since the semantics of knowledge-based programs with respect
to the synchronous perfect recall semantics has been introduced

above by means of a reduction to the clock case, we note that we
also obtain a procedure for synthesis of implementations with re-
spect to the synchronous perfect recall semantics. The only change
required is the introduction of history variables as described above.

5. EXAMPLES
In this section we discuss the performance of the symbolic syn-

thesis approach on a number of simple examples, and compare it to
an explicit state approach to a closely related problem.

The explicit state approach is essentially that implemented in
DEMO [37], which is the only other model epistemic checker that
presently has the expressive power to handle a problem close to
the knowledge-based program synthesis problem that our system is
able to handle. However, compared to our formulation, DEMO
does not include knowledge-based programs as an explicit con-
struct, it does not attempt to synthesize a concrete implementation
of such a programs, and it can handle only situations where the
atomic propositions do not change value over time.

DEMO deals with the evaluation of statements (M, S) |= [U,T]φ,
where M is an epistemic model, S is a set of states of that model,
U is an epistemic update and T is a set of states of U. More pre-
cisely, M = (W, {∼i}i∈Ags, π) where W is a set of worlds, each ∼i

is an equivalence relation on W, and π : W → Prop is an inter-
pretation of the atomic propositions. The update structure U has
the form (E, {∼E

i }i∈Ags, pre), where E is a set of events, each ∼E
i is

an equivalence relation on E representing events that agent i is not
able to distinguish, and pre maps E to formulas (since it is all we
will need, we assume here that these formulas are atemporal but
possibly epistemic formulas in our language). Intuitively, pre(e) is
a pre-condition for the occurrence of event e. The update of M by U
is then defined to be the epistemic structure M ◦ U = (W ′, {∼′i }, π

′)
where W ′ = {(w, e) ∈ W × E | M,w |= pre(e)}, the relation ∼′i
is defined by (w1, e1) ∼′i (w2, e2) if w1 ∼i w2 and e1 ∼

E
i e2, and

π′(w, e) = π(w). The statement (M, S) |= [U,T]φ, where S ⊆ W
and T ⊆ E, holds just when M ◦ U, (w, e) |= φ for all w ∈ S and
e ∈ T with w |= pre(e).

In the special case where actions do not change the values of
propositions (one example where this holds is the Muddy Chil-
dren problem, discussed below) we can encode each stage of a
knowledge-based program as an update. Suppose that each agent
i = 1 . . . n has atomic statement

if gi
1 → ai

1 [] . . . [] gi
ki
→ ai

ki
fi

where the gi
j are atemporal epistemic formulas. Then the parallel

composition of these statements corresponds to a set E = Πn
i=1{1 . . . ki}

with pre(j1, . . . jn) =
∧

i=1...n gi
ji
. If the effect of the actions ai

j on ob-
servable variables (as described in the environment model) can be
captured by indistinguishability relations on E, then we can encode
the stage of the knowledge-based program as an update.

One difference is immediately apparent however: in DEMO, the
epistemic model M, the update structure U, and the structure M◦U
are all represented by an explicit enumeration of their states. Be-
cause of the cartesian products in the definition, the size of these
state spaces potentially grows exponentially in the number of agents
(and the number of updates applied to an initial structure), although
DEMO applies a quotient under a maximal bisimulation that may
reduce the size of these spaces in some cases. Our symbolic rep-

muddy: Bool[Agent]
info: Bool[Agent]

init_cond = (Exists x:Agent() (muddy[x])) /\ Forall x:Agent() (info[x] == muddy[x])

agent Child0 "child" (info[Child1], info[Child2], info[Child3])
agent Child1 "child" (info[Child2], info[Child3], info[Child0])
agent Child2 "child" (info[Child3], info[Child0], info[Child1])
agent Child3 "child" (info[Child0], info[Child1], info[Child2])

transitions
begin
info[Child0] := Child0.SayYes; info[Child1] := Child1.SayYes;
info[Child2] := Child2.SayYes; info[Child3] := Child3.SayYes
end

protocol "child" (info1: observable Bool, info2: observable Bool, info3: observable Bool)
begin
if (Knows Self muddy[Self]) \/ (Knows Self neg muddy[Self]) -> << SayYes >>
[] otherwise -> skip fi;
if (Knows Self muddy[Self]) \/ (Knows Self neg muddy[Self]) -> << SayYes >>
[] otherwise -> skip fi;
if (Knows Self muddy[Self]) \/ (Knows Self neg muddy[Self]) -> << SayYes >>
[] otherwise -> skip fi;
if (Knows Self muddy[Self]) \/ (Knows Self neg muddy[Self]) -> << SayYes >>
[] otherwise -> skip fi

end

Figure 3: A knowledge-based program for muddy children (perfect recall version)

resentation, on the other hand, has the potential to avoid this expo-
nential blow-up. (The benefit is only potential because BDD repre-
sentations, though they often prove to be small in practice, are also
not guaranteed to be small in all cases.) It is therefore interesting to
investigate whether this potential benefit is realized in interesting
cases. We now explore this question for the well-known Muddy
children problem.

5.1 Muddy children
The muddy children puzzle [10] can be stated as follows:

A group of n children have been playing outside,
and some have mud on their foreheads. Each child can
see the forehead of the others but cannot see his or her
own forehead. Father says to group, “At least one of
you has mud on your forehead". He then repeated asks
following question: “Do you know whether or not you
have mud on your forehead?" The children give their
answers (‘Yes" or “No") simultaneously each time the
question is asked, and each child observes the answers
given by the other children.

Assuming that the children are perfect reasoners, have perfect re-
call and are honest, the expected behaviour is that if k out of n of the
children are muddy, then all children will answer “No" until round
k, in which all the muddy children answer “Yes” and the clean chil-
dren answer “No". We note also that from round k + 1 all children
answer “Yes".

The puzzle can be represented as a knowledge-based program.
Figure 3 gives the representation of the environment and the chil-
dren’s protocol in the concrete syntax of our MCK implementa-
tion, for the perfect recall case with n = 4. Father’s statement is
captured by means of the statement init_cond, which defines
the set of initial states. Since these are common knowledge, it
is initially common knowledge that there is at least one muddy
child. (The existential/universal quantifiers are restricted to finite
types and are just a syntactic sugar for disjunction/conjunction.) An
agent’s observable variables OVari are declared using the keyword

observable. Each observable variable adds complexity to the
BDD computation and, in the perfect recall semantics, is moreover
replicated at each moment of time. To minimize these costs, we use
a variable info[x] that represents the new information concern-
ing agent x at each step. Initially this variable is used to represent
whether agent x is muddy, and at later steps it represents whether
agent x has just said “Yes". Each agent observes all the variables
info[x] for the other agents (it can always deduce whether it
would itself have said “Yes" at the previous step).

Symmetry of the children’s behaviour is handled by giving a
general description, the knowledge-based protocol "child". The
knowledge-based program consists of a repeated sequence of if
statements, in which the keyword otherwise represents the nega-
tion of the disjunction of all the preceding guards. The agent
statements create fresh instances of the general protocol, in which
the the parameters of the instance are aliased to the correspond-
ing environment variables, and the keyword Self in the protocol
is interpreted as the agent being defined. In particular, each such
statement says that a child can observe (via the observable variables
seei) the new information about the other children. The environ-
ment’s transitions clause simply stores the childrens’ answers to the
boolean variables info[x] for x ∈ Ags.

The representation we use for a clock semantics version is slightly
different. Here, we cannot rely on agents to remember whether they
initially observed other children to be muddy, or whether they said
“Yes" in the previous step. We therefore make observable to all
agents an array said, representing the previous statements of all
the agents, and also include an observable variable for the muddi-
ness of each other child. Interpreting this version with respect to the
clock semantics yields exactly the same behaviour of the children
in the implementation as the perfect recall version, viz., if there are
k muddy children then these children first say “Yes" at stage k.

To represent the puzzle in DEMO, each step of the knowledge
based program needs to be represented as an update structure U =

(E, {∼i}i∈Ags, pre), in which the events E correspond to possible ob-
servations that are made by the children after they reply to fathers
question. Thus, for n agents, the set of events E = {0, 1}n, with

e ∼i e′ iff e = e′, and for each tuple e = (e1, . . . , en) ∈ E we have
that pre(e) =

∧n
i=1 φi where φi = (Kimuddy[i]) ∨ (Ki¬muddy[i]) if

ei = 1 and φi = ¬((Kimuddy[i]) ∨ (Ki¬muddy[i])) if ei = 0. Since
DEMO runs in the Haskell interpreter, it is possible to represent U
succinctly as a Haskell program, but to perform the update calcu-
lation DEMO needs to construct the set E explicitly, so necessarily
performs an exponential amount of work.

The experimental results3 comparing the performance of our sym-
bolic approach to the DEMO modelling are shown in Table 1. In
addition to synthesis, we check, for the MCK program, the for-
mula Xnφ where φ =

∧
i∈Ags(Kimuddy[i] ∨ Ki¬muddy[i]) which

expresses that after n rounds, all the children know whether they
are muddy. For the DEMO program, we check φ after updating n
times.

Note that for n muddy children, we are dealing with an initial
state space of 2n−1 states and a deterministic solution protocol that
runs for n steps, giving n · (2n − 1) points in the relevant part of the
interpreted system. The results demonstrate that our symbolic ap-
proach does in practice scale significantly better when dealing with
this exponentially growing problem, particularly in the case of the
clock semantics version. (Recall that the synthesized behaviour is
exactly the same as for the perfect recall interpretation.) DEMO’s
performance rapidly degrades as the number of agents increases,
whereas our symbolic approach to the clock semantics is able to
very efficiently handle problems of larger scale. On the other hand,
DEMO is implicitly computing the perfect recall solution, so an ar-
guably the fairer comparison is with the MCK perfect recall model.
Here too our approach scales better, although the improvement in
the maximal number of agents that could be handled within our
cutoff bound of 10 hours is just two. However, after initially lag-
ging DEMO’s explicit state approach, the total running time for the
larger cases that can be handled becomes more than an order of
magnitude better.

5.2 Leader Election
The second example we consider concerns maintaining knowl-

edge of the leader on a ring of agents. We suppose that there are n
agents numbered i = 1 . . . n, with agent i able to send messages to
agent (i mod n)+1. Each agent has an observable input buffer that
is able to store one message. The agent also observes its own agent
number. An agent can crash at any time, and once crashed, remains
crashed. The leader at time t is defined as the highest numbered
agent that has not crashed by time t (and otherwise 0).

In each round, the environment first crashes a subset of the agents.
All uncrashed agents may send a message. The network delivers
any message that an agent is trying to send to the intended recipi-
ent, provided that the sender has not crashed. If agent i has crashed,
then the network detects this, and in place of the message that agent
i would have sent, the network delivers the message that was in
agent i’s buffer to agent (i mod n) + 1. (Intuitively, if the network
cannot deliver a message to an agent it sends it to the next agent in
the ring.) Each message is reliably marked with a “from" field, so
that the recipient can determine the original sender of the message.
(Note that this means also that when it receives a message that is
marked as from an agent other than the (lower numbered) agent to
its left, an agent can deduce that all agents between itself and the
original sender of a message have crashed.)

Note that the definition of the leader is a global property. Since it
takes at least n rounds of communication for any information about
a node to reach all other nodes, if the leader crashes then another

3Our experiments were conducted on a Ubuntu Linux system
(3.06GHz Intel Core i3 with 4G memory). Each process is allo-
cated up to 500M memory.

distant non-crashed agent cannot know about the crash for several
steps: agents distant from the leader therefore cannot know whether
the actual leader is still alive, so cannot know who is the leader.
We therefore focus on a weaker property than knowledge of who
is the leader. We say that agent i’s presumed leader is the largest
agent number mi for which agent i considers it possible that mi is
the leader. To help acquire and spread this knowledge, the agents
inform each other about their presumed leader: in each round, each
(noncrashed) agent i sends its neighbour a message “from i: j"
stating that its presumed leader is j.

Figure 4 shows our MCK representation of the knowledge-based
protocol. (For space reasons we omit the program for the environ-
ment.) To help identify crashes in the first step, we set the message
in agent i’s buffer at time 0 to be from i: 0. The atomic statement
� Sendj | presumed := j �, performed by agent i, has the effect
(encoded in the program for the environment) of causing the mes-
sage “from i: j" to be delivered to the right neighbour of agent i
provided that the agent has not crashed. The assignment to local
variable presumed stores the current presumed value.

It can be seen that the state space for this problem grows rapidly:
since a run is determined by the time at which each agent crashes,
if at all, for n agents there are (k + 1)n runs of length k. Ta-
ble 2 shows the performance of our symbolic synthesis procedure
as we increase the number of steps of the protocol. (We do not
give a comparison to DEMO. This problem is beyond the scope of
DEMO, because it handles only static propositions, whereas in this
problem the propositions change value over time.)

We have confirmed by model checking a manual solution for
the 3 agent case that that under both the clock and perfect recall
semantics, at each step, an agent knows that the leader is not A3
just when one of the following holds:

1. it knew this already in the previous step, because it already
had presumed < 3,

2. it receives a message from another agent that must have passed
through a chain of failures including A3, or

3. it receives a message “from j: y" with y < 3, which implies
that agent j knows that A3 is not the leader, or

4. it receives the message “from 3: 0", which implies that A3
failed in the first step.

Essentially the same predicate (with 2 in place of 3) captures the
circumstances under which an agent knows that the leader is not 2,
provided it also knows that the leader is not 3.

Manually verifying a nonterminating protocol that uses the above
predicates at each step to determine the current presumed leader,
we can verify that the following properties holds in the resulting
protocol (for the case of 3 agents): at all times all noncrashed
agents are greater than or equal to the actual leader, and if there are
no more crashes after time t, then within 2 steps all non-crashed
agent’s presumed leaders are the same as the actual leader.

6. RELATED WORK
Our focus in this paper has been on the pragmatics of knowledge-

based program syntax and on synthesis using a particular data struc-
ture for the symbolic representation of knowledge-based program
implementations. A number of works have approached the problem
of constructing implementations from a more theoretical perspec-
tive.

Besides identifying the synchronous atemporal case, that we have
treated here, as one in which unique implementations exist, in [11]

protocol "elect" (crashed : Bool, my_num: observable LeaderNum,
from_field: observable LeaderNum, message: observable LeaderNum)

presumed: LeaderNum

init_cond = presumed == 3

begin
if (neg crashed) /\ neg Knows Self neg leader == 3 -> <<Send3 | presumed := 3 >>
[] (neg crashed) /\ (Knows Self neg leader == 3)

/\ neg Knows Self neg leader == 2 -> <<Send2 | presumed := 2 >>
[] (neg crashed) /\ (Knows Self neg leader == 3)

/\ (Knows Self neg leader == 2)
/\ neg Knows Self neg leader == 1 -> <<Send1 | presumed := 1 >>

[] otherwise -> skip fi;
(repeat if statement)
end

Figure 4: A knowledge-based protocol for leader election

No. of Children 4 5 6 7 8 9 10
DEMO 0.54 5.79 71.11 897.28 9,995.10 > 36,000

MCK clk 0.28 0.86 2.17 4.02 8.09 27.03 47.77
MCK spr 1.07 3.18 19.02 49.35 162.52 1,253.90 10,507.90

Table 1: Running Times (seconds) of Muddy Children
No. of Agents, Length of Run

Semantics 2 3 4 5 6 7 8 9 10
3, clk 11.64 32.05 96.89 269.69 971.62 1,711.35 2,195.22 7,078.39 16,317.84
3, spr 7.03 5.52 43.49 112.51 842.72 2,529.81 4,045.30 1,2451.43 > 36,000

Table 2: Performance of synthesis on election protocol (seconds)

it is shown that deciding the existence of an implementation with
respect to the observational view in a finite state environment is
PSPACE complete, even when the knowledge conditions are ex-
pressed using linear time temporal logic operators. Since model
checking LTL is also PSPACE complete but is still considered prac-
tical, this might suggest that this knowledge-based program imple-
mentation problem should also be tractable; unfortunately the al-
gorithm in question requires guessing an implementation from an
exponentially large set and then verifying it, so it is not clear that
this is the case.

We have focussed on programs of bounded length. It is shown
in [32] that the problem of determining whether an atemporal for-
mula of the form Kiφwhere φ is propositional, holds at a given view
of length n in the implementation of a knowledge-based program
with respect to the synchronous perfect recall view can be as hard
as PSPACE-complete. Besides indicating that we cannot expect to
always obtain tractable implementations in the perfect recall case
even for programs of bounded length, this result also has impli-
cations for nonterminating knowledge-based programs: it implies
that implementations of such programs are not finite state encod-
able in general. However, this does not preclude the practicality of
synthesis in particular cases.

For example, it is shown in [31] that finite state implementa-
tions of nonterminating knowledge-based programs are guaranteed
to exist in the case of the clock view, as well as broadcast envi-
ronments and environments with a single agent with synchronous
perfect recall. [12] describes a formal verification of these results.
The implementation approach we have considered in the present
paper can in principle be extended to construct such implementa-
tions, but we have not yet experimented with this.

A general scheme that constructs a finite state implementation

with respect to the perfect recall semantics in the (undecidable) sit-
uation that one exists is described in [33]. The construction exploits
a quotient by the maximal bisimulation on temporal slices, that is
similar to the optimization used in the DEMO implementation. We
refer to Section 5 for a comparison of our approach to the epistemic
update logic problem considered in DEMO.

A number of papers have also applied model checking of knowl-
edge properties to synthesize distributed control strategies [4, 14,
22]. However, the approach taken in these works is weaker than
that in knowledge-based programs. Roughly, it corresponds to tak-
ing just one iteration of the fixpoint operator for a knowledge-based
program, so that it is not guaranteed that the implementing condi-
tion is equivalent to the desired knowledge property in the protocol
synthesized.

7. CONCLUSION
Our contribution in this paper has been to take the first step to-

wards the goal of a practical tool, based on symbolic methods, for
knowledge-based program implementation. We have demonstrated
that the approach works on two modest scale examples. In future
work, we plan to undertake further application case studies. We
also intend to develop optimizations of our initial implementation:
we believe that many avenues remain open for improvement of the
performance of our system. We also plan to extend it in directions
such as handling non-termination and probabilistic knowledge.

8. REFERENCES
[1] O. A. Bataineh and R. van der Meyden. Epistemic model

checking for knowledge-based program implementation: an
application to anonymous broadcast. In SecureComm’10, 6th

Int. ICST Conf. on Security and Privacy in Communication
Networks, 2010.

[2] O. A. Bataineh and R. van der Meyden. Abstraction for
epistemic model checking of dining-cryptographers based
protocols. In Proc. Conf. on Theoretical Aspects of
Knowledge and Rationality, 2011.

[3] K. Baukus and R. van der Meyden. A knowledge based
analysis of cache coherence. In Proc. 6th Int. Conf. on
Formal Engineering Methods, pages 99–114, 2004.

[4] S. Bensalem, D. Peled, and J. Sifakis. Knowledge based
scheduling of distributed systems. In Time for Verification,
Essays in Memory of Amir Pnueli, volume 6200 of Lecture
Notes in Computer Science, pages 26–41. Springer, 2010.

[5] G. Berry and G. Gonthier. The esterel synchronous
programming language: Design, semantics, implementation.
Sci. Comput. Program., 19(2):87–152, 1992.

[6] R. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers,
C-35(8):677–691, 1986.

[7] K. M. Chandy and J. Misra. Parallel Program Design: A
Foundation. Addison-Wesley, 1988.

[8] C. Dwork and Y. Moses. Knowledge and common
knowledge in a Byzantine environment : crash failures. In
Proc. Conf. on Theoretical aspects of reasoning about
knowledge, pages 149–169, 1986.

[9] C. Dwork and Y. Moses. Knowledge and common
knowledge in a Byzantine environment: crash failures.
Information and Computation, 88(2):156–186, 1990.

[10] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Reasoning about Knowledge. MIT Press, Cambridge, Mass.,
1995.

[11] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Knowledge-based programs. Distributed Computing,
10(4):199–225, 1997.

[12] P. Gammie. Verified synthesis of knowledge-based programs
in finite synchronous environments. In Proc. 2nd Int. Conf on
Interactive Theorem Proving, pages 87–102, 2011.

[13] P. Gammie and R. van der Meyden. MCK: Model checking
the logic of knowledge. In Proc. 16th Int. Conf. on computer
aided verification (CAV’04), pages 479–483, 2004.

[14] S. Graf, D. Peled, and S. Quinton. Achieving distributed
control through model checking. Formal Methods in System
Design, 40(2):263–281, 2012.

[15] V. Hadzilacos. A knowledge-theoretic analysis of atomic
commitment protocols. In PODS ’87: Proc. 6th ACM Symp.
on Principles of Database Systems, pages 129–134, 1987.

[16] J. Y. Halpern and R. Fagin. Modelling knowledge and action
in distributed systems. Distributed Computing,
3(4):159–177, 1989.

[17] J. Y. Halpern and Y. Moses. Knowledge and common
knowledge in a distributed environment. J. ACM,
37(3):549–587, 1990.

[18] J. Y. Halpern and S. Petride. A knowledge-based analysis of
global function computation. Distributed Computing,
23(3):197–224, 2010.

[19] J. Y. Halpern and L. D. Zuck. A little knowledge goes a long
way: knowledge-based derivations and correctness proofs for
a family of protocols. J. ACM, 39(3):449–478, 1992.

[20] M. Kacprzak, W. Nabialek, A. Niewiadomski, W. Penczek,
A. Pólrola, M. Szreter, B. Wozna, and A. Zbrzezny. Verics
2007 - a model checker for knowledge and real-time.

Fundam. Inform., 85(1-4):313–328, 2008.
[21] M. Karnaugh. The map method for synthesis of

combinational logic circuits. Trans. of the American Institute
of Electrical Engineers, part I, 72(9):593âĂŞ599, 1953.

[22] G. Katz, D. Peled, and S. Schewe. Synthesis of distributed
control through knowledge accumulation. In Proc. Int. Conf
on Computer Aided Verification, pages 510–525, 2011.

[23] A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A model
checker for the verification of multi-agent systems. In Proc.
Conf. on Computer Aided Verification, pages 682–688, 2009.

[24] X. Luo, K. Su, M. Gu, L. Wu, and J. Yang. Symbolic model
checking the knowledge in herbivore protocol. In Proc.
Workshop on Model Checking and Artificial Intelligence,
AAAI-2010, 2010.

[25] M. S. Mazer. A knowledge theoretic account of recovery in
distributed systems: The case of negotiated commitment. In
Proc. Conf. on Theoretical Aspects of Rationality and
Knowledge,, pages 309–323, 1988.

[26] Y. Moses and B. Bloom. Knowledge, timed precedence and
clocks (preliminary report). In Proc. IEEE Symp. on
Principles of Distributed Computing, pages 294–303, 1994.

[27] Y. Moses and M. R. Tuttle. Programming simultaneous
actions using common knowledge. Algorithmica, 3:121–169,
1988.

[28] G. Neiger and S. Toueg. Simulating synchronized clocks and
common knowledge in distributed systems. J. ACM,
40(2):334–367, 1993.

[29] R. Rudell. Dynamic variable ordering for ordered binary
decision diagrams. In Proc. IEEE/ACM Int. Conf. on
Computer-aided design, 1993.

[30] K. Su, G. Lv, and Y. Zhang. Model checking time and
knowledge(mctk).
http://www.cs.sysu.edu.cn/∼skl/emck.html.

[31] R. van der Meyden. Finite state implementations of
knowledge-based programs. In Proc. Conf. on Foundations
of Software Technology and Theoretical Computer Science,
pages 262–273, 1996.

[32] R. van der Meyden. Knowledge based programs: On the
complexity of perfect recall in finite environments. In Proc.
Conf. on Theoretical Aspects of Rationality and Knowledge,,
pages 31–49, 1996.

[33] R. van der Meyden. Constructing finite state implementations
of knowledge-based programs with perfect recall. In PRICAI
Workshop on Intelligent Agent Systems (1996), volume 1209
of LNCS, pages 135–151. Springer, 1997.

[34] R. van der Meyden and N. V. Shilov. Model checking
knowledge and time in systems with perfect recall (extended
abstract). In Proc. Conf. on Foundations of Software
Technology and Theoretical Computer Science, pages
432–445, 1999.

[35] R. van der Meyden and K. Su. Symbolic model checking the
knowledge of the dining cryptographers. In Proc. 17th IEEE
Computer Security Foundations Workshop, pages 280–291,
2004.

[36] R. van der Meyden and T. Wilke. Preservation of epistemic
properties in security protocol implementations. In Proc.
Conf. on Theoretical Aspects of Rationality and Knowledge,
pages 212–221, 2007.

[37] J. van Eijck. Dynamic epistemic modelling. Technical report,
Centrum voor Wiskunde en Informatica, Amsterdam, 2004.
CWI Report SEN-E0424.

