
Deriving Epistemic Conclusions from Agent Architecture

Stephen Chong
School of Engineering and Applied Sciences

Harvard University∗

Ron van der Meyden
School of Computer Science and Engineering

University of New South Wales

1 Introduction

One of our most resilient intuitions is that causality is
a precondition for information flow: where there are no
causal connections, we expect there to be no flow of in-
formation. In this paper, we study this idea as it arises
in the computer science notion of systems architectures,
which are high level designs that describe the coarse
structure of a system in terms of its high-level compo-
nents and their permitted causal interactions.

The MILS (Multiple Independent Levels of Security and
Safety) initiative [Alves-Foss et al., 2006; Vanfleet et al.,
2005; Boettcher et al., 2008] of the US Air Force pro-
poses to use architecture as a key part of the certi-
fication case for high-assurance systems. It is envis-
aged that complex systems will be constructed from a
mix of trusted and untrusted components composed ac-
cording to an architecture. Trusted components might
be formally verified to satisfy their specifications. Un-
trusted components might include commercial, off the
shelf (COTS) software that is too complex to verify and
may be unreliable or even malicious. It is desired that
global security and safety properties can be guaranteed
as a result of the behavior of trusted components and the
architectural structure of the system, regardless of the be-
havior of untrusted components.

Architectures have generally been represented by dia-
grams of boxes and arrows whose meaning lacks a rigor-
ous foundation. In a previous paper [Chong and van der
Meyden, 2009] we gave formal semantics to a type of
architectural specification. In addition to describing the
system’s causal structure, our specification format can
express restrictions on information permitted to flow be-
tween components. We showed that these architectural
specifications support interesting examples of rigorous
reasoning about security properties expressed in an epis-

∗This work was conducted while the first author was a re-
search associate at the University of New South Wales.

temic logic. However, that framework does not deal well
with situations in which agents synchronously observe
information. In some applications, e.g., auctions, such
synchronous observations are critical to the desired se-
curity and “fairness” properties. Fairness of an auction
requires lower bounds on information flow, such as “the
results of the previous round are known to all bidders”.
However, our previous approach expresses only upper
bounds on information flow.

In this paper, we extend our previous approach by de-
veloping a richer architectural specification format that
can express that certain components in the system syn-
chronously observe the state of other components. This
provides a way to represent lower bounds on informa-
tion flow. Our extended specifications remain highly ab-
stract: neither the states nor the agents’ actions need to
be explicitly specified. We show by means of a number
of examples that the extended architectural specification
format can enforce properties expressed using epistemic
logic that cannot be enforced by our earlier framework.

There have to date been few examples to justify that an
architectural approach to the construction of secure sys-
tems can be given a formal foundation. This work con-
tributes by making formal sense of architectural specifi-
cations and showing that the type of reasoning envisaged
by MILS has the potential to establish security properties
at early stages of the design process. While our imme-
diate motivation stems from computer security, we be-
lieve our results will also be of interest in software engi-
neering, multi-agent Artificial Intelligence and economic
mechanism design.

The structure of the paper is as follows. We begin with
some preliminaries: Section 2 describes the formal ma-
chine model in which we interpret architectures, and Sec-
tion 3 introduces the epistemic logic we use to specify
security properties. In Section 4 we recall the architec-
tural specification format of Chong and van der Meyden
[2009], and motivate the need for the extension intro-

duced in the present paper. We define this extension and
its semantics in Section 5. This is followed by a number
of sections that give applications of the extended archi-
tectural specification format: Section 6 deals with a bul-
letin board architecture, Section 7 concerns an architec-
ture for auction systems, and Section 8 presents a gen-
eral condition under which a group of agents is able to
audit all flows of information from one part of the sys-
tem to another. Some concluding remarks are made in
Section 9.

2 Machine model

Intuitively, the architectural specifications we develop in
this paper are interpreted in systems consisting of agents
that have state-changing actions and an ability to make
observations of the system state. Following terminology
from the security literature, we refer to agents as do-
mains; the motivation for this usage is that we may be
interested in information flows between classes of agents
(e.g., all agents cleared to read classified documents) in
addition to single agents. Actions are assumed to be
deterministic. We assume that domains operate asyn-
chronously.

We formalize systems using a state-observed machine
model [Rushby, 1992], which defines deterministic state-
based machines. A machine has a set of actions A, and
each action is associated with a security domain. Intu-
itively, if action a is associated with domain u, then a
represents a decision, choice, or action taken by the sys-
tem component represented by u. Actions determinis-
tically alter the machine state, and we assume that the
observations of each security domain are determined by
the current machine state.

Formally, a machine is a tuple M =
〈S, s0, A, step, obs, dom〉 where S is a set of states,
s0 ∈ S is the initial state, A is a set of actions,
step : S × A→ S is a deterministic transition relation,
dom : A → D associates a domain with each action,
and observation function obs : D × S → O describes
for each state what observations can be made by each
domain, for some set of observations O.

We assume that it is possible to execute any action in any
state: function step is total. Given sequence of actions
α ∈ A∗, we write s·α for the state reached by performing
the each action in turn, starting in state s. We define
s ·α inductively using the transition function step, by (ε
denotes the empty sequence)

s · ε = s ,

s · αa = step(s · α, a) .

For notational convenience, we write obsu for the func-
tion obs(u, ·), and obsu(α) for obsu(s0 · α), where
α ∈ A∗. If G ⊆ D is a group of agents, we write
obsG(α) for the tuple (obsu(α))u∈G. We also write
Au = {a ∈ A | dom(a) = u} for the set of actions
belonging to u ∈ D.

Given a sequence α ∈ A∗, the view of α of a group of
domains G is the sequence of G’s observations and ac-
tions that belong to G. The function viewG with domain
A∗ is defined inductively by:

viewG(ε) = obsG(s0) ,
viewG(αa) ={

viewG(α) a obsG(s0 · αa) if dom(a) ∈ G ,

viewG(α) ◦ obsG(s0 · αa) otherwise .

The definition uses the absorptive concatenation opera-
tor ◦: for set X , sequence α ∈ X∗, and element x ∈ X ,
α ◦ x = α if x is equal to the last element of α, and
α ◦ x = αx otherwise. Intuitively, G’s view is the in-
formation that the group G would have if it were act-
ing as a single agent operating with asynchronous per-
fect recall, remembering all its distinct observations and
actions, but not being aware of the duration of invariant
observations. When G = {u} is a singleton, we write
viewu for viewG. WhenG is not a singleton, viewG(α)
can be understood as the maximal information that the
group could have if we were to give it the ability to in-
stantaneously communicate within the group any new in-
formation that any agent in the group acquires.

Finally, for any sequence of actions α ∈ A∗, we write
α � G for the subsequence of α of actions whose domain
is in the set G.

3 Specification Language

We use an epistemic logic to express information flow
properties of architectures, with grammar:

φ, ψ ::= > | p | ¬φ | φ ∧ ψ | KGφ

K ::= K | D | E | C
G,H range over groups of domains

Formulas >, p, ¬φ, and φ ∧ ψ are standard from propo-
sitional logic: > is always satisfied, p is a propositional
constant, ¬φ is satisfied if φ is not satisfied, and φ ∧ ψ
is satisfied if both φ and ψ are satisfied. Epistemic for-
mula KGφ is satisfied if the group of domains G have
knowledge of type K of formula φ, where K ranges
over K,D,E, and C. The formula DGφ says G has
distributed knowledge of φ; EGφ says every domain in
G knows φ; and CGφ says G has common knowledge

of φ. The operator KG represents a novel distributed-
knowledge-like notion that we call group knowledge.

Formulas are interpreted using a possible worlds seman-
tics, where a world is a sequence of actions α ∈ A∗.
To interpret epistemic formulas, we require appropriate
indistinguishability relations for each type of epistemic
operator. Two sequences of actions α ∈ A∗ and α′ ∈ A∗
are indistinguishable to a group of domains G, written
α ≈G α′, if G’s views of the two sequences are iden-
tical: α ≈G α′ ⇐⇒ viewG(α) = viewG(α′). If
G = {u} we write ≈u for ≈G: this is a standard notion
of asynchronous perfect recall indistinguishability for a
single agent.

As usual, we define indistinguishability relations ≈KG
over action sequences, for group G ⊆ D and knowledge
kinds K ∈ {K,D,E,C}: ≈K

G is ≈G; ≈D
G is the inter-

section of ≈u for all u ∈ G; ≈E
G is the union of ≈u for

all u ∈ G; and ≈C
G is the reflexive transitive closure of

≈E
G. In addition to the standard abbreviations, we write

Kuφ as shorthand for K{u}φ; this is the same as E{u}φ,
D{u}φ and C{u}φ.

A proposition is a set X ⊆ A∗. We say proposition X
is non-trivial if X 6= ∅ and X 6= A∗. An interpretation
function π is a function from propositional constants to
propositions.

We define the semantics of the logic using satisfaction re-
lation M,π, α � φ, which intuitively means that formula
φ is true given interpretation function π, and machine M
that has executed sequence α ∈ A∗. Figure 1 defines sat-
isfaction relation M,π, α � φ. We write M,π � φ if for
all α ∈ A∗ we have M,π, α � φ.

To reason about information that is locally known to
a group of domains G, we introduce G-local proposi-
tions [Engelhardt et al., 1998], andG-action-local propo-
sitions. A proposition is G-local if the view of domains
G suffices to decide the proposition. Formally, a set of
states X is a G-local proposition if for all α, α′ ∈ A∗,
if α ≈G α′, then α ∈ X ⇐⇒ α′ ∈ X . A proposi-
tion is G-action-local if the actions of domains in G suf-
fice to decide the proposition. Formally, a set X ⊆ A∗

is a G-action-local proposition if for all α, α′ ∈ A∗ if
α � G = α′ � G, then α ∈ X ⇐⇒ α′ ∈ X . Note that
any G-action-local proposition is a G-local proposition,
but not vice-versa. As usual, we abbreviate {u} to u in
these notions.

4 Architectures

In this section we recall the notion of architecture and its
semantics as introduced in Chong and van der Meyden
[2009] and give an example that motivates the need for

the extension that we develop in the present paper.

Architectures are specifications of the causal structure of
a system that place constraints on the permitted flows of
information between security domains. Figure 2 gives
an example of an architecture for an electronic election
system, comprised of a number of voters v1 . . . vn, and
an election authority ElecAuth .

ElecAuth

v1 v2 vn...
resultsresultsresults

Figure 2: An architecture for elections

Intuitively, this diagram represents that the voters submit
information (their votes) to the election authority, who
returns the result of the election to the voters. In addition
to these permitted information flows, the diagram also
implies that some flows of information are prohibited. In
particular, since there is no edge from a voter to any other
voter, direct communication between voters through the
election system is not permitted. Further, the election
authority is not permitted to return more information to
any voter than the results. In particular, the details of any
individual voter’s vote should not be revealed, except to
the extent that information about it might be deducible
from the result of the election.

Formally, an architecture is a pair A = (D,�), where
D is a set of security domains, and�⊆ D ×D × (L ∪
{>}), where L is a set of function names. We write
u f�v when (u, v, f) ∈�, and write u � v as short-
hand for ∃f. (u, v, f) ∈�, and u 6�v as shorthand for
¬∃f. (u, v, f) ∈�.

The intuition for the relation u f�v is that information
flow from u to v is permitted, but may be subject to con-
straints. In case f = >, there are no constraints on in-
formation flow from u to v: any information that may
be possessed by u is permitted to be passed to v when u
acts. If f ∈ L then information is allowed to flow from
domain u to domain v, but it needs to be filtered through
the function denoted by f : only information output by
this function may be transmitted from u to v. If u 6�v
then no direct flow of information from u to v is permit-
ted.

Architectures are required to have the following proper-
ties:

Arch1. For all u, v ∈ D, there exists at most one f ∈
L ∪ {>} such that u f�v.

M,π, α � > M,π, α � φ ∧ ψ iff M,π, α � φ and M,π, α � ψ

M,π, α � p iff α ∈ π(p) M,π, α � KGφ iff M,π, α′ � φ for all

M,π, α � ¬φ iff M,π, α 6� φ α′ ∈ A∗ s.t. α ≈KG α′

Figure 1: M,π, α � φ

Arch2. The relation� is reflexive in that for all u ∈ D
we have (u, u,>) ∈�.

The first condition requires that all permitted flows of
information from u to v are represented using a single
labeled edge. Intuitively, any policy with multiple such
edges can always be transformed into one satisfying this
condition, by combining the pieces of information flow-
ing across these edges into a tuple that flows across a
single edge. The second condition is motivated from the
fact that information flow from a domain to itself cannot
be prevented. When drawing architectures, we annotate
arrows between domains with the filter function names
and elide reflexive arrows. For arrows drawn without a
label, and elided reflexive arrows, the implied label is >.

Architectures do not define the interpretations of the
function names L. If A = (D,�) is an architecture,
an interpretation forA is a tuple I = (A, dom, I), where
A is a set of actions, dom : A→ D assigns these actions
to domains ofA, and I is a function mapping each f ∈ L
to a function with domain A∗ (and arbitrary codomain).
We call the pair (A, I) an interpreted architecture.

Intuitively, if u f�v and α ∈ A∗ and a ∈ A is an action
with dom(a) = u, then I(f)(αa) is the information that
is permitted to flow from u to v when the action a is
performed after occurrence of the sequence of actions α.
Based on this intuition, we may define a function ftau

with domain A∗ that captures that maximal information
that domain u is permitted to have after a sequence of
actions has been executed.

Given extended architecture (D,�) and an architectural
interpretation I = (A, dom, I), the function ftau is de-
fined inductively by ftau(ε) = ε, and, for α ∈ A∗ and
a ∈ A,

ftau(αa) =

ftau(α) if dom(a) 6�u

ftau(α)(ftadom(a)(α), a) if dom(a) >�u

ftau(α)I(f)(αa) if dom(a) f�u

The intuition for this definition is as follows. First, the
value ftau(α) is to be understood as a concrete repre-
sentation of the maximal information that domain u is
permitted to have after the sequence of actions α has

been performed. The recursive definition describes how
this maximal information grows when the action a is per-
formed after α. This depends on the nature of the edge, if
any, from dom(a) to u. The first clause says that if there
is no edge from dom(a) to u, then u is not permitted to
learn anything when a is performed. That is, we have
ftau(αa) = ftau(α), so u’s maximal information be-
fore and after the action is the same. The second clause
says that if dom(a) >�u, then the additional information
that u may have after a is the maximal information that
the domain dom(a) performing the action had before a
(i.e. ftadom(a)(α)), together with the fact that the action
a has just been performed. Finally, in the case of edges
of the form dom(a) f�u, the interpretation of the function
name f defines the additional information that u may ac-
quire when a is performed.

A machine complies with an interpreted extended archi-
tecture if it has appropriate domains and actions, and
for each domain u, what u observes in state s0 · α is
determined by ftau(α). We call such a machine FTA-
compliant. (“FTA” is derived from filtered transmission
of information about actions.)

Definition 1 (FTA-compliant) A machine M =
〈S, s0, A,D, step, obs, dom〉 is FTA-compliant with an
interpreted architecture (A, I), with A = (D′,�) and
I = (A′, dom′, I), if A = A′, D = D′, dom = dom′

and for all domains u ∈ D and all α, α′ ∈ A∗, if
ftau(α) = ftau(α′) then obsu(α) = obsu(α′).

It is shown in Chong and van der Meyden [2009] that this
definition of architectures and their semantics, together
with some restrictions on the permitted interpretations of
the function names, provides a specification format that,
although highly abstract, already suffices to ensure that
certain interesting epistemic consequences hold in any
system that complies with the specification. For exam-
ple, it is shown that, under some mild assumptions, the
election architecture enforces the property that voters’
actions in the system are anonymous. More precisely,
any proposition considered possible by any voter v about
other voters is also considered possible by v if we per-
mute the names of the other voters. The assumptions
required are that any action available to a voter is also
available to any other voter and that the results function

is invariant under permutation of the voters, so that the
results depend only on what the votes were, not on which
voter did what.

Note that this result holds very abstractly: the architec-
ture leaves most aspects of the system’s design unspeci-
fied, and places only some weak constraints on its struc-
ture and the behavior of the election authority. It says
nothing about the local states maintained by the voters,
and does not specify the nature of the votes (so these
can be implemented as, e.g., a single vote for the pre-
ferred candidate, with voting in a sequence of rounds, or
as a preference order on all candidates). There is also
considerable flexibility in the details of the results func-
tion (this could be, e.g., the winner of the election, or
the number of votes cast for each candidate.) Moreover,
the architecture isolates the responsibility for the desired
security property (anonymity) in a single “trusted” com-
ponent, the election authority. Assuming that security
mechanisms such as access control and physical commu-
nication links have been applied to constrain information
flow to the edges in the architecture, to obtain this prop-
erty it suffices to check that the election authority cor-
rectly computes the result, and ensures that only this in-
formation can flow to the voters. This illustrates the way
that the MILS approach to secure systems construction
proposes to build secure systems from a mix of trusted
and untrusted components composed in the context of an
architectural framework that enforces constraints on in-
formation flow.

One might expect, from the diagram for the election ar-
chitecture, that certain other properties should hold. One
property that is desirable in the application, and which
might seem to be implied by the architecture, is that
the results of the election will be common knowledge
to the voters. To formalize this let M be a system that
is compliant with the election architecture, and let π(p)
be a proposition about the result of the election, e.g.,
“party P is the winner”. Then we might expect that
M,π |= Kvp ⇒ CV p, where v is any voter and V is
the set of all voters. Unfortunately, this does not fol-
low. Suppose we construct the system M so that the
election authority has an action a that posts the election
result only to a location that is observable to v, but to
no other voter. Then after a, if p holds then voter v will
know that p, but the other voters will not, so it will not
be common knowledge. Nevertheless, such a system is
not inconsistent with the architecture. The definition of
FTA-compliance states only an upper bound on informa-
tion flow, whereas what the expected property requires is
a lower bound. Although it may superficially appear that
the architectures of Chong and van der Meyden [2009]
are able to represent broadcast systems, they are not able
to enforce that broadcast information will be available

to intended recipients. One of the contributions of the
present paper is to develop an extended notion of archi-
tecture that is able to capture such requirements.

5 Architectures with Observations

In order to express requirements such as the broadcast
property expected in the election example discussed in
the previous section, we now develop an extended notion
of architecture that captures both upper and lower bounds
on information flow. One of the well-known mechanisms
by which agents obtain common knowledge is by simul-
taneous direct observation of their environment. Our ex-
tended architectural format is obtained by adding a new
type of edge that represents observability of information.

An architecture with filter functions and direct observa-
tions (henceforth, simply architecture) is a tuple A =
(D,�, 99K), where

1. D is a set of domains,

2. � is a subset of D × D × (L ∪ {>}), where L
is a set of function names not including the special
symbol >, and

3. 99K⊆ D ×D.

We define architectural interpretations I and interpreted
architectures (A, I) exactly as in the previous section
(except that now A also contains a relation 99K.)

This definition extends the definition of Chong and
van der Meyden [2009] discussed in the previous sec-
tion by adding edges of the form u 99K v to express that
domain v can observe domain u. More specifically, do-
main v is required to observe the observations of domain
u, in the sense that for all states s and t, if u 99K v and
obsv(s) = obsv(t) then obsu(s) = obsu(t). This im-
poses a lower bound on information flow in the system.

As in the previous section, we assume the properties
Arch1 and Arch2 on the relation �. Further, we as-
sume that the relation 99K is transitive and acyclic (hence
irreflexive). Note that the semantic explanation of 99K
given above is transitive, so the assumption of transitiv-
ity of 99K is without loss of generality.1 We write u f�v
if (u, v, f) ∈�, and write u 99K v if (u, v) ∈99K. If

1We assume acyclicity of 99K for technical reasons: it may
be possible to remove this assumption, but with significant
complications to the definition of FTAO-compliance given be-
low. However, if u 99K v and v 99K u then obsu(s) =
obsu(t) iff obsv(s) = obsv(t), and so the effect of cycles
can be obtained by defining obsu = obsv . Hence the loss of
generality is not great.

there is no f such that u f�v then we write u 6�v, and
similarly write u 699K v if not u 99K v.

We define the semantics of an architecture with filter
functions and direct observation by defining a function
ftaou, and requiring that ftaou is the maximal informa-
tion that u is allowed to learn given a particular execution
of the system. We also impose the lower bound on infor-
mation flow mentioned above. Function ftaou is similar
to ftau, but (in order to be compatible with the lower
bound) also incorporates the observations of domains v
such that v � u. To define ftaou, we first define the
directly observable domains DO(u) = {v | v 99K u} to
be the set of domains that u directly observes according
to relation 99K. Note that u /∈ DO(u). Also, we define
an operator + such that x + y = ε if x = y = ε, and
x+ y = (x, y) otherwise. For any sequence sequence σ
we treat σε as identical to σ.

Given architecture (D,�, 99K), interpreta-
tion I = (A, dom, I), and machine M =
〈S, s0, A, step, obs, dom〉, the function ftaou is
defined inductively by ftaou(ε) = ε, and, for α ∈ A∗

and a ∈ A, ftaou(αa) = ftaou(α)(x+ y) where

x =

ε if dom(a) 6�u

(ftaodom(a)(α), a) if dom(a) >�u

I(f)(αa) if dom(a) f�u

and

y =

ε if obsDO(u)(αa) =

obsDO(u)(α)
obsDO(u)(αa) otherwise.

Intuitively, ftaou(α) represents the maximal informa-
tion that domain u is permitted to have acquired after the
sequence of actions α. The value x + y represents the
new information that u is permitted to acquire when the
action a is performed after sequence α. The component
x expresses that this includes the action a plus any in-
formation that dom(a) may have, if dom(a) >�u, or that
information filtered by the function I(f) if dom(a) f�u.
Moreover, the component y expresses that domain u
is allowed to learn the observation of any domain in
DO(u), provided this differs from the previous observa-
tion. (As in the definition of viewu, we reduce stuttering
observations to a single copy to model asynchrony.)

The following definition gives semantics to interpreted
architectures by stating that the information possessed by
u has an upper bound of ftaou and a lower bound of
the directly observable information. (“FTAO” is derived
from filtered transmission of information about actions
and observations.)

Definition 2 (FTAO-compliance) Machine M is
FTAO-compliant with interpreted architecture
AI = (A, I) where A = (D,�, 99K) and
I = (A, dom, I) if it has the same components
D,A and dom, and

1. for all agents u ∈ D and all α, α′ ∈ A∗,
if ftaou(α) = ftaou(α′) then obsu(α) =
obsu(α′), and

2. for all agents u, v ∈ D and all s, t ∈ S if u 99K v
and obsv(s) = obsv(t) then obsu(s) = obsu(t).

In the following sections, we give some examples of ar-
chitectural specifications based on architectures with fil-
ter functions and direct observations, and show that these
specifications suffice to establish interesting epistemic
specifications.

6 Example: Bulletin board

We begin with an example that shows that architec-
tures with observations support the intuitions concerning
broadcast discussed in Section 4.

d1

BB

d2 dn...

Figure 3: Architecture BB

Figure 3 shows architecture BB, a bulletin board archi-
tecture for n agents. Each agent can send information
to bulletin board BB, and directly observe BB. Thus,
the architecture enforces that communication between
agents must occur via the bulletin board. The bulletin
board is a form of broadcast communication: announce-
ments by one agent are observable by all agents.

Given two additional local assumptions about the behav-
ior of the bulletin board, we can show that for distinct
agents c and d, any c-local proposition that is known to
d must also be known to everyone. Thus, the bulletin
board architecture ensures that no agent has an unfair ad-
vantage over another agent: anything d can learn about c
can also be learned by any other agent.

The first local assumption, BB1, guarantees that broad-
cast is not anonymous: any update to the bulletin board
reveals the domain of the action that updated it.

BB1. For all α, β ∈ A∗ and a, b ∈ A, if obsBB(α) =
obsBB(β) 6= obsBB(βb) = obsBB(αa) then
dom(a) = dom(b).

The second local assumption, BB2, ensures that the ob-
servable state of the bulletin board is a function of the
previous observations of the bulletin board, and the cur-
rent view of the poster. To state BB2, we first define
seq(f, α), which, for any function f with domain A∗,
and any α ∈ A∗, is the sequence of output of f on suc-
cessively longer prefixes of α, with stuttering removed:
seq(f, ε) = f(ε) and seq(f, αa) = seq(f, α) ◦ f(αa).

BB2. For all α, β ∈ A∗ and a ∈ A, if
seq(obsBB , α) = seq(obsBB , β) and
viewdom(a)(α) = viewdom(a)(β) then
obsBB(αa) = obsBB(βa).

The following theorem states that any bulletin board im-
plementation M that satisfies the bulletin board architec-
ture BB, and satisfies conditions BB1 and BB2, will not
give any agent an unfair advantage over another: any-
thing agent d can learn about agent c can be learned by
everyone.

Theorem 1 Let M be FTAO-compliant with interpreted
architecture AI = (BB, I) where I = (A, dom, I),
and satisfy conditions BB1 and BB2. For distinct agents
c, d ∈ D − {BB}, if π(p) is a c-local proposition, then
M,π � Kdp⇒ EDp.

Indeed, we can show that if agent c learns something
about agent d, then it is common knowledge among all
agents.

Theorem 2 Let M be FTAO-compliant with interpreted
architecture AI = (BB, I) where I = (A, dom, I), and
satisfy conditions BB1 and BB2. Let G = D − {BB}.
For distinct agents c, d ∈ G, if π(p) is a c-local proposi-
tion, then M,π � Kdp⇒ CGp.

7 Example: Auction

Figure 4 shows architecture AUC, an auction architec-
ture for n bidders, auctioneer Auc, and bulletin board
BB. As in bulletin board architecture BB, bidders di-
rectly observe bulletin board BB. Unlike BB, bidders
do not send information directly to the bulletin board, but
instead submit bids to the trusted auctioneer, who posts
auction results to the bulletin board. Information sent by
the auctioneer to the bulletin board is bounded by the fil-
ter function denoted by results .

Intuitively, the auctioneer Auc and bulletin board BB
are the trusted components of the system. We specify

B1

Auc

B2 Bn...

BBresults

Figure 4: Architecture AUC

additional local constraints for these components. Their
compliance with the following constraints might be as-
sured by means of a careful verification of their imple-
mentations.

We refer to information sent from the auctioneer to the
bulletin board as an announcement. We restrict our atten-
tion to interpretations I = (A, dom, I) forAUC that con-
tain a distinguished announcement action ANN ∈ AAuc .
Intuitively, ANN is the only action that can send informa-
tion to the bulletin board. According to the architecture,
the maximal information for an announcement is the re-
sult of the filter function I(results). We assume that this
function has the following properties:

A1. Only the ANN action may send information to the
bulletin board. If a 6= ANN then I(results)(αa) =
ε.

A2. Announcements depend only on the previous an-
nouncement, the individual behaviors of the bid-
ders since the previous announcement (but not on
their interleaving) and the action used to make
the announcement. Let α, α′ ∈ A∗, and let
β, β′ ∈ A − {ANN}. If I(results)(αANN) =
I(results)(α′ANN) and β � Bi = β′ � Bi for
all i = 1 . . . n, then I(results)(αANNβANN) =
I(results)(α′ANNβ′ANN).

A3. Announcements have the following com-
pensation property: Let α ∈ A∗, and let
β, β′ ∈ A − {ANN}. Let Bi, Bj and Bk be
distinct bidders. If I(results)(αANNβANN) =
I(results)(αANNβ′ANN) and β � Bk = β′ � Bk

then there exists sequence β′′ ∈ (AB1∪. . .∪ABn
)∗

such that β′′ � Bi = β � Bi and
β′′ � Bj = β′ � Bj and I(results)(αANNβANN) =
I(results)(αANNβ′′ANN) =
I(results)(αANNβ′ANN).

Constraints A1-A3 allows us to reason about the behav-
ior of function results . Constraint A3 is the most com-
plex, and it intuitively requires that any pair of behaviors
of Bi and Bj that are each individually consistent with

a given behavior of Bk and a particular announcement,
are jointly consistent with that announcement. There are
several possible definitions for the function results that
satisfy the constraints, such as a function that returns the
maximum bid submitted since the last announcement, or
a function that returns a list of the identity and bids of all
bidders in decreasing order.

We also place local constraints on the bulletin board.

BB1. Each auctioneer announcement affects the bulletin
board. More precisely, for all α ∈ A∗, we have
obsBB(αANN) 6= obsBB(α).

BB2. The bulletin board contains at least the
most recent announcement of the auctioneer.
If obsBB(αANN) = obsBB(α′ANN), then
I(results)(αANN) = I(results)(α′ANN).

Various implementations of the bulletin board are com-
patible with these constraints. For example, the bulletin
board may display the complete history of the auction-
eer’s announcements, or only the latest announcement
plus the sequence number of that announcement, or the
last k announcements plus their sequence numbers.

The auction architecture and the local constraints al-
low us to prove that in any implementation that satisfies
the auction architecture and local constraints, no bidder
gains an information advantage over other bidders: if
bidder Bj learns something about bidder Bi, then it is
common knowledge among all bidders.

Theorem 3 Let machine M be FTAO-compliant with
interpreted architecture AI = (AUC, I) where I =
(A, dom, I), and satisfy conditions A1–A3 and BB1–BB2.
Let B = {B1, . . . , Bn} be the set of all bidders. For dis-
tinct biddersBi andBj if π(p) is aBi-local proposition,
then M,π � KBjp⇒ CBp.

If we make further assumptions about the homogeneity
of bidders, and that auctioneer announcements do not re-
veal bidder identities, we can prove that AUC provides
bidder anonymity.

B1. All bidders have the same set of actions. For any
bidder Bi, the set of possible actions ABi is {aBi |
a ∈ AB}, where AB is the set of bidder actions.

We define a bidder permutation P as a permutation over
the set of bidders B. Since all bidders have the same set
of actions, we can apply a permutation P to sequence α,
written P (α). We define P (ε) = ε, P (αa) = P (α)a
if dom(a) 6∈ B, and P (αaBi) = P (α)aP (Bi) if a ∈
AB . We apply permutation P to proposition X ⊆ A∗ by

applying P to each sequence α ∈ X: P (X) = {P (α) |
α ∈ X}. Intuitively, if X is a u-local proposition, for
u ∈ B, then P (X) is a P (u)-local proposition. Using
bidder permutations, we can state the local constraint that
announcements do not depend on (and thus do not reveal)
bidder identities.

A4. Announcements have the following identity-
oblivious property: For all bidder permuta-
tions P , and sequences α, I(results)(α) =
I(results)(P (α)).

Given these additional local constraints we can show that
if Bi believes that some proposition X may be satisfied,
then Bi also believes that P (X) may be satisfied, for
bidder permutation P . For example, if Bill considers it
possible that Bob bid $10 and Bonnie bid $20, then Bill
considers it possible that Bonnie bid $10 and Bob bid
$20.

Theorem 4 Let system M be FTAO-compliant with in-
terpreted architecture AI = (AUC, I) where I =
(A, dom, I), and satisfy conditions A1–A4, BB1–BB2,
and B1. Let Bi be a bidder. For all bidder permuta-
tions P such that P (Bi) = Bi, if π′(p) = P (π(p)), and
M,π, α � ¬KBi

¬p then M,π′, α � ¬KBi
¬p.

8 Example: Observational barriers

Our last example is a general result that expresses a sense
in which a group of domains can jointly function as an
auditor of all information flows from one group of do-
mains to another.

Let A = (D,�, 99K) be an architecture, and let
U, V,G ⊆ D. Say thatG is an observational barrier sep-
arating U from V in A if there exists a partition (L,R)
of D, such that U ∪ G ⊆ L, and V ⊆ R, there are no
edges from R to L, and the only edges leading from L to
R are observational edges leading from G. That is,

• for all domains u ∈ R and v ∈ L, we have u 6� v
and u 699K v, and

• for all domains u ∈ L and v ∈ R, we have u 6� v,
and if u 99K v then u ∈ G.

The following result states that if G is an observational
barrier separating U from V , then if V has information
about U , then that information is also available to G.
This makes precise the sense in which G is able to au-
dit information flowing from U to V .

Theorem 5 Let AI = (A, I) be an interpreted archi-
tecture and suppose that G is an observational barrier

B

C

A D

(a) Architecture A

s1
(1,0)

s2
(0,1)

s0
(0,0)

s3
(1,1)

a

a

b

b

(b) Machine M

Figure 5: Observational barrier example

separating U from V in A. Let M be FTAO-compliant
with AI. If π(p) is a U -action-local proposition then
M,π |= KV p⇒ KGp.

We remark that this result needs to be stated using group
knowledge rather than distributed knowledge. Since |=
DV φ ⇒ KV φ, we also have M,π |= DV p ⇒ KGp.
However, it is not necessarily the case that M,π |=
DV p ⇒ DGp. The reason has to do with the unsuit-
ability of the notion of distributed knowledge for asyn-
chronous settings: it is possible for V to have observed
the ordering of changes to observations at G, where,
because of asynchrony, this ordering is not distributed
knowledge to G. This is illustrated in the following ex-
ample.

Consider the architecture A and system M depicted in
Figure 5. The architecture has four domains A,B,C,D.
The system has states s0 . . . s3, with initial state s0. We
suppose that there are actions A = {a, b} with dom(a) =
dom(b) = A. The effect of an action is only depicted
when it changes the state, e.g., we draw the edge corre-
sponding to s0 · a = s1, but omit the self-loop corre-
sponding to s1 · a = s1. Associated with each state s in
the diagram is a tuple (x, y), which is to be interpreted as
giving the observation made by the agents B and C at that
state. In particular, obsB(s) = x and obsC(s) = y. The
observations of the other agents A and D are given as fol-
lows: obsA(s) = 0 and obsD(s) = (obsB(s), obsC(s))
for all states s. It is not difficult to check that M FTAO-
complies with A.

Suppose that we take U = {A}, G = {B,C} and

V = {D} and let π(p) = {a}+ b {a, b}∗ be the proposi-
tion that there has been an occurrence of a and an oc-
currence of b, but with the first a preceding the first
b. It is evident that G is an observational barrier sep-
arating U from V and that π(p) is U -action-local. We
claim that M,π, ab |= DV p ∧ ¬DGp. For this, note that
viewD(ab) = (0, 0) (1, 0) (1, 1). Thus, any sequence α
such that viewD(ab) = viewD(α) must contain both
an a before any b (to cause the observation (1, 0)) and
a subsequent b (to cause the observation (1, 1)), hence
M,π, α |= p. This means that M,π, ab |= KV p, or
equivalently, M,π, ab |= DV p, On the other hand, we
have viewB(ab) = 01 = viewB(ba) and viewC(ab) =
01 = viewC(ba), so ab ≈D

G ba. Since M,π, ba 6|= p,
this means that M,π, ab 6|= DGp,

Intuitively, in this example, B detects the first occurrence
of a and C detects the first occurrence of b. Since D
is able to synchronously observe everything that these
agents observe, it knows the order of a and b. How-
ever, this is not distributed knowledge to B and C be-
cause the semantics of distributed knowledge does not
combine their information until after the run is complete,
and the ordering information is, because of asynchrony,
lost from the views of both agents. Similar issues with
distributed knowledge in asynchronous settings are dis-
cussed have been noted previously [Moses and Bloom,
1994; van der Meyden, 2008].

9 Conclusion

We have introduced a new type of specification of the
architecture of a multi-agent system, that enables upper
bounds on causal effects and lower bounds on observed
information to be expressed. We have given this type
of specification a formal semantics that extends previ-
ous ideas from the literature on computer security. Using
this specification format, we have shown by a number of
examples that it is possible to derive security properties
stated in epistemic logic from highly abstract assump-
tions that concern the architectural structure of a sys-
tem and the behavior of certain trusted components, even
when other components have unknown behavior. These
results contribute to the formal foundations of the MILS
vision that secure systems can be constructed by compo-
sition of trusted and untrusted components in the context
of a specific architectural structure.

The term “agent architecture” is much used in work
on intelligent agents and multi-agent systems; this area
is surveyed in Wooldridge and Jennings [1994]. The
emphasis in this literature is on systems built on some
form of Artificial Intelligence capability. Many specific
agent-oriented architectures have been proposed. Gener-
ally, these concern a much more concrete notion of ar-

chitecture than we have discussed here. For example,
BDI-architectures [Rao and Georgeff, 1991] posit that
an agent should be designed around the idea that it has
beliefs, desires and intentions, and that the dynamics for
these notions may be expressed in a multi-modal logic.
Our work is considerably more abstract, and intended to
apply broadly to all types of computational systems, and
is therefore more closely related to the notion of archi-
tecture as studied in software engineering. We refer the
reader to Chong and van der Meyden [2009] for an ex-
tended discussion of related work on architectural mod-
elling formats from software engineering and on connec-
tions between architecture and security properties.

The literature on Bayesian nets [Pearl, 2000] uses di-
agrams that have some similarity to our diagrams re-
stricted to the case of edges labelled >. However,
Bayesian nets are interpreted over a static set of states,
rather than in a dynamic systems model such as we have
considered. A more temporal view of causality is taken
in some work in the literature, e.g., Halpern and Pearl
[2001], but here the emphasis is on defining when one
event can be understood as a cause of another, rather than
on specifying the causal structure of a system.

Our objective in this paper has been to develop an ex-
tended architectural format that is able to express lower
bounds on information flow and to demonstrate its use-
fulness for enforcing security properties expressed in
epistemic logic. This contribution leaves open many
questions for future research. It remains to develop prac-
tical proof techniques and implementation strategies that
ensure that a system complies with our extended format.
For example, it would be useful to generalize the refine-
ment techniques developed in Chong and van der Mey-
den [2009] to the extended format. Further examples
should also be developed to validate the MILS method-
ology to secure systems construction and our approach
to its formalization.

References

J. Alves-Foss, W. Harrison, P. Oman, and C. Taylor. The
MILS architecture for high-assurance embedded sys-
tems. International Journal of Embedded Systems, 2
(3/4):239–47, Feb 2006.

C. Boettcher, R. DeLong, J. Rushby, and W. Sifre. The
MILS component integration approach to secure in-
formation sharing. In 27th IEEE/AIAA Digital Avion-
ics Systems Conference, pages 1.C.2–1–1.C.2–14, Oct
2008.

S. Chong and R. van der Meyden. Using architecture
to reason about information security. Submitted for
publication, 2009.

K. Engelhardt, R. van der Meyden, and Y. Moses.
Knowledge and the logic of local propositions. In Pro-
ceedings of the Conference on Theoretical Aspects of
Rationality and Knowledge, 1998.

J. Y. Halpern and J. Pearl. Causes and explanations: A
structural-model approach - Part II: Explanations. In
IJCAI, pages 27–34, 2001.

Y. Moses and B. Bloom. Knowledge, timed precedence
and clocks (preliminary report). In Proc. ACM Symp.
on Principles of Distributed Computing, pages 294–
303, 1994.

J. Pearl. Causality: Models, reasoning and inference.
Cambridge University Press, 2000.

A. S. Rao and M. P. Georgeff. Modeling rational agents
within a BDI-architecture. In Proc. 2nd Int. Conf. on
Principles of Knowledge Representation and Reason-
ing (KR-91), pages 473–484, 1991.

J. Rushby. Noninterference, transitivity and channel-
control security policies. Technical report, SRI, 1992.

R. van der Meyden. On causality and distributed knowl-
edge. In KR 2008: Eleventh International Conference
on Principles of Knowledge Representation and Rea-
soning, pages 209–212, 2008.

W. Vanfleet, R. Beckworth, B. Calloni, J. Luke, C. Tay-
lor, and G. Uchenick. MILS:architecture for high as-
surance embedded computing. Crosstalk: The Journal
of Defence Engineering, pages 12–16, Aug 2005.

M. Wooldridge and N. R. Jennings. Agent theories,
architectures, and languages: A survey. In ECAI
Workshop on Agent Theories, Architectures, and Lan-
guages, volume 890 of LNCS, pages 1–39. Springer,
1994.

