Ring Withdrawals

Abhaya Nayak

with Marco Garapa, Eduardo Fermé, Maurício D. L. Reis

School of Computing, Macquarie University

May 12, 2024

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

크

Motivation/ Background

Possible Worlds Approach

Interconnections

Abhaya Nayak with Marco Garapa, Eduardo Fermé, Maurício Ring Withdrawals

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

크

Varities of Conservatism

Metaphysics: Ex Nihilo Nihil Fit

- Nothing Comes from Nothing
- Dual: Nothing Vanishes to Nothing
- Physics: Conservation of (Mass-)Energy
 - Energy can neither be created nor be destroyed
 - It can only be transformed
 - ▶ \Rightarrow (Quantum-)Information cannot be created or ...
 - Epistemology: Principle of Minimality (Sufficient Reason)

▲□ ▶ ▲ □ ▶ ▲ □

- Beliefs cannot be acquired from Nothing
- Beliefs cannot be lost irrevocably

Varities of Conservatism

Metaphysics: Ex Nihilo Nihil Fit

- Nothing Comes from Nothing
- Dual: Nothing Vanishes to Nothing
- Physics: Conservation of (Mass-)Energy
 - Energy can neither be created nor be destroyed
 - It can only be transformed
 - ▶ \Rightarrow (Quantum-)Information cannot be created or ...
- Epistemology: Principle of Minimality (Sufficient Reason)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Beliefs cannot be acquired from Nothing
- Beliefs cannot be lost irrevocably

Varities of Conservatism

Metaphysics: Ex Nihilo Nihil Fit

- Nothing Comes from Nothing
- Dual: Nothing Vanishes to Nothing
- Physics: Conservation of (Mass-)Energy
 - Energy can neither be created nor be destroyed
 - It can only be transformed
 - ► \Rightarrow (Quantum-)Information cannot be created or . . .
 - Epistemology: Principle of Minimality (Sufficient Reason)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Beliefs cannot be acquired from Nothing
- Beliefs cannot be lost irrevocably

Varities of Conservatism

Metaphysics: Ex Nihilo Nihil Fit

- Nothing Comes from Nothing
- Dual: Nothing Vanishes to Nothing
- Physics: Conservation of (Mass-)Energy
 - Energy can neither be created nor be destroyed
 - It can only be transformed
 - ► \Rightarrow (Quantum-)Information cannot be created or . . .
- **Epistemology:** *Principle of Minimality (Sufficient Reason)*

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

- Beliefs cannot be acquired from Nothing
- Beliefs cannot be lost irrevocably

Epistemic Conservatism

Beliefs cannot be acquired from Nothing

- A piece of evidence can only lead to beliefs whose veracity it can guarantee jointly with the old beliefs
- Inclusion: $\mathbf{K} * \alpha \subseteq \mathbf{K} + \alpha$
- Beliefs cannot be lost irrevocably
 - All information lost through removal of a belief α can be regained through reinstating α
 - Recovery: $\mathbf{K} \subseteq (\mathbf{K} \alpha) + \alpha$
- Principle of Minimal Change
 - If coherence demands change in beliefs, that change must be as little as one can get away with

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

Epistemic Conservatism

Beliefs cannot be acquired from Nothing

- A piece of evidence can only lead to beliefs whose veracity it can guarantee jointly with the old beliefs
- Inclusion: $\mathbf{K} * \alpha \subseteq \mathbf{K} + \alpha$
- Beliefs cannot be lost irrevocably
 - All information lost through removal of a belief α can be regained through reinstating α
 - Recovery: $\mathbf{K} \subseteq (\mathbf{K} \alpha) + \alpha$

Principle of Minimal Change

If coherence demands change in beliefs, that change must be as little as one can get away with

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Epistemic Conservatism

Beliefs cannot be acquired from Nothing

- A piece of evidence can only lead to beliefs whose veracity it can guarantee jointly with the old beliefs
- Inclusion: $\mathbf{K} * \alpha \subseteq \mathbf{K} + \alpha$
- Beliefs cannot be lost irrevocably
 - All information lost through removal of a belief α can be regained through reinstating α
 - Recovery: $\mathbf{K} \subseteq (\mathbf{K} \alpha) + \alpha$
- Principle of Minimal Change
 - If coherence demands change in beliefs, that change must be as little as one can get away with

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Contraction Postulates

$$K - \alpha = Cn(K - \alpha).$$
(Closure) $K - \alpha \subseteq K.$ (Inclusion)If $\alpha \notin K$, then $K - \alpha = K.$ (Vacuity)If $\forall \alpha$, then $\alpha \notin K - \alpha.$ (Success)If $\vdash \alpha \leftrightarrow \beta$, then $K - \alpha = K - \beta.$ (Extensionality) $K \subseteq (K - \alpha) + \alpha.$ (Recovery) $(K - \alpha) \cap (K - \beta) \subseteq K - (\alpha \land \beta).$ (Conjunctive overlap) $K - (\alpha \land \beta) \subseteq K - \alpha$ whenever $\alpha \notin K - (\alpha \land \beta).$ (Conjunctive inclusion)

イロト イヨト イヨト イヨト

3

Contraction Postulates – Rationale

 $(K - \alpha) \cap (K - \beta) \subseteq K - (\alpha \land \beta).$ (Conjunctive overlap)

- To remove $\alpha \wedge \beta$, remove at least one of α , β
- Suppose *x* gets discarded through removing $\alpha \land \beta$
- ► \Rightarrow x will be lost via removal of α , or via removal of β
- So if $x \notin K (\alpha \land \beta)$, then $x \notin (K \alpha) \cap (K \beta)$

 $K - (\alpha \land \beta) \subseteq K - \alpha$ whenever $\alpha \notin K - (\alpha \land \beta)$. (Conj. Incl.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

- Suppose $\alpha \notin K (\alpha \land \beta)$
- ▶ removal of $\alpha \land \beta$ is sufficient to remove α ... no more information loss is mandated
- $\blacktriangleright \text{ So } K (\alpha \land \beta) \subseteq K \alpha$

Contraction Postulates

$$K - \alpha = Cn(K - \alpha).$$
(Closure) $K - \alpha \subseteq K.$ (Inclusion)If $\alpha \notin K$, then $K - \alpha = K.$ (Vacuity)If $\forall \alpha$, then $\alpha \notin K - \alpha.$ (Success)If $\vdash \alpha \leftrightarrow \beta$, then $K - \alpha = K - \beta.$ (Extensionality) $K \subseteq (K - \alpha) + \alpha.$ (Recovery) $(K - \alpha) \cap (K - \beta) \subseteq K - (\alpha \land \beta).$ (Conjunctive overlap) $K - (\alpha \land \beta) \subseteq K - \alpha$ whenever $\alpha \notin K - (\alpha \land \beta).$ (Conjunctive inclusion)

イロト イヨト イヨト イヨト

3

Against Recovery [Hansson, 1999]

I entertained two beliefs

- α : George is a criminal
- \triangleright β : George is a mass murderer

New information led me to suspend belief in α ...

•
$$\beta \notin (\mathbf{K} - \alpha)$$
 since $\beta \models \alpha$

Then I learned δ : George is a shoplifter...

 \Rightarrow new belief set: $(\mathbf{K} - \alpha) + \delta$

- $(\mathbf{K} \alpha) + \alpha \subseteq (\mathbf{K} \alpha) + \delta$, since $\delta \models \alpha$
- By recovery, $\beta \in \mathbf{K} \subseteq (\mathbf{K} \alpha) + \alpha \subseteq (\mathbf{K} \alpha) + \delta$
- Shop_lifter(george) ~ Mass_murderer(george)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Against Recovery [Hansson, 1999]

I entertained two beliefs

- α : George is a criminal
- \triangleright β : George is a mass murderer

New information led me to suspend belief in α ...

•
$$\beta \notin (\mathbf{K} - \alpha)$$
 since $\beta \models \alpha$

Then I learned δ : George is a shoplifter...

 \Rightarrow new belief set: $(\mathbf{K} - \alpha) + \delta$

•
$$(\mathbf{K} - \alpha) + \alpha \subseteq (\mathbf{K} - \alpha) + \delta$$
, since $\delta \models \alpha$

• By recovery, $eta \in \mathsf{K} \subseteq (\mathsf{K} - lpha) + lpha \subseteq (\mathsf{K} - lpha) + \delta$

Shop_lifter(george) ~ Mass_murderer(george)

・ロト ・四ト ・ヨト ・ヨト

2

Against Recovery [Hansson, 1999]

I entertained two beliefs

- α : George is a criminal
- \triangleright β : George is a mass murderer

New information led me to suspend belief in α ...

$$\beta \notin (\mathbf{K} - \alpha) \text{ since } \beta \models \alpha$$

Then I learned δ : George is a shoplifter...

 \Rightarrow new belief set: $(\mathbf{K} - \alpha) + \delta$

•
$$(\mathbf{K} - \alpha) + \alpha \subseteq (\mathbf{K} - \alpha) + \delta$$
, since $\delta \models \alpha$

▶ By recovery,
$$\beta \in \mathbf{K} \subseteq (\mathbf{K} - \alpha) + \alpha \subseteq (\mathbf{K} - \alpha) + \delta$$

Shop_lifter(george) ~ Mass_murderer(george)

< 日 > < 回 > < 回 > < 回 > < 回 > <

크

Against Recovery [Hansson, 1999]

I entertained two beliefs

- α : George is a criminal
- \triangleright β : George is a mass murderer

New information led me to suspend belief in α ...

•
$$\beta \notin (\mathbf{K} - \alpha)$$
 since $\beta \models \alpha$

Then I learned δ : George is a shoplifter...

 \Rightarrow new belief set: $(\mathbf{K} - \alpha) + \delta$

•
$$(\mathbf{K} - \alpha) + \alpha \subseteq (\mathbf{K} - \alpha) + \delta$$
, since $\delta \models \alpha$

▶ By recovery, $\beta \in \mathbf{K} \subseteq (\mathbf{K} - \alpha) + \alpha \subseteq (\mathbf{K} - \alpha) + \delta$

Shop_lifter(george) ~ Mass_murderer(george)

< 日 > < 回 > < 回 > < 回 > < 回 > <

3

Enter Withdrawals

Definition (Makinson, 1987)

Let **K** be a belief set. An operation \div for **K** is a *withdrawal* operation if and only if it satisfies closure, inclusion, vacuity, success and extensionality.

- Recovery is no longer mandated.
- Contraction operation is a withdrawal operation that also satisfies Recovery

A (B) > A (B) > A (B) >

Possible Worlds

- language L (a set of sentences)
- a world ω is a maximal consistent subset of \mathcal{L}
- $\mathcal{M}_{\mathcal{L}}$: set of all such possible worlds ω

$$\blacksquare ||\mathbf{R}|| = \{\omega \in \mathcal{M}_{\mathcal{L}} : \mathbf{R} \subseteq \omega\}, \text{ for all } \mathbf{R} \subseteq \mathcal{L}\}$$

▶ ||R||: set of worlds ω that satisfy every sentence in R

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Ξ.

- If *R* is inconsistent, $||R|| = \emptyset$
- *R*-world: a world ω in ||R||
- $\|\alpha\|$ abbreviates $\|\{\alpha\}\|$, for any sentence $\alpha \in \mathcal{L}$
- α-world abbreviates {α}-world

Possible Worlds

Observation (Grove,1988) *Assume:*

- belief sets K and H
- \blacktriangleright sentences α and β
- sets of possible worlds U and V
- (a) If $\mathbf{K} \subseteq \mathbf{H}$, then $\|\mathbf{H}\| \subseteq \|\mathbf{K}\|$.
- (b) $Th(V) = \bigcap V$ is a belief set.
- (c) $Th(||\mathbf{K}||) = \mathbf{K}$ (if the underlying logic is compact).
- (d) If $U \subseteq V$, then $Th(V) \subseteq Th(U)$.
- (e) For any $\alpha \in \mathcal{L}$, $Th(V \cap ||\alpha||) = Cn(Th(V) \cup \{\alpha\})$.

▲ロ▶ ▲郡▶ ▲臣▶ ▲臣▶ ―臣 – のへで

System of Spheres

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition (Grove, 1988)

- belief set K
- ► system of spheres S centred on ||K||
 - a collection of sets of worlds $\omega \in \mathcal{M}_{\mathcal{L}}$
- (S1) S is totally ordered (with respect to \subseteq)
- (S2) $\|\mathbf{K}\| \in \mathbb{S}$, and $\|\mathbf{K}\|$ is the \subseteq -minimum of \mathbb{S}
- (S3) $\mathcal{M}_{\mathcal{L}}(\text{set of all worlds})$ is the largest element of S
- (S4) If an element (sphere) in S intersects $\|\alpha\|$ for $\alpha \in \mathcal{L}$, then:
 - ► there is a smallest sphere in S that intersects ||α||
 - \mathbb{S}_{α} denotes that smallest sphere

Contraction based on System of Spheres

Figure: Representation of $\|\mathbf{K}\| \div_{\mathbb{S}} \|\alpha\|$ (shaded)

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

System of Spheres-based Contraction

Definition (Grove, 1988)

- ► Let S be an SOS centred on ||K||
- $\div_{\mathbb{S}}$ is an \mathbb{S} -based contraction on $\|\mathbf{K}\|$:
 - for all $\alpha \in \mathcal{L}$

$$\|\mathbf{K}\| \div_{\mathbb{S}} \|\alpha\| = \begin{cases} \|\mathbf{K}\| \cup (\mathbb{S}_{\neg \alpha} \cap \|\neg \alpha\|) & \text{if } \|\neg \alpha\| \neq \emptyset \\ \|\mathbf{K}\| & \text{otherwise} \end{cases}$$

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

-

To remove α, incorporate closest ¬α-worlds to ||K||

operator ÷ on K is an SOS-based contraction iff it is generated from some S-based contraction ÷_S on ||K||

• $\mathbf{K} \div \alpha = Th(\|\mathbf{K}\| \div_{\mathbb{S}} \|\alpha\|)$, for all sentences $\alpha \in \mathcal{L}$

AGM Contraction is SOS-based

Severe Withdrawals

Definition (Rott, Pagnucco, 1999)

- ▶ let SOS S be centered on ||K||
- severe withdrawal operator $\sim_{\mathbb{S}}$ on **K**:

$$\|\mathbf{K}\| \sim_{\mathbb{S}} \|\alpha\| = \begin{cases} \mathbb{S}_{\neg \alpha} & \text{if } \not\vdash \alpha \\ \|\mathbf{K}\| & \text{otherwise} \end{cases}$$

< 同 > < 回 > < 回 > <

operator ~ on K is analogously defined:

► $\mathbf{K} \sim \alpha = Th(\|\mathbf{K}\| \sim_{\mathbb{S}} \|\alpha\|)$, for all sentences $\alpha \in \mathcal{L}$

Story line: to remove α incorporate some $\neg \alpha$ -world to $\|\mathbf{K}\|$

- closest $\neg \alpha$ -world is in $\mathbb{S}_{\neg \alpha}$
- no world in $\mathbb{S}_{\neg\alpha}$ is worse (farther) than any $\neg\alpha$ -world
- incorporate into $\|\mathbf{K}\|$ all worlds in $\mathbb{S}_{\neg\alpha}$

Severe Withdrawals

Observation (Rott, Pagnucco, 1999)

An operator \sim for K is a severe withdrawal if and only if it satisfies closure, inclusion, vacuity, success, and

If
$$\vdash \alpha$$
, then $\mathbf{K} = \mathbf{K} \sim \alpha$
If $\alpha \notin \mathbf{K} \sim \beta$, then $\mathbf{K} \sim \beta \subseteq \mathbf{K} \sim \alpha$

(Failure) (Strong inclusion)

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

э

Also satisfies **Expulsiveness:** If $\not\vdash \alpha$ and $\not\vdash \beta$, then either $\alpha \notin \mathbf{K} \sim \beta$ or $\beta \notin \mathbf{K} \sim \alpha$

Rather presumptive:

- Strong justification structure among non-trivial beliefs
- ▶ no $\alpha, \beta \in \mathbf{K}$ are epistemically independent of each other

 \Rightarrow Excessive loss of information

Ring Withdrawals

Figure: $\|\mathbf{K} \div \alpha\|$, ring withdrawal of **K** by α (shaded)

(日)

Ring Withdrawals

Definition (Fermé, Garapa, Nayak, Reis, 2024)

- ▶ let SOS S be centered on ||K||
- ▶ ring withdrawal operator ÷_S on K:

$$\|\mathbf{K}\| \div_{\mathbb{S}} \|\alpha\| = \begin{cases} \|\mathbf{K}\| \cup (\mathbb{S}_{\neg \alpha} \setminus \bigcup \{ S : S \subsetneq \mathbb{S}_{\neg \alpha} \}) & \text{if } \|\neg \alpha\| \neq \emptyset \\ \|\mathbf{K}\| & \text{otherwise} \end{cases}$$

・ロト ・四ト ・ヨト ・ヨト

-

operator ÷ on K is analogously defined:

• $\mathbf{K} \div \alpha = Th(\|\mathbf{K}\| \div_{\mathbb{S}} \|\alpha\|)$, for all sentences $\alpha \in \mathcal{L}$

Story line: to remove α incorporate some $\neg \alpha$ -world to $\|\mathbf{K}\|$

- closest $\neg \alpha$ -worlds are in $\mathbb{S}_{\neg \alpha}$
- ▶ incorporate into **||K|| all worlds** that are equally close

Ring Withdrawals

Theorem (Fermé, Garapa, Nayak, Reis, 2024)

An operator \div for **K** is a ring withdrawal iff it satisfies:

closure, inclusion, vacuity, success and extensionality, and

Recuperation:

If
$$\alpha \in (\mathbf{K} - \beta)$$
, then $\mathbf{K} \subseteq Cn(\mathbf{K} - \alpha \cup \mathbf{K} - \beta)$

if α didn't (epistemically) depend on β , then nothing that depends on β depends on α

Strong Conjunctive Inclusion:

If $\alpha \notin \mathbf{K} - (\alpha \wedge \beta)$, then $\mathbf{K} - (\alpha \wedge \beta) = \mathbf{K} - \alpha$

if α is the weaker of the two, then α gets to be jettisoned

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

르

Example

AGM Contraction

 $\mathbf{K} - p = Cn(\{q, r\})$

 $\mathbf{K} \div p = Cn(\{r, p \lor q\}) \bullet p \bullet \bullet a \to \bullet a \to \bullet a \to \bullet a$

Ring Withdrawal

Example

AGM Contraction

$$\mathbf{K} - \boldsymbol{p} = Cn(\{\boldsymbol{q}, \boldsymbol{r}\})$$

Ring Withdrawal

 $\mathbf{K} \div p = Cn(\{r, p \lor q\})$

(日) (圖) (E) (E) (E)

Severe Withdrawal

Example

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ● の Q @

Example

AGM Contraction

 $\mathbf{K} - p = Cn(\{q, r\})$

Severe Withdrawal $\mathbf{K} \sim p = Cn(\{(p \land q) \lor (p \land r) \lor (q \land r)\})$

Example

AGM Contraction

$$\mathbf{K} - \mathbf{p} = Cn(\{q, r\})$$

Ring Withdrawal

$$\mathbf{K} \div \boldsymbol{p} = \textit{Cn}(\{r, \boldsymbol{p} \lor \boldsymbol{q}\})$$

Severe Withdrawal

$$\mathsf{K} \sim \mathsf{p} = \mathit{Cn}(\{(\mathsf{p} \land q) \lor (\mathsf{p} \land r) \lor (q \land r)\})$$

 $\mathbf{K} \sim p \subseteq \mathbf{K} \div p \subseteq \mathbf{K} - p$

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

3

Three ways for removing beliefs

Figure: Severe withdrl (L), Ring withdrl (C) and AGM con (R)

(Lindström and Rabinowicz, 1991) interpolation thesis:

 Any reasonable belief removal operation should fall between severe withdrawals and AGM contractions.

Three ways for removing beliefs

Figure: Severe withdrl (L), Ring withdrl (C) and AGM con (R)

< 同 > < ∃ >

(Lindström and Rabinowicz, 1991) interpolation thesis:

Any reasonable belief removal operation should fall between severe withdrawals and AGM contractions.

Revision Equivalent Withdrawals

Definition (Makinson, 1987))

Let \div and \div' be two withdrawal operations on **K**

They are revision equivalent iff

$$(\mathbf{K} \div \neg \alpha) + \alpha = (\mathbf{K} \div' \neg \alpha) + \alpha$$

Note the Levi Identity: $(\mathbf{K} * \alpha) = (\mathbf{K} - \neg \alpha) + \alpha$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Severe Withdrawal to AGM Contraction, and Back (Rott, Pagnucco, 1999)

Defining AGM Contractions from Severe Withdrawals

$$\mathbf{K} - \alpha = ((\mathbf{K} \sim \alpha) + \neg \alpha) \cap \mathbf{K} \qquad (\mathsf{Def} - \mathsf{from} \sim)$$

A (10) A (10)

-

Observation

Let operation – be obtained from a severe withdrawal operator \sim as shown, via (Def – from \sim). Then,

Is an AGM contraction operator

$$ightarrow$$
 – is revision equivalent to \sim

•
$$\mathbf{K} \sim \alpha \subseteq \mathbf{K} - \alpha$$
, for all $\alpha \in \mathcal{L}$

Severe Withdrawal to AGM Contraction, and Back (Rott, Pagnucco, 1999)

Definining Severe Withdrawals from AGM Contractions

$$\mathbf{K} \sim \alpha = \begin{cases} \{\beta : \beta \in \mathbf{K} - (\alpha \land \beta)\} & \text{if } \not\vdash \alpha \\ \mathbf{K} & \text{otherwise} \end{cases} \quad (\mathsf{Def} \sim \mathsf{from} -)$$

A (10) A (10)

크

Observation

Obtain \sim from an AGM contraction operation – as shown

- \blacktriangleright ~ is severe withdrawal operator
- \blacktriangleright ~ is revision equivalent to –

•
$$\mathbf{K} \sim \alpha \subseteq \mathbf{K} - \alpha$$
, for all $\alpha \in \mathcal{L}$

Ring Withdrawal to Severe Withdrawal, and Back (Fermé, Garapa, Nayak, Reis, 2024)

Definining Ring Withdrawals from Severe Withdrawals

$$\mathbf{K} \div \alpha = \bigcap \{ (\mathbf{K} \sim \alpha + \neg \beta) \cap \mathbf{K} : \mathbf{K} \sim \alpha = \mathbf{K} \sim \beta \}$$

(Def \div from \sim)

・ロ・ ・ 四・ ・ 回・ ・ 回・

크

Observation

Obtain \div from severe withdrawal operation \sim as shown

- ÷ is a ring withdrawal operation
- \blacktriangleright ÷ is revision equivalent to \sim

•
$$\mathbf{K} \sim \alpha \subseteq \mathbf{K} \div \alpha$$
, for all $\alpha \in \mathcal{L}$

Ring Withdrawal to Severe Withdrawal, and Back (Fermé, Garapa, Nayak, Reis, 2024)

Definining Severe Withdrawals from Ring Withdrawals

$$\mathbf{K} \sim \alpha = \begin{cases} \{\beta : \beta \in \mathbf{K} \div (\alpha \land \beta)\} & \text{if } \not\vdash \alpha \\ \mathbf{K} & \text{otherwise} \end{cases} \quad (\mathsf{Def} \sim \mathsf{from} \div)$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Observation (Feré, Garapa, Nayak, Reis, 2024) Obtain \sim from ring withdrawal operation \div as shown

- $ightarrow \sim$ is a severe withdrawal operation
- \blacktriangleright ~ is revision equivalent to \div

•
$$\mathbf{K} \sim \alpha \subseteq \mathbf{K} \div \alpha$$
, for all $\alpha \in \mathcal{L}$

Ring Withdrawal to AGM Contraction, and Back (Fermé, Garapa, Nayak, Reis, 2024)

Definining Ring Withdrawals from AGM Contractions

$$\mathbf{K} \div \alpha = \begin{cases} \bigcap \{ \mathbf{K} - (\alpha \land \beta) : \mathbf{K} - (\alpha \land \beta) \cap \{\alpha, \beta\} = \emptyset \} & \text{if } \alpha \in \mathbf{K}, \not \vdash \alpha \\ \mathbf{K} & \text{otherwise} \end{cases}$$

 $(Def \div from -)$

크

イロト イ理ト イヨト イヨト

Observation

Obtain ÷ from an AGM contraction operation – as shown

÷ is a ring withdrawal operation

•
$$\mathbf{K} \div \alpha \subseteq \mathbf{K} - \alpha$$
, for all $\alpha \in \mathcal{L}$

Ring Withdrawal to AGM Contraction, and Back (Fermé, Garapa, Nayak, Reis, 2024)

Definining AGM Contractions from Ring Withdrawals

$$\mathbf{K} - \alpha = ((\mathbf{K} \sim \alpha) + \neg \alpha) \cap \mathbf{K}$$
 (Def - from \div)

イロト イ理ト イヨト イヨト

크

Observation

Obtain – from a ring withdrawal operation ÷ as shown

- Is an AGM contraction operation
- Is revision equivalent to ÷

•
$$\mathbf{K} \div \alpha \subseteq \mathbf{K} - \alpha$$
, for all $\alpha \in \mathcal{L}$

Thanks!

References:

- Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic, 50: 510-530. (1985)
- Fermé E., Garapa M., Nayak A., Reis, M.: Relevance, recovery and recuperation: A prelude to ring withdrawal. International Journal of Approximate Reasoning. (2024)
- 3. Grove, A.: Two modellings for theory change. Journal of Philosophical Logic, 17:157-170. (1988).
- Hansson, S.O.: A Textbook of Belief Dynamics. Theory Change and Database Updating. Applied Logic Series. Kluwer Academic Publishers, Dordrecht. (1999)
- Harper, W.: Rational Conceptual Change. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 462-494. (1976)
- 6. Levi, I.: Subjunctives, dispositions, and chances. Synt'hese, 34:423-455. (1977)
- Lindström, S., Rabinowicz, W.: Epistemic entrenchment with incomparabilities and relational belief revision. In Fuhrmann and Morreau, editors, The Logic of Theory Change, pages 93-126, Berlin, Springer-Verlag. (1991)
- Makinson, D.: On the status of the postulate of recovery in the logic of theory change. Journal of Philosophical Logic, 16:383-394. (1987)
- 9. Rott, H., Pagnucco, M.: Severe Withdrawal (and Recovery). Journal of Philosophical Logic, 501-547. (1999)

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・