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Varities of Conservatism

I Metaphysics: Ex Nihilo Nihil Fit
I Nothing Comes from Nothing
I Dual: Nothing Vanishes to Nothing

I Physics: Conservation of (Mass-)Energy
I Energy can neither be created nor be destroyed
I It can only be transformed
I ⇒ (Quantum-)Information cannot be created or . . .

I Epistemology: Principle of Minimality (Sufficient Reason)
I Beliefs cannot be acquired from Nothing
I Beliefs cannot be lost irrevocably
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Epistemic Conservatism

I Beliefs cannot be acquired from Nothing
I A piece of evidence can only lead to beliefs whose veracity

it can guarantee jointly with the old beliefs
I Inclusion: K ∗ α ⊆ K + α

I Beliefs cannot be lost irrevocably
I All information lost through removal of a belief α can be

regained through reinstating α
I Recovery: K ⊆ (K− α) + α

I Principle of Minimal Change
I If coherence demands change in beliefs, that change must

be as little as one can get away with
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Contraction Postulates

K − α = Cn(K − α). (Closure)
K − α ⊆ K . (Inclusion)
If α 6∈ K , then K − α = K . (Vacuity)
If 6` α, then α 6∈ K − α. (Success)
If ` α↔ β, then K − α = K − β. (Extensionality)
K ⊆ (K − α) + α. (Recovery)
(K − α) ∩ (K − β) ⊆ K − (α ∧ β). (Conjunctive overlap)
K − (α ∧ β) ⊆ K − α whenever α 6∈ K − (α ∧ β). (Conjunctive

inclusion)

Abhaya Nayak with Marco Garapa, Eduardo Fermé, Maurício D. L. ReisRing Withdrawals



Motivation/ Background
Possible Worlds Approach

Interconnections

Contraction Postulates – Rationale

(K − α) ∩ (K − β) ⊆ K − (α ∧ β). (Conjunctive overlap)

I To remove α ∧ β, remove at least one of α, β
I Suppose x gets discarded through removing α ∧ β
I ⇒ x will be lost via removal of α, or via removal of β
I So if x 6∈ K − (α ∧ β), then x 6∈ (K − α) ∩ (K − β)

K − (α ∧ β) ⊆ K − α whenever α 6∈ K − (α ∧ β). (Conj. Incl.)

I Suppose α 6∈ K − (α ∧ β)
I removal of α ∧ β is sufficient to remove α . . .

no more information loss is mandated
I So K − (α ∧ β) ⊆ K − α
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Against Recovery [Hansson, 1999]

I entertained two beliefs
I α: George is a criminal
I β: George is a mass murderer

New information led me to suspend belief in α. . .
I β 6∈ (K− α) since β |= α

Then I learned δ: George is a shoplifter. . .
⇒ new belief set: (K− α) + δ

I (K− α) + α ⊆ (K− α) + δ, since δ |= α

I By recovery, β ∈ K ⊆ (K− α) + α ⊆ (K− α) + δ

I Shop_lifter(george) |∼ Mass_murderer(george)
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Enter Withdrawals

Definition (Makinson, 1987)
Let K be a belief set. An operation ÷ for K is a withdrawal
operation if and only if it satisfies closure, inclusion, vacuity,
success and extensionality.

I Recovery is no longer mandated.
I Contraction operation is a withdrawal operation that also

satisfies Recovery
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Possible Worlds

I language L (a set of sentences)
I a world ω is a maximal consistent subset of L
I ML: set of all such possible worlds ω
I ‖R‖ = {ω ∈ML : R ⊆ ω}, for all R ⊆ L

I ‖R‖: set of worlds ω that satisfy every sentence in R
I If R is inconsistent, ‖R‖ = ∅
I R-world: a world ω in ‖R‖
I ‖α‖ abbreviates ‖{α}‖, for any sentence α ∈ L
I α-world abbreviates {α}-world
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Possible Worlds

Observation (Grove,1988)
Assume:
I belief sets K and H
I sentences α and β
I sets of possible worlds U and V

(a) If K ⊆ H, then ‖H‖ ⊆ ‖K‖.
(b) Th(V ) =

⋂
V is a belief set.

(c) Th(‖K‖) = K (if the underlying logic is compact).
(d) If U ⊆ V, then Th(V ) ⊆ Th(U).
(e) For any α ∈ L, Th(V ∩ ‖α‖) = Cn(Th(V ) ∪ {α}).
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System of Spheres

Definition (Grove,1988)
I belief set K
I system of spheres S centred on ‖K‖

I a collection of sets of worlds ω ∈ML

(S1) S is totally ordered ( with respect to ⊆ )
(S2) ‖K‖ ∈ S, and ‖K‖ is the ⊆-minimum of S
(S3) ML(set of all worlds) is the largest element of S
(S4) If an element (sphere) in S intersects ‖α‖ for α ∈ L, then:

I there is a smallest sphere in S that intersects ‖α‖
I Sα denotes that smallest sphere

Abhaya Nayak with Marco Garapa, Eduardo Fermé, Maurício D. L. ReisRing Withdrawals
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Contraction based on System of Spheres

‖K‖

‖¬α‖
ML

Figure: Representation of ‖K‖ ÷S ‖α‖ (shaded)
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System of Spheres-based Contraction

Definition (Grove,1988)
I Let S be an SOS centred on ‖K‖
I ÷S is an S-based contraction on ‖K‖:

I for all α ∈ L

‖K‖ ÷S ‖α‖ =
{
‖K‖ ∪ (S¬α ∩ ‖¬α‖) if ‖¬α‖ 6= ∅
‖K‖ otherwise

I To remove α, incorporate closest ¬α-worlds to ‖K‖
I operator ÷ on K is an SOS-based contraction iff it is

generated from some S-based contraction ÷S on ‖K‖
I K÷ α = Th(‖K‖ ÷S ‖α‖), for all sentences α ∈ L

I AGM Contraction is SOS-based
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Severe Withdrawals

Definition (Rott, Pagnucco, 1999)
I let SOS S be centered on ‖K‖
I severe withdrawal operator ∼S on K:

‖K‖ ∼S ‖α‖ =
{

S¬α if 6` α
‖K‖ otherwise

I operator ∼ on K is analogously defined:
I K ∼ α = Th(‖K‖ ∼S ‖α‖), for all sentences α ∈ L

Story line: to remove α incorporate some ¬α-world to ‖K‖
I closest ¬α-world is in S¬α
I no world in S¬α is worse (farther) than any ¬α-world
I incorporate into ‖K‖ all worlds in S¬α
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Severe Withdrawals

Observation (Rott, Pagnucco, 1999)
An operator ∼ for K is a severe withdrawal if and only if it
satisfies closure, inclusion, vacuity, success, and

If ` α, then K = K ∼ α (Failure)
If α 6∈ K ∼ β, then K ∼ β ⊆ K ∼ α (Strong inclusion)

Also satisfies Expulsiveness:
If 6` α and 6` β, then either α 6∈ K ∼ β or β 6∈ K ∼ α
Rather presumptive:
I Strong justification structure among non-trivial beliefs
I no α, β ∈ K are epistemically independent of each other
⇒ Excessive loss of information
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Ring Withdrawals

ML

‖K‖

‖¬α‖

Figure: ‖K÷ α‖, ring withdrawal of K by α (shaded)
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Ring Withdrawals

Definition (Fermé, Garapa, Nayak, Reis, 2024)
I let SOS S be centered on ‖K‖
I ring withdrawal operator ÷S on K:

‖K‖÷S‖α‖ =
{
‖K‖ ∪ (S¬α \

⋃{S : S ( S¬α}) if ‖¬α‖ 6= ∅
‖K‖ otherwise

I operator ÷ on K is analogously defined:
I K÷ α = Th(‖K‖ ÷S ‖α‖), for all sentences α ∈ L

Story line: to remove α incorporate some ¬α-world to ‖K‖
I closest ¬α-worlds are in S¬α
I incorporate into ‖K‖ all worlds that are equally close
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Ring Withdrawals

Theorem (Fermé, Garapa, Nayak, Reis, 2024)
An operator ÷ for K is a ring withdrawal iff it satisfies:
I closure, inclusion, vacuity, success and extensionality, and
I Recuperation:

If α ∈ (K− β), then K ⊆ Cn(K− α ∪ K− β)
if α didn’t (epistemically) depend on β, then nothing that
depends on β depends on α

I Strong Conjunctive Inclusion:
If α 6∈ K− (α ∧ β), then K− (α ∧ β) = K− α
if α is the weaker of the two, then α gets to be jettisoned
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Example

p,q, r p,q, r p,q, r p,q, r

p,q, r

p,q, r

p,q, r p,q, r

‖K‖

AGM Contraction

K− p = Cn({q, r})

Ring Withdrawal
K÷ p = Cn({r ,p ∨ q})

Severe Withdrawal
K ∼ p = Cn({(p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r)})
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Example

AGM Contraction
K− p = Cn({q, r})

Ring Withdrawal
K÷ p = Cn({r ,p ∨ q})

Severe Withdrawal
K ∼ p = Cn({(p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r)})

K ∼ p ⊆ K÷ p ⊆ K− p
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Three ways for removing beliefs

‖K‖

‖¬α‖
MLMLML

‖K‖

‖¬α‖

‖K‖

‖¬α‖

Figure: Severe withdrl (L),Ring withdrl (C) and AGM con (R)

(Lindström and Rabinowicz, 1991) interpolation thesis:
I Any reasonable belief removal operation should fall

between severe withdrawals and AGM contractions.
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Revision Equivalent Withdrawals

Definition (Makinson, 1987))

Let ÷ and ÷′ be two withdrawal operations on K

They are revision equivalent iff

I (K÷ ¬α) + α = (K÷′ ¬α) + α

Note the Levi Identity: (K ∗ α) = (K− ¬α) + α
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Severe Withdrawal to AGM Contraction, and Back
(Rott, Pagnucco, 1999)

Defining AGM Contractions from Severe Withdrawals

K− α = ((K ∼ α) + ¬α) ∩ K (Def − from ∼)

Observation
Let operation − be obtained from a severe withdrawal operator
∼ as shown, via ( Def − from ∼). Then,
I − is an AGM contraction operator
I − is revision equivalent to ∼
I K ∼ α ⊆ K− α, for all α ∈ L
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Severe Withdrawal to AGM Contraction, and Back
(Rott, Pagnucco, 1999)

Definining Severe Withdrawals from AGM Contractions

K ∼ α =

{
{β : β ∈ K− (α ∧ β)} if 6` α
K otherwise

(Def ∼ from −)

Observation

Obtain ∼ from an AGM contraction operation − as shown
I ∼ is severe withdrawal operator
I ∼ is revision equivalent to −
I K ∼ α ⊆ K− α, for all α ∈ L
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Ring Withdrawal to Severe Withdrawal, and Back
(Fermé, Garapa, Nayak, Reis, 2024)

Definining Ring Withdrawals from Severe Withdrawals

K÷ α =
⋂
{(K ∼ α+ ¬β) ∩ K : K ∼ α = K ∼ β}

(Def ÷ from ∼)

Observation

Obtain ÷ from severe withdrawal operation ∼ as shown
I ÷ is a ring withdrawal operation
I ÷ is revision equivalent to ∼
I K ∼ α ⊆ K÷ α, for all α ∈ L
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K ∼ α =
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Ring Withdrawal to AGM Contraction, and Back
(Fermé, Garapa, Nayak, Reis, 2024)

Definining Ring Withdrawals from AGM Contractions

K÷ α =

{ ⋂{K− (α ∧ β) : K− (α ∧ β) ∩ {α, β} = ∅} if α ∈ K, 6` α
K otherwise

(Def ÷ from −)
Observation
Obtain ÷ from an AGM contraction operation − as shown
I ÷ is a ring withdrawal operation
I ÷ is revision equivalent to −
I K÷ α ⊆ K− α, for all α ∈ L
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Thanks!
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