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Model Checking of Strategic
Abilities



ATL: What Agents Can Achieve

• ATL: Alternating-time Temporal Logic [Alur et al. 1997-2002]

• Temporal logic meets game theory

• Main idea: cooperation modalities

⟨⟨A⟩⟩Φ: coalition A has a collective strategy to enforce Φ

; Φ can include temporal operators: X (next), F (sometime in the
future), G (always in the future), U (strong until)



ATL with incomplete information

• Imperfect information (q ∼a q′)

• Imperfect recall - agent memory coded within state of the model

• Uniform strategies - specify same choices for indistinguishable
states:
q ∼a q′ =⇒ sa(q) = sa(q′)

• Fixpoint equivalences do not hold anymore

• Model checking ATLir is ∆p
2-complete
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Example: Simple Model of Voting and Coercion

• Two agents: the Voter and the Coercer

• Two candidates

• Voter can cast her vote and then interact with the Coercer

• Voter can give (or not) her vote to the Coercer

• Coercer can punish (or not) the voter

• Asynchronous semantics with synchronization over actions:
vote giving and punishment are synchronized
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Example: Simple Model of Voting and Coercion
Voter Local Model
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Example: Simple Model of Voting and Coercion
Global Model



Example: Simple Model of Voting and Coercion
Example Formula

⟨⟨coercer⟩⟩G(finish1 ∧ vote1,1 =⇒ ¬pun1):
“The Coercer can coerce Voter to vote for the first candidate”

FALSE



Example: Simple Model of Voting and Coercion
Example Formula

⟨⟨coercer⟩⟩G(finish1 ∧ vote1,1 =⇒ ¬pun1):
“The Coercer can coerce Voter to vote for the first candidate”

FALSE



Example: Simple Model of Voting and Coercion
Example Formula

⟨⟨coercer⟩⟩G(finish1 ∧ vote1,1 =⇒ KCvote1,1):
“The Coercer knows when the Voter has voted for the first candidate”

FALSE



Example: Simple Model of Voting and Coercion
Example Formula

⟨⟨coercer⟩⟩G(finish1 ∧ vote1,1 =⇒ KCvote1,1):
“The Coercer knows when the Voter has voted for the first candidate”

FALSE



Simple Specification Language

Simple Voting Model
Agent Voter1:
LOCAL: [V1_vote]
PERSISTENT: [V1_vote]
INITIAL: []
init q0
vote1: q0 -> q1 [V1_vote:=1]
vote2: q0 -> q1 [V1_vote:=2]
shared[2] gv_1_Voter1[gv_1_Voter1]: q1 [V1_vote==1] -> q2
shared[2] gv_2_Voter1[gv_1_Voter2]: q1 [V1_vote==2] -> q2
shared[2] ng_Voter1[ng_Voter1]: q1 -> q2
shared[2] pun_Voter1[pn_Voter1]: q2 -> q3
shared[2] npun_Voter1[pn_Voter1]: q2 -> q3
idle: q3 -> q3

FORMULA: <<Coercer>>[](C_V1_finish==0 ||
(V1_vote==1 && &K_Coercer(V1_vote==1)) )

Agent

Initial configuration

Shared transition

Local name

Local transition

Guard

State (template)

Proposition variable

Formula



Tool



STV - Strategic Verifier

• Explicit-state model checking.

• User-defined input.

• Web-based graphical interface.

• Model-checking algorithms: fixpoint-approximations, depth-first
strategy synthesis and on-the-fly strategy synthesis.

• Reduction methods: partial-order reductions and
assume-guarantee reasoning.

• Asynchronous semantics with: action-oriented synchronization
and data-oriented synchronization.

• Properties: reachability and safety.

• Epistemic operators: knowledge and Hartley uncertainty.
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Approximate Verification of Strategic Ability

M |=ir φ : DIFFICULT!

M |=ir φM |= LB(φ) M |= UB(φ)

Perfect InformationAlternating Epistemic
Mu-Calculus
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Partial-order Reductions

POR
POR is a method of generating reduced state spaces, preserving
some temporal formula ϕ, that exploits:

• Independency of actions, restricted to the pairs of actions such
that one of them is invisible, i.e., does not change valuations of
the atomic propositions used in ϕ,

• Infinite sequences of global locations that differ in the ordering of
independent actions only are called ϕ-equivalent,

• ϕ does not distinguish between ϕ-equivalent sequences,

A reduced state space contains for each infinite sequence at least
one ϕ-equivalent, but as few as possible.



POR example
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Assume-guarantee Verification

An assumption A = (M,F ) is a module augmented with a finite set of
accepting states F ⊆ Q.

Composition of modules M guaranties an assumption A (which
operates on subset of M ’s variables) if A accepts all traces derived by
M (modulo stattering).

Automated assumptions

1. Design the model and create a specification file.

2. Split the agents into assumption groups.

3. Each assumption group should specify the coalition and the
formula. Environment group should not specify the formula.

4. Use STV to automatically generate specification files for each
assumption group.

5. Verify each model in the tool.



Assume-guarantee Verification

An assumption A = (M,F ) is a module augmented with a finite set of
accepting states F ⊆ Q.

Composition of modules M guaranties an assumption A (which
operates on subset of M ’s variables) if A accepts all traces derived by
M (modulo stattering).

Automated assumptions

1. Design the model and create a specification file.

2. Split the agents into assumption groups.

3. Each assumption group should specify the coalition and the
formula. Environment group should not specify the formula.

4. Use STV to automatically generate specification files for each
assumption group.

5. Verify each model in the tool.



Conclusions



Conclusions

• Modal logics for MAS are characterized by high computational
complexity.

• Verification of strategic properties in scenarios with imperfect
information is difficult.

• Much complexity of model checking for strategic abilities is due
to the size of the model of the system.

• STV addresses the challenge by implementing various
reduction and model-checking methods which shows very
promising performance.

• STV supports user-friendly modelling of MAS, and automated
reduction and verification methods.



THANK YOU!
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