Incentives for Early Arrival in Cooperative Games (AAMAS24 Best Paper)

Yaoxin Ge¹, Yao Zhang¹, **Dengji Zhao¹**, Zhihao Gavin Tang², Hu Fu², Pinyan Lu² ¹ShanghaiTech University ²Shanghai University of Finance and Economics

About Me

Macau University of Science and Technology

Cooperative Game

• Players cooperate to create different values

• Determine how to share the value:

Shapley value, core, ...

Cooperative Game and Shapley Value

- Players:
- Valuation Function:

$$N = \{A, B, C\}$$
$$v: 2^N \to \mathbf{R}$$

• Marginal Contribution: $MC(i, v, S) = v(S) - v(S \setminus i), \forall i \in S$

• Shapley Value:

$$SV_i(v) \coloneqq \frac{1}{|N|!} \sum_{S \subseteq N \setminus \{i\}} |S|! (|N| - |S| - 1) MC(i, v, S \cup \{i\})$$

The averaged marginal contribution on all possible joining orders.

Shapley Value

• SV: Averaged MC on all orders

Venture Capital / Data Acquisition: Join Order Matters

Online Cooperative Games

Online Cooperative Game Model

- Players:
- Valuation Function:
- Joining Order:
- Marginal Contribution:

- $N = \{A, B, C\}$ $v: 2^N \to \mathbf{R}$
- $\pi \in \Pi(N)$ (a permutation of players) MC $(i, v, S) = v(S) - v(S \setminus i), \forall i \in S$

• Shapley Value:

$$SV_i(v) \coloneqq \frac{1}{|N|!} \sum_{S \subseteq N \setminus \{i\}} |S|! (|N| - |S| - 1) MC(i, v, S \cup \{i\})$$

How to share the value: Marginal Contribution

Incentivizing for Early Arrival (I4EA)

I4EA: When the order of others are fixed, the players are *incentivized to join as soon as possible*.

One Solution: The First Gets All

One Fairness: Shapley Fair (SF)

SF: The expected share to a player equals her *Shapley value*.

Shapley value?

Online Individual Rational (OIR)

OIR: $x_n \ge \cdots \ge x_2 \ge x_1 \ge 0$ (non-decreasing, non-negative)

All the Desire Properties

• Incentivizing For Early Arrival (I4EA)

Shapley value

• Online Individual Rational (OIR)

Start with 0-1 Valued Monotone Games: $A_1 \land A_2 \land B$

Marginal Player: B is the only player who creates a MC of 1.

0-1 Valued Monotone Games: $A_1 \land A_2 \land B$

Critical Players: $\{i \mid v(S \setminus \{i\}) = 0\}$

Reward First Critical Player (RFC)

Definition: RFC

Give the MC of the marginal player to the first critical player in *S*.

Properties Overview

Properties of RFC

Theorem

RFC is SF and OIR on every 0-1 valued monotone game.

RFC is not I4EA only on games satisfying: $\exists i, v(i) = 0$ and $\exists S \subseteq N, S^* = \{i\}$. Here $S^* \coloneqq \{i \in S \mid v(S) = 1, v(S \setminus \{i\}) = 0\}$.

- SF 🗸
- OIR ✓ (obviously)
- I4EA is not satisfied when someone can delay to be the only critical player.
 e.g. (A ∨ B) ∧ C, ((A ∧ B) ∨ (E ∧ D)) ∧ C, ...

Proof of Shapley-Fair (sketch)

RFC on 3-player 0-1 valued monotone games

v	Value Receiver	I4EA
A	to A	Yes
$A \lor B$	1^{st} of $\{A, B\}$	Yes
$A \lor B \lor C$	1 st	Yes
$A \wedge B$	1 st of { <i>A</i> , <i>B</i> }	Yes
$A \wedge B \wedge C$	1 st	Yes
$(A \land B) \lor C$	C is 1^{st} or $2^{nd} \rightarrow C$ Otherwise $\rightarrow 1^{st}$ of {A,B}	Yes
$(A \lor B) \land C$	C is 1^{st} or $3^{rd} \rightarrow C$ Otherwise $\rightarrow 1st$ of {A,B}	No
$(A \land B) \lor (A \land C) \lor (B \land C)$	1 st	Yes

RFC is not I4EA on $(A \lor B) \land C$

x 1 - x

$(A \lor B) \land C$ is unsolvable

The 3rd player joins...

No value to transfer (OIR)

$(A \lor B) \land C$ is unsolvable

SF
$$\Rightarrow$$
 SV_C = 2/3 = $(x + 1 - x + y + 1 - y + 1 - \Delta_1 + 1 - \Delta_2)/6$
 $\Rightarrow \Delta_1 = \Delta_2 = 0$

0

 $(A \lor B) \land C$ is unsolvable

SF + OIR ---- not I4EA

submodular and supermodular games are solvable

Extend RFC to General Valued Monotone Games

Definition: eRFC

(1) decompose game online (2) accumulate the share

Future Work

