(Logic-based) Automated Mechanism Design

Munyque Mittelmann ${ }^{1} \quad$ Bastien Maubert ${ }^{1}$ Aniello Murano ${ }^{1}$ Laurent Perrussel ${ }^{2}$
${ }^{1}$ University of Naples "Federico II"
${ }^{2}$ IRIT - University of Toulouse Capitole
laurent.perrussel@irit.fr
UNSW KR Conventicle - May 2024

Institut de Recherche en Informatique de Toulouse

Automated Mechanism Design

Automated Mechanism Design

Automated Mechanism Design

Table of Contents

1. Overall Goal

2. Quantitative Strategy Logic with Imperfect Information
3. Reasoning about Mechanisms
4. Verification of Mechanisms with Model Checking
5. Model Checking and Synthesis
6. Synthesis of Mechanisms
7. Conclusion

Automated verification of mechanisms

Requirements:
i Quantitative aspects
ii Imperfect information (II)
iii Ability to express complex solution concepts

Quantitative and epistemic version of Strategy Logic (SLK $[\mathcal{F}])^{1}$
${ }^{1}$ Strategic Reasoning in Automated Mechanism Design (Maubert et al., KR 2021)

Related Works

- Logics for Strategic Reasoning:
- ATL and extensions (Alur, Henzinger, and Kupferman 2002)
- Strategy Logic (SL) (Chatterjee, Henzinger, and Piterman 2010)
- SL with II and knowledge operators (Berthon et al. 2021; Belardinelli et al. 2020; Maubert and Murano 2018)
- SL[F] (Bouyer et al. 2019)
- Our work: $\operatorname{SLK}[\mathcal{F}]$ SL with quantitative semantics and knowledge operators

SL[$\mathcal{F}]$ with Imperfect Information

SLK $[\mathcal{F}]$ Syntax

- Syntax
- Propositions p
- Functions $f(\varphi, \ldots, \varphi)$
e.g. $x \mapsto-x$

$$
x, y \mapsto \max (x, y)
$$

- Strategy quantifiers $\exists s_{a} . \varphi$ and bindings $\left(a, s_{a}\right) \varphi$
- Epistemic operator: $K_{a} \varphi$
- Temporal operators: $\mathbf{X} \varphi$ and $\varphi \mathbf{U} \varphi$ (and thus $\mathbf{F} \varphi$ and $\mathbf{G} \varphi$)

Concurrent Game Structure

- Weighted Concurrent Game Structure (wCGS) \mathcal{G}
- state-transition model
- state/position: proposition p with a weight
- transition: joint action
- observation relation: each agent can not distinguish between states
- Strategy Str_{a} of agent a : maps positions to actions
- Assignment χ : maps agents and variables to strategies

SLK $[\mathcal{F}]$ Semantics

Let \mathcal{G} be a wCGS, and χ an assignment. Satisfaction value $\llbracket \varphi \rrbracket_{\mathcal{X}}^{\mathcal{G}}(v) \in[-1,1]$ of a formula φ in a position v is defined as follows

- $\llbracket p \rrbracket_{\mathcal{\chi}}^{\mathcal{G}}(v)=\ell(v, p)$
- $\llbracket \exists s_{a} \cdot \varphi \rrbracket_{\mathcal{\chi}}^{\mathcal{G}}(v)=\max _{\sigma \in \operatorname{Str}_{a}} \llbracket \varphi \rrbracket_{\left.\chi \mid s_{a} \mapsto \sigma\right]}^{\mathcal{G}}(v)$
- $\llbracket\left(a, s_{a}\right) \varphi \rrbracket_{\mathcal{\chi}}^{\mathcal{G}}(v)=\llbracket \varphi \rrbracket_{\chi}^{\mathcal{G}}\left[a \mapsto \chi\left(s_{a}\right)\right]!(v)$
- $\llbracket K_{a} \varphi \rrbracket_{\mathcal{X}}^{\mathcal{G}}(v)=\min _{v^{\prime} \sim{ }_{v} v} \llbracket \varphi \rrbracket_{\mathcal{\chi}}^{\mathcal{G}}\left(v^{\prime}\right)$
- $\llbracket f\left(\varphi_{1}, \ldots, \varphi_{m}\right) \rrbracket_{\mathcal{\chi}}^{\mathcal{G}}(v)=f\left(\llbracket \varphi_{1} \rrbracket_{\mathcal{\chi}}^{\mathcal{G}}(v), \ldots, \llbracket \varphi_{m} \rrbracket_{\mathcal{\chi}}^{\mathcal{G}}(v)\right)$
- $\mathbf{F} \varphi$ maximises the values of φ over all future points in time
- $\mathbf{G} \varphi$ minimizes the values of φ over all future points in time

Reasoning about Auction Mechanisms

Social choice functions and mechanisms

- Split the SCF into choice and payment functions: $\mathrm{f}=\left(\mathrm{x},\left\{\mathrm{p}_{a}\right\}\right)$

Social choice functions and mechanisms

- Split the SCF into choice and payment functions: $f=\left(x,\left\{p_{a}\right\}\right)$
- Mechanisms as wCGS :
i One initial position for each possible type profile
ii Types do not change
iii Each agent knows her type
iv Every play reaches a terminal position

Social choice functions and mechanisms

- Split the SCF into choice and payment functions: $f=\left(x,\left\{p_{a}\right\}\right)$
- Mechanisms as wCGS :
i One initial position for each possible type profile
ii Types do not change
iii Each agent knows her type
iv Every play reaches a terminal position

Example (Dutch Auction)

- A position $\left\langle\mathbf{p},\left\{x_{a}\right\}, \mathbf{t},\left\{\theta_{a}\right\}\right\rangle$

Social choice functions and mechanisms

- Split the SCF into choice and payment functions: $f=\left(x,\left\{p_{a}\right\}\right)$
- Mechanisms as wCGS :
i One initial position for each possible type profile
ii Types do not change
iii Each agent knows her type
iv Every play reaches a terminal position

Example (Dutch Auction)

- A position $\left\langle\mathbf{p},\left\{x_{a}\right\}, \mathbf{t},\left\{\theta_{a}\right\}\right\rangle$
- An initial position $\left\langle 1,0, \ldots, 0,0,-1, \theta_{1}, \ldots, \theta_{\mathrm{n}}\right\rangle$

Social choice functions and mechanisms

- Split the SCF into choice and payment functions: $f=\left(x,\left\{p_{a}\right\}\right)$
- Mechanisms as wCGS :
i One initial position for each possible type profile
ii Types do not change
iii Each agent knows her type
iv Every play reaches a terminal position

Example (Dutch Auction)

- A position $\left\langle\mathbf{p},\left\{x_{a}\right\}, \mathbf{t},\left\{\theta_{a}\right\}\right\rangle$
- An initial position $\left\langle 1,0, \ldots, 0,0,-1, \theta_{1}, \ldots, \theta_{\mathrm{n}}\right\rangle$
- Transition: $\mathrm{p}^{\prime}=\mathrm{p}-$ dec if everyone waits

Otherwise, allocate the good to the agent who bet, she pays p

Social choice functions and mechanisms

Figure 1: Mechanism timeline

One initial state (types are omitted) - Action bid is written b and wait is w .

Solution concepts

- Nash equilibrium (NE)

$$
\begin{aligned}
\mathrm{NE}(s):=\bigwedge_{a \in \mathrm{Ag}} \forall t .\left[\left(\mathrm{Ag}_{-a}, s_{-a}\right)(a, t) \mathbf{F}(t e r\right. & \left.\wedge \mathrm{util}_{a}\right) \\
\leq(\mathrm{Ag}, s) \mathbf{F}(t e r & \left.\left.\wedge \mathrm{util}_{a}\right)\right]
\end{aligned}
$$

- Dominant strategy equilibrium (DSE)

$$
\operatorname{DSE}(s):=\bigwedge_{a \in \mathrm{Ag}} \operatorname{DS}\left(s_{a}, a\right)
$$

where $\operatorname{DS}\left(s_{a}, a\right)$ if s_{a} weakly maximizes a 's utility, for all strategies of other agents.

Implementation of SCF

- Alternatives Alt
- Agent’s type $\theta_{a} \in \Theta_{a}$
- Social choice function (SCF) f: $\Theta \rightarrow$ Alt
- Atomic propositions for describing the alternatives
- Let $E \in\{N E, D S E\}$
- Mechanism \mathcal{G} E-implements the SCF f if they assign the same alternative in some E-equilibrium, for all type profiles θ.

Mechanism Properties

- Individual Rationality (IR): define IR $:=\bigwedge_{a \in \mathrm{Ag}} 0 \leq$ util $_{a}$ Let \mathcal{G} be a mechanism that E-implements f .

Proposition (IR)

f is individually rational iff IR has the satisfaction value 1 in the E-equilibrium implementing f (for all $\boldsymbol{\theta} \in \Theta$).

Mechanism Properties

- Strategyproofness (SP)

Let $\hat{\theta}_{a}$ be the truth-revealing strategy for a \mathcal{G} is direct revelation mechanism

Proposition (SP)

\mathcal{G} is SP if $\llbracket \operatorname{DSE}(s) \rrbracket_{\chi}^{\mathcal{G}}\left(v_{\iota}^{\boldsymbol{\theta}}\right)=1$ for all $\boldsymbol{\theta} \in \boldsymbol{\Theta}$, where $\chi\left(s_{a}\right)=\hat{\theta}_{a}$ for each a

Mechanism Properties

- Strategyproofness (SP)

Let $\hat{\theta}_{a}$ be the truth-revealing strategy for a \mathcal{G} is direct revelation mechanism

> Proposition (SP)
> \mathcal{G} is SP if $\llbracket \operatorname{DSE}(s) \rrbracket_{\chi}^{\mathcal{G}}\left(v_{\iota}^{\boldsymbol{\theta}}\right)=1$ for all $\boldsymbol{\theta} \in \boldsymbol{\Theta}$, where $\chi\left(s_{a}\right)=\hat{\theta}_{a}$ for each a

- Efficiency, Pareto optimality, budget-balance

Revenue benchmarks with knowledge

- Mechanisms with possibilistic beliefs \mathcal{B} (Chen and Micali 2015)
- 2nd Belief Benchmark denoted $2^{\text {nd }}(\mathcal{B})$:
i The maximum type each agent a is sure someone has
ii The second highest of such values (for all agents)

Revenue benchmarks with knowledge

- Mechanisms with possibilistic beliefs \mathcal{B} (Chen and Micali 2015)
- 2nd Belief Benchmark denoted $2^{\text {nd }}(\mathcal{B})$:
i The maximum type each agent a is sure someone has
ii The second highest of such values (for all agents)

$$
\begin{aligned}
\varphi_{a}^{\mathrm{smv}} & :=K_{a} \max _{a^{\prime} \in \mathrm{Ag}}\left(\mathrm{type}_{a^{\prime}}\right) \\
\varphi_{2 \mathrm{nd}} & :=2 \operatorname{nd}-\max \left(\varphi_{a_{1}}^{\mathrm{smv}}, \ldots, \varphi_{a_{\mathrm{n}}}^{\mathrm{smv}}\right)
\end{aligned}
$$

Revenue benchmarks with knowledge

- Mechanisms with possibilistic beliefs \mathcal{B} (Chen and Micali 2015)
- 2nd Belief Benchmark denoted $2^{\text {nd }}(\mathcal{B})$:
i The maximum type each agent a is sure someone has
ii The second highest of such values (for all agents)

$$
\begin{aligned}
\varphi_{a}^{\mathrm{smv}} & :=K_{a} \max _{a^{\prime} \in \mathrm{Ag}}\left(\mathrm{type}_{a^{\prime}}\right) \\
\varphi_{2 \mathrm{nd}} & :=2 \operatorname{nd}-\max \left(\varphi_{a_{1}}^{\mathrm{smv}}, \ldots, \varphi_{a_{\mathrm{n}}}^{\mathrm{smv}}\right)
\end{aligned}
$$

Proposition (Revenue benchmark)

Given a mechanism \mathcal{G}, a position v and a belief profile $\mathcal{B}(v)$, it holds that $\llbracket \varphi_{2 \text { nd }} \rrbracket^{\mathcal{G}}(v)=2^{\text {nd }}(\mathcal{B}(v))$.

Model Checking and Synthesis

Model-checking

Model-checking problem (MC) for SLK[F]:
Given a sentence φ, a wCGS \mathcal{G}, a position v in \mathcal{G} and a predicate $P \subseteq[-1,1]$, decide whether $\llbracket \varphi \rrbracket^{\mathcal{G}}(v) \in P$.

Theorem (MC for SLK $[\mathcal{F}]$)

Assuming that functions in \mathcal{F} can be computed in polynomial space, model checking $\operatorname{SLK}[\mathcal{F}]$ with imperfect information and memoryless agents is PsPACE-complete.

Synthesis of Mechanisms

- Creating mechanisms from a logical specification in $\operatorname{SL}[\mathcal{F}]^{2}$
- Satisfiability of SL (thus, $\operatorname{SL}[\mathcal{F}]$) is undecidable in general
- Decidable cases

Theorem (Satisfiability of SL[F])

The satisfiability of $S L[\mathcal{F}]$ is decidable in the following cases

- wCGS with bounded actions
- Turn-based wCGS

[^0]
Optimal mechanism synthesis

```
Algorithm 1: Optimal mechanism synthesis
Data: A SL[F] specification \(\Phi\) and a set of possible values for atomic
        propositions \(\mathcal{V}\)
Result: A wCGS \(\mathcal{G}\) such that \(\llbracket \Phi \rrbracket^{\mathcal{G}}\) is maximal
Compute \(\mathrm{Val}_{\Phi, \nu}\);
Let \(\nu_{1}, \ldots, \nu_{n}\) be a decreasing enumeration of \(\mathrm{Val}_{\Phi, \nu}\);
for \(i=1\). . . \(n\) do
    Solve \(\mathcal{V}\) - satisfiability for \(\Phi\) and \(\vartheta=\nu_{i}\);
    if there exists \(\mathcal{G}\) such that \(\llbracket \Phi \rrbracket^{\mathcal{G}} \geq \nu_{i}\) then
        return \(\mathcal{G}\);
    end
end
```


Japanese auction

- AG $(($ initial \rightarrow price $=0 \wedge \neg$ terminal $) \wedge(\mathbf{X G} \neg$ initial $\wedge \mathbf{F}$ terminal $))$
- AG (sold \leftrightarrow choice $\neq-1$)
- AG $((\neg$ sold \wedge price $+i n c \leq 1) \rightarrow($ price $+i n c=$ Xprice $\wedge \neg$ Xterminal $))$
- $\mathbf{A G}(($ sold \vee price $+i n c>1) \rightarrow($ price $=\mathbf{X p r i c e} \wedge$ Xterminal $))$
- AG (choice $\left.=\operatorname{wins}_{a} \leftrightarrow \operatorname{bid}_{a} \wedge \bigwedge_{b \neq a} \neg \operatorname{bid}_{a}\right)$
- $\mathbf{A G}\left(\right.$ choice $\left.=-1 \leftrightarrow \neg\left(\bigvee_{a \in \mathrm{Ag}}\left(\operatorname{bid}_{a} \wedge \bigwedge_{b \neq a} \neg \operatorname{bid}_{a}\right)\right)\right)$
- $\mathbf{A G}\left(\bigwedge_{a \in \mathrm{Ag}}\left(\right.\right.$ choice $=$ wins $_{a} \rightarrow$ payment $_{a}=$ price $\left.)\right)$
- $\operatorname{AG}\left(\bigwedge_{a \in \mathrm{Ag}}\left(\right.\right.$ choice \neq wins $_{a} \rightarrow$ payment $\left.\left._{a}=0\right)\right)$
- $\wedge_{\boldsymbol{\theta} \in \Theta} \exists s . \mathrm{NE}(\boldsymbol{s}, \boldsymbol{\theta}) \wedge \mathbf{F}($ terminal $\wedge \mathrm{EF}(\boldsymbol{\theta}))$

Proposition

There exists a wCGS such that the satisfaction value of these rules is 1 .

Computational Complexity

Legacy of Strategy Logic

Synthesis of Mechanism

In general $k+1$-EXPTIME.
Japanese Auction: 3-EXPTIME

Conclusion

- Logic-Based Mechanism Design
- Verifying properties \rightarrow model check SLK[F]-formulas (KR'21)
- Generating mechanisms \rightarrow synthesis from SL[$\mathcal{F}]$-formulas (IJCAI'22)
- Probabilistic setting (AAAl'23)
- Bayesian mechanisms
- Mixed strategies
- Randomized mechanisms

Going Further

- Previous logical approaches are deterministic
- Bayesian and randomized mechanisms
- Challenges for a general approach
- Settings: deterministic or randomized mechanisms, incomplete information, mixed or pure strategies, and direct or indirect mechanisms
- Time-line for revealing the incomplete information
- Framework for MD with Probabilistic Strategy Logic (PSL)
- Automatic verification through PSL model checking

Bayesian Mechanism Design

- A (randomized) social choice function (SCF) (similarly, mechanism) is a function that maps type profiles (resp, strategy profiles) to probability distributions over the set of alternatives.
- Mechanism as stochastic transition systems: labels on terminal states indicate the alternative chosen

Example BIN-TAC auction

Figure 2: System representing the "Buy-It-Now or Take-a-Chance" (BIN-TAC) auction. Continuous lines are transitions with prob. 1 and dashed lines are transitions with prob. $\frac{1}{h}$.

Expected utilities

Figure 3: Mechanism timeline

Probability Strategy Logic captures the utility of agent a

- ex ante $\mathbb{E}_{a}^{e . a .}(s)$: expected utility given the type profile distribution
- interim $\mathbb{E}_{a}^{e, i .}\left(s, \theta_{a}\right)$ expected utility given agent a 's type and the distribution of type profiles
- ex post $\mathbb{E}_{a}^{e . p .}(s, \theta)$ expected utility given a type profile

Expected utilities

In more details

$$
\begin{gathered}
\mathbb{E}_{a}^{e . p .}(s, \boldsymbol{\theta}):=\sum_{\alpha \in \mathrm{Alt}} u_{a}\left(\theta_{a}, \alpha\right) \times \mathbb{P}_{\boldsymbol{s}(\boldsymbol{\theta})}\left(\mathbf{F}\left(\operatorname{ter} \wedge \mathrm{al}^{\alpha}\right)\right) \\
\mathbb{E}_{a}^{e . i .}\left(s, \theta_{a}\right):=\sum_{\boldsymbol{\theta}_{-a} \in \boldsymbol{\Theta}_{-a}} d\left(\boldsymbol{\theta}_{-a} \mid \theta_{a}\right) \times \mathbb{E}_{a}^{e . p .}\left(\boldsymbol{s},\left(\boldsymbol{\theta}_{-a}, \theta_{a}\right)\right) \\
\mathbb{E}_{a}^{e . a .}(\boldsymbol{s}):=\sum_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} d(\boldsymbol{\theta}) \times \mathbb{E}_{a}^{e . p .}(\boldsymbol{s}, \boldsymbol{\theta})
\end{gathered}
$$

Figure 4: PSL encoding

Solution concepts

Let $s=\left(s_{a}\right)_{a \in \mathrm{Ag}}$ denote a strategy (variable) profile s is a Nash equilibrium (NE) if for every agent a and for every θ, s_{a} is the best response (w.r.t. alternative strategy t_{a}) that a has to s_{-a} when the type profile is θ

$$
\mathrm{NE}(s):=\bigwedge_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \bigwedge_{a \in \mathrm{Ag}} \forall t_{a} \cdot \mathbb{E}_{a}^{e . p .}\left(\left(s_{-a}, t_{a}\right), \boldsymbol{\theta}\right) \leq \mathbb{E}_{a}^{e \cdot p .}(\boldsymbol{s}, \boldsymbol{\theta})
$$

s is a Bayesian-Nash equilibrium (BNE) if for every agent a and every θ_{a}, s_{a} is the best response that a has to s_{-a} when her type is θ_{a}, in expectation over the other types $\boldsymbol{\theta}_{-a}$

$$
\operatorname{BNE}(s):=\bigwedge_{a \in \operatorname{Ag}} \bigwedge_{\theta_{a} \in \Theta_{a}} \forall t_{a} \cdot \mathbb{E}_{a}^{e . i .}\left(\left(s_{-a}, t_{a}\right), \theta_{a}\right) \leq \mathbb{E}_{a}^{e . i .}\left(\boldsymbol{s}, \theta_{a}\right)
$$

Implementation of an SCF

Given an equilibrium concept \mathbf{E}, a mechanism E-implements an SCF f if there exists a strategy profile $\boldsymbol{\sigma}(\boldsymbol{\theta})$ that is an E-equilibrium and it assigns the same probability distribution as f under strategies $\boldsymbol{\sigma}(\boldsymbol{\theta})$, for any types $\boldsymbol{\theta}^{3}$.

Let \mathcal{G} be a system representing a mechanism and $\varphi_{\mathrm{f}, s}$ be the PSL formula expressing whether f assigns the same probability distribution as \mathcal{G} under s.
\mathcal{G} E-implements an fif

$$
\mathcal{G}, v_{\iota} \models \exists s . \mathbf{E}(s) \wedge \varphi_{\mathrm{f}, s}
$$

Mechanism properties

An SCF f is (interim) IR if for every $\boldsymbol{\theta} \in \boldsymbol{\Theta}$ and agent a, their interim utility is at least 0

Given a mechanism \mathcal{G} E-implementing f, \mathcal{G} is interim IR if

$$
\mathcal{G}, v_{\iota} \models \exists s . \mathbf{E}(s) \wedge \mathbf{F}\left(\text { terminal } \wedge \varphi_{\mathrm{f}, s} \wedge \bigwedge_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \mathrm{IR}(s, \boldsymbol{\theta})\right)
$$

where $\operatorname{IR}(s, \boldsymbol{\theta}):=\bigwedge_{a \in \mathrm{Ag}} 0 \leq \mathbb{E}_{a}^{e . i .}\left(s, \theta_{a}\right)$

Mechanism properties

A direct mechanism is BIC if the truth-revealing strategy profile $\left(\hat{\theta}_{a}\right)_{a \in \mathrm{Ag}}$ is a BNE for any $\boldsymbol{\theta} \in \Theta$

Let \mathcal{G} be a system representing a mechanism, \mathcal{G} is BIC if

$$
\mathcal{G}, \chi\left[s \rightarrow\left(\hat{\theta}_{a}\right)_{a \in \mathrm{Ag}}\right], v_{\iota} \models \operatorname{BNE}(s)
$$

Evaluating mechanisms \rightarrow model-checking PSL -formulas, which is decidable for memoryless strategies

Conclusion

- Bridge between the economics' approach to MD and formal reasoning in Multi-Agent Systems
- General approach for verification of mechanisms using $\operatorname{SL}[\mathcal{F}]$ and Bayesian mechanisms using PSL
- Future work
- Social Good
- Practical Tools!

(Logic-based) Automated Mechanism Design

Munyque Mittelmann ${ }^{1} \quad$ Bastien Maubert ${ }^{1}$ Aniello Murano ${ }^{1}$ Laurent Perrussel ${ }^{2}$
${ }^{1}$ University of Naples "Federico II"
${ }^{2}$ IRIT - University of Toulouse Capitole
laurent.perrussel@irit.fr
UNSW KR Conventicle - May 2024

Institut de Recherche en Informatique de Toulouse

References I

Maubert, B. et al. (2021). "Strategic Reasoning in Automated Mechanism Design". In: KR. Alur, R., T.A. Henzinger, and O. Kupferman (2002). "Alternating-time temporal logic". In: J. ACM 49.5, pp. 672-713. URL: https://doi.org/10.1145/585265.585270.

Chatterjee, K., T. A. Henzinger, and N. Piterman (2010). "Strategy Logic". In: Inf. Comput. 208.6, pp. 677-693. DOI: 10.1016/j.ic.2009.07.004. URL:
http://dx.doi.org/10.1016/j.ic.2009.07.004.
Berthon, R. et al. (2021). "Strategy Logic with Imperfect Information". In: ACM Trans. Comput. Logic 22.1.
Belardinelli, F. et al. (2020). "Verification of multi-agent systems with public actions against strategy logic". In: Artif. Intell. 285.
Maubert, B. and A. Murano (2018). "Reasoning about Knowledge and Strategies under Hierarchical Information". In: KR.
Bouyer, P.et al. (2019). "Reasoning about Quality and Fuzziness of Strategic Behaviours". In: IJCAI. DOI: 10.24963/ijcai.2019/220.
Chen, Jing and Silvio Micali (2015). "Mechanism design with possibilistic beliefs". In: J. Econ. Theory 156, pp. 77-102.
Mittelmann, M. et al. (2022). "Automated Synthesis of Mechanisms". In: To appear at IJCAI.

References II

Parkes, D. (2001). Iterative combinatorial auctions: Achieving economic and computational efficiency. Univ. of Pennsylvania Philadel.

[^0]: ${ }^{2}$ Automated Synthesis of Mechanisms (Mittelmann et al., IJCAI 2022)

