Symbolic Computation of Sequential Equilibria

Albert-Ludwigs-Universität Freiburg

Moritz Graf, Thorsten Engesser, Bernhard Nebel AAMAS 2024

Motivation

Introduction

Nash Equilibrium Refinements

Sequential equilibrium

Consistency

System of Equations

- Extensive games with imperfect information.
- Standard solution concept: Sequential Equilibrium.
- No general solver available.

Nash equilibrium

No player can improve their expected utility by deviating.

Introduction

Nash Equilibrium Refinements

Sequential equilibrium

Consistency

System of Equations

Results

Problem: Actions in unreached parts of the tree do not have to be optimal.

Subgame perfect equilibrium

No player can improve their expected utility in any subgame by deviating.

Introduction

ALOR

Nash Equilibrium Refinements

Sequential equilibrium

Consistency

System of Equations

Results

Problem: Not suitable for games with imperfect information.

Assessments

Assessments consisting of a strategy profile β and system of beliefs μ .

$$U_i^B(\beta,\mu \mid I) = \sum_{h \in I} \mu(I)(h) U_i(\beta \mid h)$$

Introduction

Nash Equilibrium Refinements

Sequential equilibrium

Consistency

System of Equations

Sequential Equilibrium

Introduction

Nash Equilibrium Refinements

Sequential equilibrium

Consistency

System of Equations

Results

Sequential Equilibria [Kreps & Wilson 1982]

Sequential rationality

No player can improve their believed payoff at any information set by deviating from the equilibrium strategy given their belief.

Consistency

The players beliefs should be sensible given the played strategies.

Sequential rationality

$$U_i^B(\beta', \mu \mid I) \le U_i^B(\beta, \mu \mid I)$$

- Similar to subgame perfectness.
- Can be reduced to polynomial equations and inequalities.

$$U_i^B(eta,\mu|I,a) - U_i^B(eta,\mu|I) \le 0$$

 $eta(I)(a) \cdot \left(U_i^B(eta,\mu|I,a) - U_i^B(eta,\mu|I)
ight) = 0$

Introduction

Nash Equilibrium Refinements

Sequential equilibrium

Consistency

System of Equations

Consistent beliefs

At information sets that are reached by playing β : Conditional probabilities.

$$\mu(I)(h) = P_{\beta}(h \mid I) = \frac{P_{\beta}(h)}{P_{\beta}(I)}$$

But what if the information set is never reached?

Nash Equilibrium Refinements

Sequential equilibrium

Consistency

System of Equations

Consistency definition

There exists a series of assessments (β^n, μ^n) such that:

 $\beta^n(I)(a) > 0$

$$\mu^n(I)(h) = \frac{P_{\beta^n}(h)}{P_{\beta^n}(I)}$$

$$\lim_{n\to\infty}(\boldsymbol{\beta}^n,\boldsymbol{\mu}^n)=(\boldsymbol{\beta},\boldsymbol{\mu})$$

Introduction

Nash Equilibrium Refinements

Sequential equilibrium

Consistency

System of Equations

Examples of consistency

Introduction

Nash Equilibrium Refinements

Sequential equilibrium

Consistency

System of Equations

Dealing with Consistency

Introduction

Nash Equilibrium Refinements

Sequential equilibrium

Consistency

System of Equations

- Working with consistency is difficult.
- Different characterization of consistency is required.
- Process to transform consistency to polynomial equations [Kohlberg & Reny, 1997].
- Involves the calculation of extreme directions of polyhedral cones.

Selten's horse

Introduction

Sequential equilibrium

Consistency

System of Equations

System of Equations

Introduction

Nash Equilibrium Refinements

Sequential equilibrium

Consistency

System of Equations

Results

Sequential rationality as polynomial equations and inequalities.

- Consistency as polynomial equations.
- \Rightarrow Single system of equations that describes all sequential equilibria of the game.

Finding Solutions

Introduction

Nash Equilibrium Refinements

Sequential equilibrium

Consistency

System of Equations

- Algorithm: cylindrical algebraic decomposition (Mathematica)
- Compact representation of all solutions.

Selten's horse solutions

$$\begin{array}{ll} \beta(D) = 0 & \beta(d) = 0 & \beta(L) = 0 & 0 \le \mu(\langle D \rangle) \le \frac{1}{3} \\ \beta(C) = 1 & \beta(c) = 1 & \beta(R) = 1 & \mu(\langle C, d \rangle) = 1 - \mu(\langle C \rangle) \end{array}$$

R

1

L

3,3,2

D

C

3

Selten's horse solutions

Introduction

Sequential equilibrium

Consistency

System of Equations

Results

C

2

С

----1, 1, 1

Manipulating the system of equations

- Solve parameterized games by adding additional variables.
- Compute interesting subsets of equilibria.
- Reduce computation time by looking only for pure strategy equilibria.

Introduction

Nash Equilibrium Refinements

Sequential equilibrium

Consistency

System of Equations

Results

- Single system of polynomial equations and inequalities that describes all sequential equilibria of the game.
- Implemented a general solver for sequential equilibria.
- Integrated into *Game Theory Explorer*.
- Computational complexity double exponential in number of variables.
- Small examples are feasable.

Nash Equilibrium Refinements

TAILOR

Sequential equilibrium

Consistency

System of Equations

Game Theory Explorer

Introduction

Nash Equilibrium Refinements

Sequential equilibrium

Consistency

System of Equations

Results

Try out yourself at gte.engesser.xyz github.com/tengesser/GTE-sequential

AAMAS 2024