Probabilistic Multi-agent Only-believing

Qihui Feng, Gerhard Lakemeyer
RWTH Aachen University

May 13, 2024

Overview

1 Introduction

2 Logic $\mathcal{O B L}_{m}$

3 Properties of the Logic

4 Conclusion

Introduction

Knowledge and Belief:

- $\boldsymbol{K}($ fair $($ Coin $) \wedge \neg \operatorname{fair}($ Die $))$

■ B(fair(Coin): 0.8)
Levesque proposed only-knowing to precisely capture the (non-)beliefs:
■ $\boldsymbol{O}($ fair $($ Coin $)) \models \neg \boldsymbol{K}($ fair (Die) $) \wedge \neg \boldsymbol{K}(\neg$ fair (Die) $)$

- $\boldsymbol{O}($ fair $($ Coin $)) \models \neg \boldsymbol{B}($ fair $($ Die $): r)$ for any $r \in[0,1]$

Introduction (cont'd)

Research on only-knowing:
■ Probabilistic only-believing: The logic $\mathcal{O B L}$
■ Projection reasoning: $\boldsymbol{O}\left(K B_{1}\right) \rightarrow[$ action $] \boldsymbol{O}\left(K B_{2}\right)$
■ Multi-agent only-knowing:
■ Previous works in both propositional and first-order cases
■ No first-order account faithfully follows Levesque's principle of only-knowing.

Introduction (cont'd)

Levesque's notion of only-knowing: Given the only-knowing of the agent, any subjective formula will either be inferred or disproved.
$■ \boldsymbol{O}(\mathrm{~KB}) \models \boldsymbol{K} \beta$ iff $\mathrm{KB} \models \beta ; \quad \boldsymbol{O}(\mathrm{KB}) \models \neg \boldsymbol{K} \beta$ iff $\mathrm{KB} \not \models \vDash \beta$.
Desiderata for multi-agent extension:
i) non-beliefs on irrelevant items:

$$
\left.\left.\boldsymbol{O}_{a}\left(\neg \text { fair }(\text { Coin }) \wedge \boldsymbol{K}_{b}(\text { fair (Coin })\right)\right) \models \neg \boldsymbol{K}_{a} \boldsymbol{K}_{b}(\text { fair(Die })\right)
$$

ii) non-beliefs on mental states with deeper nesting

$$
\left.\boldsymbol{O}_{a}\left(\neg \operatorname{fair}(\text { Coin }) \wedge \boldsymbol{K}_{b}(\text { fair }(\text { Coin }))\right) \models \neg \boldsymbol{K}_{a} \boldsymbol{K}_{b} \boldsymbol{K}_{a}(\text { fair (Coin })\right)
$$

To model only-knowing up to all depths is semantically difficult.

Introduction (cont'd)

To model only-knowing up to depth k ?
$■$ Modality $\boldsymbol{O}_{a}^{(k)}$: agent a's only-knowing(believing) up to depth k.
The new desiderata: for $\boldsymbol{K}_{a} \beta$ with depth no more than k,
■ Either $\boldsymbol{O}_{a}^{(k)} \alpha \models \boldsymbol{K}_{\mathrm{a}} \beta$ or $\boldsymbol{O}_{a}^{(k)} \alpha \models \neg \boldsymbol{K}_{\mathrm{a}} \beta$?

Overview

1 Introduction

2 Logic $\mathcal{O B L}_{m}$

3 Properties of the Logic

4 Conclusion

Logic $\mathcal{O B L}_{m}$

A first-order modal logic with equality and featured with:

- A finite set of agents, e.g. $A g=\{a, b\}$;

■ Modalities for belief and only-believing for each agent.

Syntax

- Standard FO formulae;
- $\boldsymbol{B}_{i}(\alpha: r): \alpha$ is believed by agent i with degree r (written $\boldsymbol{K}_{i} \alpha$ if $r=1$).
- $O_{i}^{(k)}(\alpha: r)$: all that agent i believes up to depth k is α with degree r.
- $O_{a}^{(1)}(f a i r($ Coin $))$: agent a knows fair(Coin) and nothing else about the world.
- $O_{a}^{(2)}(f a i r(C o i n))$: agent a knows fair(Coin) and nothing else about the world, and nothing about Bob's beliefs about the world.

Semantics (Knowledge and Beliefs)

A model is a tuple (w, e_{a}, e_{b}) with world w and epistemic states e_{a} and e_{b}. A world $w \in \mathcal{W}$ is a set of ground atoms.
$\square w, e_{a}, e_{b} \models$ fair(Coin) iff fair(Coin) $\in w$

Epistemic states are defined inductively:

■ 1-distribution assigns each world a probability: $\mathcal{W} \rightarrow \mathbb{R}_{[0,1]}$;
■ 1-epistemic state is a set of 1 -distributions.

Example

$w_{1}=\{$ fair (Coin) $\}$ and $w_{2}=\{$ fair(Die $\left.)\right\}, d^{1}(w)=\left\{\begin{array}{lr}0.5 & w \in\left\{w_{1}, w_{2}\right\} \\ 0 & \text { otherwise } .\end{array}\right.$
Let $e_{a}=\left\{d^{1}\right\}$, then $w, e_{a}, e_{b}=\boldsymbol{B}_{a}($ fair(Coin): 0.5)

Semantics (Nested Beliefs)

\mathcal{E}^{1} denotes the set of all 1-epistemic states. For any $k>1$,
■ k-distribution $d^{k}:\left(\mathcal{W} \times \mathcal{E}^{k-1}\right) \rightarrow \mathbb{R}_{[0,1]}$
■ a k-epistemic state is a set of k-distributions

Example

Let $w_{1}=\{$ fair (Coin) $\}, w_{2}=\{$ fair(Die) $\}, w_{3}=\{$ fair(Coin), fair(Die) $\}$.
$\tilde{d}^{1}(w)=\left\{\begin{array}{rr}0.5 & w \in\left\{w_{1}, w_{3}\right\} \\ 0 & \text { otherwise } .\end{array} \quad d^{2}\left(w, e_{b}^{1}\right)= \begin{cases}0.3 & w=w_{1}, e_{b}^{1}=\left\{\tilde{d}^{1}\right\} \\ 0.7 & w=w_{2}, e_{b}^{1}=\left\{\tilde{d}^{1}\right\} \\ 0 & \text { otherwise } .\end{cases}\right.$
Let $e_{a}=\left\{d^{2}\right\}$, then
■ w, $e_{a}, e_{b}=B_{a}$ (fair(Coin): 0.3)
■ $w, e_{a}, e_{b}=\boldsymbol{K}_{a}\left(\boldsymbol{K}_{b}(\right.$ fair (Coin $\left.\left.)\right)\right)$

Semantics (Only-Believing)

Suppose that $e_{a} \in \mathcal{E}^{2}$ (2-epistemic state)

- $w, e_{a}, e_{b} \vDash O_{a}^{(2)}\left(\neg\right.$ fair (Coin) $\wedge K_{b}($ fair(Coin) $\left.)\right)$ iff for any 2-distribution d,

$$
d \in e_{a} \Longleftrightarrow w,\{d\}, e_{b} \models \boldsymbol{K}_{a}\left(\neg \operatorname{fair}(\text { Coin }) \wedge \boldsymbol{K}_{b}(\text { fair }(\text { Coin }))\right)
$$

i.e. there is a unique $e_{a} \in \mathcal{E}^{2}$ which satisfies $O_{a}^{(2)}\left(\neg \operatorname{fair}(\right.$ Coin $) \wedge \boldsymbol{K}_{b}($ fair (Coin) $\left.)\right)$ Every $e_{a} \in \mathcal{E}^{k}$ can be uniquely "reduced" to an $e_{a}^{\prime} \in \mathcal{E}^{k-1}$ s.t.

$$
w, e_{a}, e_{b} \models \alpha \text { iff } w, e_{a}^{\prime}, e_{b} \models \alpha \text { for any } \alpha \text { not deeper than } \mathrm{k} \text {-1 }
$$

For $e_{a} \in \mathcal{E}^{3}, w, e_{a}, e_{b} \models O_{a}^{(2)}\left(\neg\right.$ fair (Coin) $\wedge \boldsymbol{K}_{b}($ fair (Coin) $\left.)\right)$ iff e_{a} reduce to $e_{a}^{\prime} \in \mathcal{E}^{2}$ and $w, e_{a}^{\prime}, \boldsymbol{e}_{b} \models \boldsymbol{O}_{a}^{(2)}\left(\neg\right.$ fair $($ Coin $) \wedge \boldsymbol{K}_{b}($ fair (Coin) $\left.)\right)$

Entailment and Validity

Compatibility:

- Formulae like $O_{a}^{(1)}\left(\neg\right.$ fair (Coin) $\wedge K_{b}($ fair (Coin) $\left.)\right)$ are illegal.
- e compatible with α : the depth of e is not less than the depth of α

We say Σ entails α (written $\Sigma=\alpha$) iff:
■ For each model (w, e_{a}, e_{b}) compatible with Σ, α, if (w, e_{a}, e_{b}) $=\sigma$ for all $\sigma \in \Sigma$, then $\left(w, \boldsymbol{e}_{a}, \boldsymbol{e}_{b}\right) \models \alpha$
We say α is valid iff $\} \models \alpha$

Overview

1 Introduction

2 Logic $\mathcal{O B} \mathcal{L}_{m}$

3 Properties of the Logic

4 Conclusion

Properties of Knowledge

$\mathcal{O B} \mathcal{L}_{m}$ follows the KD45n properties. For agent $i \in A g$,

- (Nec) If $=\alpha$, then $\models \boldsymbol{K}_{i} \alpha$
- (K) $\models \boldsymbol{K}_{i} \alpha \wedge \boldsymbol{K}_{i}(\alpha \supset \beta) \supset \boldsymbol{K}_{i} \beta$

■ (D) $)=\boldsymbol{K}_{i} \alpha \supset \neg \boldsymbol{K}_{i} \neg \alpha$
■ (4) $\models \boldsymbol{K}_{i} \alpha \supset \boldsymbol{K}_{i} \boldsymbol{K}_{i} \alpha$
■ (5) $\models \neg \boldsymbol{K}_{i} \alpha \supset \boldsymbol{K}_{i} \neg \boldsymbol{K}_{i} \alpha$

- $\boldsymbol{K}_{i} \alpha \wedge \neg \alpha$ is satisfiable

Barcan formulae:
$■ \vDash \forall x . \boldsymbol{K}_{i} \alpha \supset \boldsymbol{K}_{i} \forall x . \alpha$
$■ \vDash \exists x . \boldsymbol{K}_{i} \alpha \supset \boldsymbol{K}_{i} \exists x . \alpha$

Properties of Beliefs

The degree of belief follows the laws of probability:
$■ \models \boldsymbol{B}_{i}(\alpha: r) \supset \neg \boldsymbol{B}_{i}\left(\alpha: r^{\prime}\right)$ for $r^{\prime} \neq r$
■ $\vDash \boldsymbol{B}_{i}(\alpha: r) \supset \boldsymbol{B}_{i}(\neg \alpha: 1-r)$
$■ \models \boldsymbol{B}_{i}(\alpha \wedge \beta: r) \wedge \boldsymbol{B}_{i}\left(\alpha \wedge \neg \beta: r^{\prime}\right) \supset \boldsymbol{B}_{i}\left(\alpha: r+r^{\prime}\right)$

Only-Believing

Modality $O_{a}^{(k)}$ precisely captures agent a's beliefs and non-beliefs up to depth k.

- non-beliefs on irrelevant items:
$\boldsymbol{O}_{a}^{(2)}\left(\neg\right.$ fair (Coin) $\wedge \boldsymbol{K}_{b}($ fair (Coin) $\left.)\right) \models \neg \boldsymbol{K}_{a} \boldsymbol{K}_{b}($ fair (Die) $)$
- non-beliefs on deeper mental states:
$\boldsymbol{O}_{a}^{(2)}\left(\neg \operatorname{fair}(\right.$ Coin $) \wedge \boldsymbol{K}_{b}($ fair (Coin) $\left.)\right) \not \models \neg \boldsymbol{K}_{a} \boldsymbol{K}_{b} \boldsymbol{K}_{a}(\neg$ fair(Coin) $)$
$\boldsymbol{O}_{a}^{(3)}\left(\neg \operatorname{fair}(\right.$ Coin $) \wedge \boldsymbol{K}_{b}($ fair (Coin) $\left.)\right) \models \neg \boldsymbol{K}_{a} \boldsymbol{K}_{b} \boldsymbol{K}_{a}(\neg$ fair(Coin) $)$
For $i \in A g$, given i-objective formulae α and β s.t. the depth of $\boldsymbol{K}_{\boldsymbol{i}}(\beta)$ not greater than k, then $\boldsymbol{O}_{i}^{(k)}(\alpha)$ entails either $\boldsymbol{K}_{i} \beta$ or $\neg \boldsymbol{K}_{i} \beta$.
■ $\boldsymbol{O}_{i}^{(k)}(\alpha) \models \boldsymbol{K}_{i} \beta$ iff $\alpha \models \beta ; \quad \boldsymbol{O}_{i}^{(k)}(\alpha) \models \neg \boldsymbol{K}_{i} \beta$ iff $\alpha \not \vDash \beta$

Autoepistemic Reasoning

$\mathcal{O B} \mathcal{L}_{m}$ can represent defaults about another agent's beliefs:

Example

Let KB $=\{\neg$ fair (Coin) $\}$,
$\delta=\forall r .\left(r \neq 0 \supset \neg \boldsymbol{B}_{a}\left(\neg \boldsymbol{K}_{b}(\right.\right.$ fair (Coin) $\left.\left.): r\right)\right) \supset \boldsymbol{K}_{b}($ fair (Coin) $)$
Bob believes fair(Coin) unless otherwise (Bob does not believes fair(Coin)) is believed (by Alice) with a non-zero degree

- $\boldsymbol{O}_{a}^{(2)}(\mathrm{KB} \wedge \delta) \models \boldsymbol{K}_{a} \boldsymbol{K}_{b}($ fair (Coin) $)$
- $\boldsymbol{O}_{a}^{(2)}\left(\mathrm{KB} \wedge \delta \wedge \boldsymbol{K}_{b}(\right.$ fair $($ Coin $\left.))\right) \models \boldsymbol{K}_{a} \boldsymbol{K}_{b}($ fair (Coin) $)$
- $\boldsymbol{O}_{a}^{(2)}\left(\mathrm{KB} \wedge \delta \wedge \neg \boldsymbol{K}_{b}(\right.$ fair $($ Coin $\left.))\right) \models \neg \boldsymbol{K}_{a} \boldsymbol{K}_{b}($ fair (Coin) $)$

Conclusion

In this work, we

- propose an logical account for multi-agent only-believing
- prove properties on beliefs and only-believing

■ explore the capability of default reasoning about nested beliefs
For future work:
■ extend to belief after actions \checkmark
■ develop mechanisms for projection reasoning
■ join common beliefs and only-believing

Thank you!

