Proportional Allocations of Indivisible Resources: Insights via Matchings.

<u>Vishwa Prakash H.V.</u> and Prajakta Nimbhorkar

CM: CHENNAI MATHEMATICAL INSTITUTE

Fair Division: Examples

- Allocation of house chores among roommates
- Dividing assets between divorcing couples
- Fair allocation of responsibilities among countries
- Inheritance allocations

A Fair Allocation Instance

- Set of agents: $A = \{a_1, a_2, ..., a_n\}$
- Set of items: $B = \{b_1, b_2, ..., b_m\}$
- $\forall i \in [n], v_i : 2^B \to \mathbb{R}_{\geq 0}$ is the valuation function of a_i
 - Additive valuations: $\forall S \subseteq B, v_i(S) = \sum_{b \in S} v_i(b)$
- Each agent a_i has an entitlement $\alpha_i \in [0,1]$,

$$\sum_{i \in [n]} \alpha_i = 1$$

A Fair Allocation Instance

- Set of agents: $A = \{a_1, a_2, ..., a_n\}$
- Set of items: $B = \{b_1, b_2, ..., b_m\}$
- $\forall i \in [n], v_i : 2^B \to \mathbb{R}_{\geq 0}$ is the valuation function of a_i
 - Additive valuations: $\forall S \subseteq B, v_i(S) = \sum_{b \in S} v_i(b)$
- Each agent a_i has an entitlement $\alpha_i \in [0,1]$,

$$\sum_{i \in [n]} \alpha_i = 1$$

• An allocation $X = \langle X_1, X_2, ..., X_n \rangle$ is a partition of *B* such that agent a_i gets the part, *bundle* X_i

Proportional Item Allocation:

- An allocation $X = \langle X_1, X_2, ..., X_n \rangle$ is weighted proportional (**WPROP**) if
 - $\forall_{i \in [n]} \quad v_i(X_i) \ge \alpha_i \cdot v_i(B) \text{When } B \text{ is a set of goods}$
 - $\forall_{i \in [n]} \quad v_i(X_i) \le \alpha_i \cdot v_i(B)$ When *B* is a set of chores
 - We say X_i is a **WPROP** bundle for agent a_i

Does not always exist

Almost Proportional Allocations

- An allocation $X = \langle X_1, X_2, \dots, X_n \rangle$ is weighted proportional up to one item (WPROP1) if
 - $\forall_{i \in [n]}, \exists b \in B \setminus X_i \quad v_i(X_i \cup b) \ge \alpha_i \cdot v_i(B)$ When *B* is a set of goods
 - $\forall_{i \in [n]}, \exists b \in X_i \quad v_i(X_i \setminus b) \leq \alpha_i \cdot v_i(B)$ When *B* is a set of chores
 - We say X_i is a **WPROP1** bundle for agent a_i
- Does it always exist?
 - YES

[Aziz, Moulin, Sandomirskiy; Oper. Res. Lett 2020]

Envy vs Proportionality

- Envy Free (EF): $\forall i, j \in [n] \quad v_i(X_i) \ge v_i(X_i)$
- Envy Free up to One Item (EF1): $\forall i, j \in [n] \quad \exists h \in X_i, v_i(X_i) \ge v_i(X_i \setminus h)$
- Appropriate generalisation to the weighted setting (WEF, WEF1) [Chakraborty, Igarashi, Suksompong, Zick; AAMAS 2020]

WEF1 \Rightarrow WPROP1 [Chakraborty et al, AAMAS 2020]

- Agents rank the items: $b_3 >_i b_1 >_i \cdots >_i b_n$
- Agents have private cardinal valuations that respects their ranking.

rankings.

Necessarily Fair Allocation

• An allocation $X = \langle X_1, X_2, ..., X_n \rangle$ is necessarily WPROP1 (WSD-PROP1) if $\forall a_i \in A$, bundle X_i is **WPROP1** under all valuations that respects the agent

An ordinal Instance of Fair Allocation: $I = \langle A, B, \Pi, \overrightarrow{\alpha} \rangle$

WPROP1 ? b_1 b_2 b_3 b_4

A Matching Approach

"Divorcing Made Easy" [Pruhs and Woeginger; FUN 2012]

WSD-PROP - strict ordering

Our Contribution: A matching approach to find WSD-PROP1 allocations

"Fair assignment of indivisible objects under ordinal preferences" [Aziz, Gaspers, Mackenzie and Walsh; AAMAS 2014]

WSD-PROP - weak ordering

Existence of WSD-PROP1 Allocation

- Do WSD-PROP1 allocations always exist?
- Goods: Yes [Aziz et.al and Hoefer et.al AAMAS 2023] Approach: Eating Algorithm.
- Chores: Yes [Wu et.al EC 2023] Approach: Weighted Reverse Round Robin.

Matching approach:

- Works for both Goods and Chores. (Alternate proof of existence using Hall's Theorem)
- Gives an integral polytope of all WSD-PROP1 allocations.
- Also gives economic efficiency guarantees.
- Best of Both World fairness notions.
- Is Parallelizable. That is, WSD-PROP1 is in **RNC**, **Quasi-NC**

• Brings along notions from Matching Theory Literature - Popularity, Matchings with quotas...

What Makes a WSD-PROP1 Bundle? Building intuition with an example Recall - chore allocation set up: 9 5 5 2 0/ $a_i: b_1 > b_2 > b_3 > b_4 \dots > b_m$ Heaviest Chore Least Favourite

Lightest Chore Most Favourite

Total: 6 Entitled Share: 3 Bundle value after removal of one chore: 4

NOT WPROP1

Total: 6 Entitled Share: 3 Bundle value after removal of one chore: 3

Total: 5 Entitled Share: 2.5 Bundle value after removal of one chore: 3

NOT WPROP1

Bundle value after removal of one chore: 2

Total: 5 Entitled Share: 2.5

Total: 3 Entitled Share: 1.5 Bundle value after removal of one chore: 2

NOT WPROP1

Total: 3 Entitled Share: 1.5 Bundle value after removal of one chore: 1

Total: 3 Bundle value after removal of one chore: 1

WSD-PROP1

Total: 3 Bundle value after removal of one chore: 1

WSD-PROP

$$0.5 \quad b_1 > b_2 > b_3 > b_4 > b_5 > b_6$$

$$a_i$$

Total: 3 Bundle value after removal of one chore: 1

For an agent a_i , a bundle X_i is WSD-PROP1 if it has at most 1 chore per every $\frac{1}{-}$ chore in the sorted order. α_i

- A bundle is WSD-PROP1 for an agent a_i if and only if
 - It has at most $\lfloor m\alpha_i \rfloor + 1$ chores (at least $\lceil m\alpha_i \rceil 1$ many goods) • The ℓ^{th} item in the bundle (sorted) is later than or equal to $\left|\frac{\ell-1}{\alpha_i}\right|^{\text{th}}$ chore

 - according to a_i . (or within the first $\left|\frac{\ell}{\alpha_i}\right| + 1$ goods)

Proof sketch: (Sufficient)

Proof sketch: (Sufficient)

Proof sketch: (Sufficient)

Matching Items to Slots

Allocation Graph : $G_c = (S \cup B, E)$

 $m_i = \lfloor m\alpha_i \rfloor + 1$

• at most $\lfloor m\alpha_i \rfloor$ + 1 chores • later than or equal to $\left[\frac{\ell-1}{\alpha_i}\right]^{\text{th}}$ chore

Finding WSD-PROP1 Allocations

Lemma 1:

A matching that matches all the vertices in B (B-perfect) corresponds to a WSD-PROP1 allocation and vice-versa

Matching Polytope \equiv WSD-PROP1 Polytope

Existence of WSD-PROP1 Allocations

Lemma 2:

The allocation graph always admits a Bperfect matching.

Proof:

Application of Hall's Theorem.

Given a bipartite graph $G = (X \cup Y, E)$, there exists a *Y*-perfect matching in *G* iff $\forall S \subseteq Y, |N(S)| \geq |S|$

Algorithm to find a WSD-PROP1 allocation: Input: $I = \langle A, B, \Pi, \overrightarrow{\alpha} \rangle$ **Output:** A WSD-PROP1 allocation

- 1. Construct the allocation graph $G_c = (S \cup B, E)$
- 2. Find a B-perfect matching M in G_c
- 3. Return the allocation corresponding to M

WSD-PROP1 \in P, RNC, Quasi-NC

Finding WSD-PROP1 Allocations Using Matchings

Optimizing over WSD-PROP1 Polytope

- Let $u_i : B \rightarrow [0,1]$ denote how efficiently agent a_i can do chores.
 - u_i can be treated as edge weights.
 - Maximum weight B-perfect matching in G_c

Best of Both Worlds

Best of Both Worlds Fairness A tuple $((p_1, Y^1), (p_2, Y^2), \dots, (p_q, Y^q))$ where $\sum p_i = 1$ and $p_i \in [0, 1]$ $i \in q$

Ex-Post **WSD-PROP1** : If every Y^i is WSD-PROP1 Ex-Ante **WSD-PROP** : If Expected bundle value is **WSD-PROP** for all agents.

Does there exist such a tuple?

Balancing the Allocation Graph

1. $m_i \leq \lfloor m\alpha_i \rfloor + 1$ 2. $r_{\ell} \geq \left\lfloor \frac{\ell - 1}{\alpha_i} \right\rfloor$

S

B

Balancing the Allocation Graph

1. $m_i \leq \lfloor m\alpha_i \rfloor + 1$ 2. $r_{\ell} \geq \left\lfloor \frac{\ell - 1}{\alpha_i} \right\rfloor$

Balancing the Allocation Graph

A perfect matching in G_c^+ corresponds to a a_1 WSD-PROP1 allocation and vice-versa. a_2 a_3 • a_i Matching Polytope a_n $\boldsymbol{\mathcal{N}}\boldsymbol{\mathcal{Y}}$

For a bipartite graph $G = (X \cup Y, E)$:

$$\sum_{x \in N(y)} e_{xy} = 1 \quad \forall y \in X$$
$$\sum_{y \in N(x)} e_{xy} = 1 \quad \forall x \in X$$
$$e_{xy} \ge 0$$

Best of Both Worlds Fairness

Fractional allocation Y: Agent a_i gets α_i fraction of every real chore.

Y is WSD-PROP (and WSD-EF)

There exists a **fractional perfect matching** M_y in G_c^+ corresponding to the above allocation

Best of Both Worlds Fairness

Theorem [Birkhoff-von Neumann]:

A fractional perfect matching M can be expressed as a convex combination of polynomially many integral perfect matchings

 $M = p_1 M_1 + p_2 M_2 + \dots + p_q M_q$

Economic Guarantees

Ordinal Pareto Optimal: An allocation **X** is ordinary Pareto optimal if there does not exist any other allocation **Y** such that under all order-respecting valuations <u>no agent gets a worse bundle and at least one agent gets a better bundle in **Y**.</u>

Rank Maximal Matching \implies Ordinal Pareto optimal

Rank Maximal Matchings can be found in time $\mathcal{O}(m+n)^{3.5}$ [Irving 2003, Irving, Kavita, Mehlhorn, Michail 2006].

Economic Guarantees

Cardinal Pareto Optimal: An allocation **X** is Cardinally Pareto optimal if there does not exist any other allocation **Y** such that under some order-respecting valuations <u>no agent gets a worse bundle and at least one agent gets strictly better bundle in **Y**.</u>

Result:

Cardinally PO allocations do not always exist

Popularity

An allocation **X** is said to be Popular if **X** does not lose a head-to-head election with any other allocation **Y**.

Popular \implies Pareto optimal

Maximum cardinality Popular matchings in One-sided preference $\in \mathbb{P}$ [Abraham, Irving, Kavitha, Mehlhorn; SODA 2005]

Therefore, Finding a Popular WSD-PROP1 allocation $\in \mathbb{P}$

Popularity

- Mixed Setting: An item can be a chore for one agent and good for another.
- Matching based approaches for other fairness notions?

Conclusion:

Matching approach:

- Works for both Goods and Chores. (Alternate proof of existence using Hall's Theorem)
- Gives an integral polytope of all WSD-PROP1 allocations.
- Also gives economic efficiency guarantees.
- Best of Both World fairness notions.
- Is Parallelizable. That is, WSD-PROP1 is in **RNC**, **Quasi-NC**

• Brings along notions from Matching Theory Literature - Popularity, Matchings with quotas...

