Proportional Allocations of Indivisible Resources: Insights via Matchings.

Vishwa Prakash H.V. and Prajakta Nimbhorkar

Fair Division: Examples

- Allocation of house chores among roommates
- Dividing assets between divorcing couples
- Fair allocation of responsibilities among countries
- Inheritance allocations

A Fair Allocation Instance

- Set of agents:

$$
A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}
$$

- Set of items:

$$
B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}
$$

- $\forall i \in[n], v_{i}: 2^{B} \rightarrow \mathbb{R}_{\geq 0}$ is the valuation function of a_{i}
- Additive valuations:

$$
\forall S \subseteq B, v_{i}(S)=\sum_{b \in S} v_{i}(b)
$$

- Each agent a_{i} has an entitlement $\alpha_{i} \in[0,1]$,

$$
\sum_{i \in[n]} \alpha_{i}=1
$$

A Fair Allocation Instance

- Set of agents:

$$
A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}
$$

- Set of items:

$$
B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}
$$

- $\forall i \in[n], v_{i}: 2^{B} \rightarrow \mathbb{R}_{\geq 0}$ is the valuation function of a_{i}
- Additive valuations:

$$
\forall S \subseteq B, v_{i}(S)=\sum_{b \in S} v_{i}(b)
$$

- Each agent a_{i} has an entitlement $\alpha_{i} \in[0,1]$,

$$
\sum_{i \in[n]} \alpha_{i}=1
$$

- An allocation $X=\left\langle X_{1}, X_{2}, \ldots X_{n}\right\rangle$ is a partition of B such that agent a_{i} gets the part, bundle X_{i}

Proportional Item Allocation:

- An allocation $X=\left\langle X_{1}, X_{2}, \ldots, X_{n}\right\rangle$ is weighted proportional (WPROP) if $\forall_{i \in[n]} \quad v_{i}\left(X_{i}\right) \geq \alpha_{i} \cdot v_{i}(B)$ - When B is a set of goods $\forall_{i \in[n]} \quad v_{i}\left(X_{i}\right) \leq \alpha_{i} \cdot v_{i}(B)$ - When B is a set of chores
- We say X_{i} is a WPROP bundle for agent a_{i}

Does not always exist

Almost Proportional Allocations

- An allocation $X=\left\langle X_{1}, X_{2}, \ldots, X_{n}\right\rangle$ is weighted proportional up to one item (WPROP1) if
$\forall_{i \in[n]}, \exists b \in B \backslash X_{i} \quad v_{i}\left(X_{i} \cup b\right) \geq \alpha_{i} \cdot v_{i}(B)$ - When B is a set of goods $\forall_{i \in[n]}, \exists b \in X_{i} \quad v_{i}\left(X_{i} \backslash b\right) \leq \alpha_{i} \cdot v_{i}(B)-$ When B is a set of chores
- We say X_{i} is a WPROP1 bundle for agent a_{i}
- Does it always exist?

YES [Aziz, Moulin, Sandomirskiy; Oper. Res. Lett 2020]

Envy vs Proportionality

- Envy Free (EF): $\forall i, j \in[n] \quad v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j}\right)$
- Envy Free up to One Item (EF1): $\forall i, j \in[n] \quad \exists h \in X_{j}, v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j} \backslash h\right)$
- Appropriate generalisation to the weighted setting (WEF, WEF1) [Chakraborty, Igarashi, Suksompong, Zick; AAMAS 2020]
- $\mathrm{EF} \Longrightarrow \mathrm{PROP}$
$\mathrm{WEF} \Longrightarrow \mathrm{WPROP}$
$\cdot \mathrm{EF} 1 \Longrightarrow$ PROP1
WEF1 \nRightarrow WPROP1 [Chakraborty et al, AAMAS 2020]

Necessarily Fair Allocation

- Agents rank the items: $b_{3}>_{i} b_{1}>_{i} \cdots>_{i} b_{n}$
- Agents have private cardinal valuations that respects their ranking.

- An allocation $X=\left\langle X_{1}, X_{2}, \ldots, X_{n}\right\rangle$ is necessarily WPROP1 (WSD-PROP1) if $\forall a_{i} \in A$, bundle X_{i} is WPROP1 under all valuations that respects the agent rankings.

Necessarily Fair Allocation

An ordinal Instance of Fair Allocation: $I=\langle A, B, \Pi, \vec{\alpha}\rangle$

$$
\begin{array}{llll}
\\
0.3 & \begin{array}{l}
10 \\
b_{1}>b_{2}>b_{4}>b_{3} \\
0.2 \\
\\
13
\end{array} & \begin{array}{l}
1 \\
b_{2}> \\
b_{4}>
\end{array} b_{1}>b_{3} \\
7 & 7 & 7 & 0 \\
b_{1}>b_{4}>b_{3}>b_{2}
\end{array}
$$

WPROP1?

A Matching Approach

"Divorcing Made Easy" [Pruhs and Woeginger; FUN 2012]

WSD-PROP - strict ordering
"Fair assignment of indivisible objects under ordinal preferences"
[Aziz, Gaspers, Mackenzie and Walsh; AAMAS 2014]
WSD-PROP - weak ordering

Our Contribution: A matching approach to find WSD-PROP1 allocations

Existence of WSD-PROP1 Allocation

Do WSD-PROP1 allocations always exist?

- Goods: Yes [Aziz et.al and Hoefer et.al AAMAS 2023]

Approach: Eating Algorithm.

- Chores: Yes [Wu et.al EC 2023]

Approach: Weighted Reverse Round Robin.
Matching approach:

- Works for both Goods and Chores. (Alternate proof of existence using Hall's Theorem)
- Gives an integral polytope of all WSD-PROP1 allocations.
- Also gives economic efficiency guarantees.
- Best of Both World fairness notions.
- Is Parallelizable. That is, WSD-PROP1 is in RNC, Quasi-NC
- Brings along notions from Matching Theory Literature - Popularity, Matchings with quotas...

What Makes a WSD-PROP1 Bundle?

Building intuition with an example
Recall - chore allocation set up:

$$
a_{i}: b_{1}>b_{2}>b_{3}>b_{4} \cdots>b_{m}
$$

Heaviest Chore Least Favourite

$$
0.5 b_{1}>b_{2}>b_{3}>b_{4}>b_{5}>b_{6}
$$

Total: 6 Entitled Share: 3
Bundle value after removal of one chore: 4
NOT WPROP1

Total: 6 Entitled Share: 3
Bundle value after removal of one chore: 3
WPROP1

Total: 5 Entitled Share: 2.5
Bundle value after removal of one chore: 3
NOT WPROP1

Total: 5 Entitled Share: 2.5
Bundle value after removal of one chore: 2
WPROP1

Total: 3 Entitled Share: 1.5
Bundle value after removal of one chore: 2
NOT WPROP1

Total: 3 Entitled Share: 1.5
Bundle value after removal of one chore: 1

WPROP1

Total: 3
Bundle value after removal of one chore: 1

```
WSD-PROP1
```


Total: 3
Bundle value after removal of one chore: 1
WSD-PROP

For an agent a_{i}, a bundle X_{i} is WSD-PROP1 if it has at most 1 chore per every $\frac{1}{\alpha_{i}}$ chore in the sorted order.

Total: 3
Bundle value after removal of one chore: 1
WSD-PROP1

Characterizing WSD-PROP1 Bundles

A bundle is WSD-PROP 1 for an agent a_{i} if and only if
\bullet It has at most $\left\lfloor m \alpha_{i}\right\rfloor+1$ chores (at least $\left\lceil m \alpha_{i}\right\rceil-1$ many goods)

- The ℓ th item in the bundle (sorted) is later than or equal to $\left\lceil\frac{\ell-1}{\alpha_{i}}\right\rceil$ th chore according to a_{i}. (or within the first $\left\lfloor\frac{\ell}{\alpha_{i}}\right\rfloor+1$ goods)

Characterizing WSD-PROP1 Bundles

Characterizing WSD-PROP1 Bundles

Characterizing WSD-PROP1 Bundles

Matching Items to Slots

Allocation Graph : $G_{c}=(S \cup B, E)$

$$
m_{i}=\left\lfloor m \alpha_{i}\right\rfloor+1
$$

\bullet at most $\left\lfloor m \alpha_{i}\right\rfloor+1$ chores

- later than or equal to $\left\lceil\frac{\ell-1}{\alpha_{i}}\right\rceil$ th chore

Finding WSD-PROP1 Allocations

Lemma 1:

A matching that matches all the vertices in B (B-perfect) corresponds to a WSD-PROP1 allocation and vice-versa

Matching Polytope \equiv WSD-PROP1 Polytope

Existence of WSD-PROP1 Allocations

Lemma 2:

The allocation graph always admits a Bperfect matching.

Proof:

Application of Hall's Theorem.
Given a bipartite graph $G=(X \cup Y, E)$, there exists a Y-perfect matching in G iff $\forall S \subseteq Y,|N(S)| \geq|S|$

Finding WSD-PROP1 Allocations Using Matchings

Algorithm to find a WSD-PROP1 allocation:
Input: $I=\langle A, B, \Pi, \vec{\alpha}\rangle$
Output: A WSD-PROP1 allocation

1. Construct the allocation graph $G_{c}=(S \cup B, E)$
2. Find a B-perfect matching M in G_{c}
3. Return the allocation corresponding to M

Optimizing over WSD-PROP1 Polytope

- Let $u_{i}: B \rightarrow[0,1]$ denote how efficiently agent a_{i} can do chores.
- u_{i} can be treated as edge weights.
- Maximum weight B-perfect matching in G_{c}

Best of Both Worlds

Using Randomization

Using Randomization

Using Randomization

Using Randomization

Best of Both Worlds Fairness

A tuple $\left(\left(p_{1}, Y^{1}\right),\left(p_{2}, Y^{2}\right), \cdots,\left(p_{q}, Y^{q}\right)\right)$ where $\sum_{i \in q} p_{i}=1$ and $p_{i} \in[0,1]$

Ex-Post WSD-PROP1 : If every Y^{i} is WSD-PROP1
Ex-Ante WSD-PROP : If Expected bundle value is WSD-PROP for all agents.

Does there exist such a tuple?

Balancing the Allocation Graph

1. $m_{i} \leq\left\lfloor m \alpha_{i}\right\rfloor+1$
2. $\quad r_{t} \geq\left\lceil\frac{\ell-1}{\alpha_{i}}\right\rceil$

Balancing the Allocation Graph

1. $m_{i} \leq\left\lfloor m \alpha_{i}\right\rfloor+1$
2. $\quad r_{t} \geq\left\lceil\frac{\ell-1}{\alpha_{i}}\right\rceil$

Balancing the Allocation Graph

A perfect matching in G_{c}^{+}corresponds to a WSD-PROP1 allocation and vice-versa.

For a bipartite graph $G=(X \cup Y, E)$:
Matching
Polytope $\left\{\begin{array}{cl}\sum_{x \in N(y)} e_{x y}=1 & \forall y \in Y \\ \sum_{y \in N(x)} e_{x y}=1 & \forall x \in X \\ e_{x y} \geq 0 & \end{array}\right.$

Best of Both Worlds Fairness

Fractional allocation Y: Agent a_{i} gets α_{i} fraction of every real chore.
Y is WSD-PROP (and WSD-EF)

There exists a fractional perfect matching M_{y} in G_{c}^{+}corresponding to the above allocation

Best of Both Worlds Fairness

Theorem [Birkhoff-von Neumann]:

A fractional perfect matching M can be expressed as a convex combination of polynomially many integral perfect matchings

$$
M=p_{1} M_{1}+p_{2} M_{2}+\cdots+p_{q} M_{q}
$$

Economic Guarantees

Ordinal Pareto Optimal: An allocation \mathbf{X} is ordinary Pareto optimal if there does not exist any other allocation \mathbf{Y} such that under all order-respecting valuations no agent gets a worse bundle and at least one agent gets a better bundle in \mathbf{Y}.

$$
\text { Rank Maximal Matching } \Longrightarrow \text { Ordinal Pareto optimal }
$$

Rank Maximal Matchings can be found in time $\mathcal{O}(m+n)^{3.5}$ [Irving 2003, Irving, Kavita, Mehlhorn, Michail 2006].

Economic Guarantees

Cardinal Pareto Optimal: An allocation \mathbf{X} is Cardinally Pareto optimal if there does not exist any other allocation \mathbf{Y} such that under some order-respecting valuations no agent gets a worse bundle and at least one agent gets strictly better bundle in \mathbf{Y}.

Result:
Cardinally PO allocations do not always exist

Popularity

An allocation \mathbf{X} is said to be Popular if \mathbf{X} does not lose a head-to-head election with any other allocation \mathbf{Y}.

Popular \Longrightarrow Pareto optimal

Popularity

Maximum cardinality Popular matchings in One-sided preference $\in \mathbb{P}$ [Abraham, Irving, Kavitha, Mehlhorn; SODA 2005]

Therefore, Finding a Popular WSD-PROP1 allocation $\in \mathbb{P}$

Open Questions

- Mixed Setting: An item can be a chore for one agent and good for another.
- Matching based approaches for other fairness notions?

Conclusion:

Matching approach:

- Works for both Goods and Chores. (Alternate proof of existence using Hall's Theorem)
- Gives an integral polytope of all WSD-PROP1 allocations.
- Also gives economic efficiency guarantees.
- Best of Both World fairness notions.
- Is Parallelizable. That is, WSD-PROP1 is in RNC, Quasi-NC
- Brings along notions from Matching Theory Literature - Popularity, Matchings with quotas...

Thank You!

Questions?

