
The Efficiency of the HyperPlay Technique Over Random Sampling

Michael Schofield and Michael Thielscher
School of Computer Science and Engineering

UNSW Australia
{mschofield, mit}@cse.unsw.edu.au

Abstract

We show that the HyperPlay technique, which main-
tains a bag of updatable models for sampling an
imperfect-information game, is more efficient than
taking random samples of play sequences. Also, we
demonstrate that random sampling may become impos-
sible under the practical constraints of a game. We show
the HyperPlay sample can become biased and not uni-
formly distributed across an information set and present
a remedy for this bias, showing the impact on game re-
sults for biased and unbiased samples. We extrapolate
the use of the technique beyond General Game Playing
and in particular for enhanced security games with in-
game percepts to facilitate a flexible defense response.

Introduction
General Game Playing agents are expected to be able to play
any game well with no prior knowledge or experience of the
game. The game rules are declared in a Game Description
Language (GDL) (Love et al. 2006), giving the roles in the
game, the initial state of the game, the legal moves in any
state of the game, the successor function for state transition,
the terminal conditions and the reward structure for all roles.

In this field of research, games with imperfect informa-
tion present a special challenge to the artificially intelli-
gent agents. Such games provide limited information about
the moves made by other roles leading to some uncertainty
about the true state of the game. Therefore, the agent must
reason across an information set in order to evaluate its move
choices. This expands the search significantly over perfect-
information games where all of the moves are known. In
fact, an information set may be so large and the time con-
straints so tight that the agent may only be able to take a
sample of an information set.

Perfect-information games are more popular among re-
searchers as evidenced by the proliferation of GDL files
(Tiltyard, Dresden) and competitions (Genesereth, Love,
and Pell 2005) for perfect-information games. Imperfect-
information research has been slow, with few games being
converted to GDL-II and even fewer competitions.

The General Game Playing (GGP) community use the
term “imperfect” to mean that some moves in the game may
be hidden while the initial state of the game and the reward
structure are known to all roles. The general AI community

calls this “incomplete”, and in the past we have done the
same. However, there is enough awareness of this difference
for us to use the GGP terminology.

The GDL-II specification (Thielscher 2010) augments the
original GDL with the addition of percepts to give signals
to agents, and a role for the random player1. If the percepts
are limited then the agent may not be able to distinguish
between several move histories in the game, giving rise to
an information set (Schiffel and Thielscher 2014). Size and
time constraints may force the agent to use all of its re-
sources in an attempt to sample an information set in a very
large search space,2 resulting in little time for reasoning.

HyperPlay (Schofield, Cerexhe, and Thielscher 2012)
overcomes this sampling difficulty by maintaining a contin-
uously updatable bag of models of the game and uses this
to provide a sample of an information set. As each move is
made and percepts received, the models are updated by ran-
domly adding to the history and so providing a new sample.
When histories become invalid they are backtracked to a pre-
viously valid point and moved forward until a new sample is
found.

Our motivation for this paper is proving the efficiency
and effectiveness of the HyperPlay technique. Can it pro-
vide a sample of an information set more efficiently that a
random sampling approach? Are there games where random
sampling is impossible? Will the sample be uniformly dis-
tributed across an information set thereby providing an un-
biased starting point for evaluation? If the sample is biased,
can this be rectified?

In this paper we explore all of these questions using a bas-
ket of games that represent all aspect of “imperfect” infor-
mation. We design experiments to expose the worst aspect
of HyperPlay and look at the impact on competitive game-
play as well as remedies for any shortcomings. Addition-
ally we supplement the games available in the GGP commu-
nity by introducing GDL-II versions of two popular security
games, the Transit game and the Border Protection game.
Each game is reproduced in the GDL-II as part of the basket
of games used to test out queries. Details of the conversion
are presented later in the paper and a sample of the Transit
game code is shown in Figure 1.

1The random role is “nature” in traditional game theory.
2In some game this is impossible within the constraints.

1 (role defender)

2 (role random)

3 (init (round 1))

4 (init (turn evader))

5 (init (location defender (cell 3 1)))

6

7 (<= terminal

8 (true (round 13)))

9 (<= (goal defender 100)

10 (true (evadercaught))

11 (true (returnedtobase)))

12

13 (<= (legal random (evaderat 1 ?y))

14 (file ?y)

15 (true (round 1)))

16 (<= (legal random (movesuccess ?p))

17 (movesuccess ?p)

18 (true (turn defender)))

19 (<= (legal defender (moveto ?x1 ?y1))

20 (true (location defender (cell ?x ?y)))

21 (adjacent ?x ?y ?x1 ?y1)

22 (true (turn defender)))

23 (<= (sees defender (evaderat ?x ?y))

24 (does random (evaderat ?x ?y))

25 (true (location defender (cell ?x1 ?y1)))

26 (adjacent ?x ?y ?x1 ?y1))

27 (<= (sees defender (movefail))

28 (does random (movesuccess 0)))

29

30 (<= (newlocation defender (cell ?x ?y))

31 (true (turn defender))

32 (not (does random (movesuccess 0)))

33 (does defender (moveto ?x ?y)))

34 (<= (next (turn defender))

35 (true (turn evader)))

36 (<= (next (location evader (cell ?x ?y)))

37 (true (turn evader))

38 (does random (evaderat ?x ?y)))

39 (<= (next (location defender (cell ?x ?y)))

40 (true (turn defender))

41 (newlocation defender (cell ?x ?y)))

42 (<= (next (location defender (cell ?x ?y)))

43 (not (true (turn defender)))

44 (true (location defender (cell ?x ?y))))

Figure 1: A sample of the GDL-II description of the Transit security game highlighting the key aspects of the game.

Background
In this section, we present the Game Description Lan-
guage for imperfect-information games, showcasing the se-
curity games. We highlight differences in playing perfect-
information and imperfect-information games, and look at
information set sampling using HyperPlay and random ap-
proaches.

GDL-II
The General Game Playing agent requires a language to
describe an arbitrary game with a set of rules. The Game
Description Language (GDL) declares these rules with
a formal syntax. The GDL was formalized by Love et
al. (2006). Later Thielscher (2010) extended the language
for imperfect-information games incorporating syntactic re-
strictions that ensure that every valid game description has a
unique interpretation as a state transition system.

The enhanced language (GDL-II) has these additional
properties:
• (role random) to act for nature; and
• (sees ?role ?percept) to provide signals.

In Figure 1 we see a partial GDL-II description of the
Transit security game (Yin et al. 2012) adapted for GGP.
Lines 1-2 show the roles3, lines 3-5 show the initial state of
the game, lines 7-8 show the terminal condition, lines 9-11
show one of the goal rules, lines 13-22 showcase the legal
moves, lines 23-28 identify percepts, and lines 30-44 char-
acterize the successor function.

Security games
Security games have been a topic of research recently with
some success in real world applications, for example, public

3The role of the evader is played by random.

transport (Yin et al. 2012). Until recently these games be-
come more accessible due to improvements in solving mas-
sive imperfect-information games (Bowling et al. 2015). It
is this massiveness and the behavioral strategy that maps ev-
ery action in every state to a probability that prevents on-line
play. We take an adaptation of the Transit game and Border
Protection (Bošanskỳ et al. 2015) and write an equivalent
game in the GDL-II.

Transit Game sees an evader travel from left to right in
the grid in Figure 2 while the defender start and finished
at node S. This replicates the representation of Lisỳ, Davis,
and Bowling (2016) which was solved using counterfactual
regret minimization. We add the enhancement that the de-
fender can get signals from adjacent nodes about the pres-
ence of the evader. This signal overlay allows for in-game
response adjustments in two respects. Firstly there is the ob-
vious “he’s over there” which collapses an information set,
and the more subtle “can’t sees any evaders” which invali-
dates some models of the game causing re-sampling. It is the
second aspect of signaling that is of interest in this paper.

Figure 1 shows a sample of the encoding of this game
in the GDL. The random role makes moves for the evader,
plus decides if the defender’s moves are successful. The
auxilliary relation (newlocation defender (cell
x y)) calculated in line 30-33 will fail if random chooses
(movesuccess 0), mimicking the behaviour in the orig-
inal game.

Border Protection has an evader attempting to escape
detection en-route with the protector covering the arrival
points and receiving random signals from locations where
no evader was detected. Again these negative signals invali-
date some models of the game causing a re-sampling and a
response adjustment. This version of the game wraps around
so as to model the possibilities in global transportation.

Figure 2: Left: Transit security game, Center: Border Protection security game, Right: Example of silos in the game tree.

Playing Imperfect-Information Games

Every GDL-II game description induces a game tree (Schif-
fel and Thielscher 2014) whose vertices map to states in the
game and whose edges map to joint move vectors. Each ver-
tex can be described by a set of fluents4 as well as an ordered
list of messages in the form of a history. Fluents can be iden-
tical in different states5, but each vertex on the game tree has
only one path (history) from the root (initial state). Therefore
we work with histories not states to make evaluations.

An agent may have imperfect-information histories, not
be able to distinguish one history from another and giving
rise to an information set being defined as “the set of indis-
tinguishable histories”. Some histories in an information set
are more likely than others and so we work with a weighted
sample6 based on the choices made along the path of the his-
tory. The agent grounds the unknown variables for a model
of the game, and a sample of an information set.

Sampling an Information Set is used as the starting
point for a forward search of the game tree. In order to gen-
erate the perfect-information histories required, each miss-
ing move must be substituted with one of the legal moves at
the time, such that, all percepts arising from this substitution
agree with the known percepts from the game (Schofield,
Cerexhe, and Thielscher 2012)(Edelkamp, Federholzner,
and Kissmann 2012). We use a deterministic approach start-
ing from the initial state of the game working towards the
current round. As the game progresses such valid substitu-
tions become more difficult.

Move Selection maximizes the perceived payoff using a
forward search of the game tree originating from each le-
gal move choice. There are many techniques: UCT (Schäfer,
Buro, and Hartmann 2008), MiniMax (Clune 2007), to name
a few. In contrast to these, ISMCTS (Cowling, Powley, and
Whitehouse 2012) overlays the individual searches into a
single tree. However, like the others, ISMCTS7 still guesses
the hidden information. It is guessing the hidden information
that is the focus of this paper.

4Things that are (true ?) in the game state.
5Imagine two board games with identical configurations, but

different move histories.
6This is sometimes called a weighted particle filter (Veres and

Norton 2001).
7We discuss ISMCTS in more detail after the conclusion.

HyperPlay
This technique maintains a bag of models of the game
and updates them from one round to the next (Schofield,
Cerexhe, and Thielscher 2012). This takes advantage of re-
search into set sampling (Richards and Amir 2012) and par-
ticle system techniques (Silver and Veness 2010) where the
sample of an information set is maintained from one round
to the next. We show that the incremental update takes far
less time and is less likely to fail than taking a new random
sample for each round. If a percept is received that inval-
idates a model then the technique backtracks and explores
the local subtree until a new model is found.

When a model is updated by substituting a legal move for
the missing information a sample is created. In doing so, the
sample is elevated to fact and the resulting evaluation suf-
fers from the Strategy Fusion Error (Frank and Basin 1998).
That is, the agent will not place any value on information
gathering moves as it believes it already knows everything.

The Strategy Fusion Error has been overcome with
HyperPlay-II (Schofield and Thielscher 2015), a nested
player that employs an Imperfect-Information Simulation to
evaluate the current set of legal moves. In turn, this tech-
nique suffers from poor scalability as it is a nested player
and requires resources in the order of O(n2) (Schofield and
Thielscher 2016).

Theoretical Analysis
In this section we present the theoretical basis for the exper-
imental measurement.

Random Sampling
We define the probability of taking a valid sample randomly
as the product of the probabilities of randomly choosing a
valid legal move in each round of the game.

P (V alid(hn)) ≤
n∏

R=1

P (V alid(~aR)) (1)

P (V alid(~aR)) = |{V alid(~aR)}|/|{~aR}| (2)

V alid(~aR) = [ρ(δ(sR,~aR)) = ρ(GR+1)] (3)

We use h for history,R for round, ~a for joint move vector,
s for state,G for game, ρ() for percepts arising from actions,
and δ() as the successor function.

Equation 1 multiplies the probabilities of successive valid
joint-move vectors across rounds R. We use an inequal-
ity as a previously valid choice may be invalid at a later
round. Equation 2 gives the probability of a valid move vec-
tor, while equation 3 defines a valid move vector as one
where the precepts in the move implementation agree with
the game currently being played.

Biased Samples

The HyperPlay technique advances each model by randomly
substituting a legal move for missing information. If the
move is invalid then it searches the local sub tree for a valid
combination. In extreme cases the subtree is expanded be-
yond the local region until a new model is found. This gives
rise to a shortcoming of this technique. That is, the game tree
can be divided into a small number of subtrees based on the
first legal move substitution. We call these subtrees “silos”,
as shown in Figure 2. Initially there will be an equal num-
ber of models in each silo. As the game progresses one silo
may have only one viable history resulting in an over sam-
pling as all of the models converge. We can compare sample
histories to identify biased samples.

Uniformly Distributed Samples

We use a weighted particle filter, and so, some samples are
more likely than others. However, a priori we must assume
a uniform distribution across an information set.

When the sample size is smaller than the size of an in-
formation set it is difficult to measure the uniformity of the
distribution, but when the sample size is much larger than
the size of an information set then we can count the num-
ber of times each element of an information set is sampled
and use Pearson’s χ2 measure for a uniform distribution as
a measure of the probability that the observed distribution
matches the expected distribution.

χ2 =
∑
s∈HR

(Os − Es)
2/Es (4)

Es = |M |/|HR| (5)

We useH for a set of histories, s for state,R for the round
in the game and M for a bag of models.

Equation 4 sums the square of the difference between
observed Os and expected Es sampling frequencies. The
resulting statistic is converted to a probability via pre-
calculated tables. In this case the expected value Es is the
same for each element in an information set, being the mod-
els per element.

Counting States Visited

It is common to measure a search of the game tree by count-
ing the states visited or nodes touched. This is because the
primary cost in traversing the game tree is the calculation of
the successor function. By comparison storing and retriev-
ing previously visited states from memory is low cost. Each
state is counted as its node is touched in the game tree.

Design of Experiments
We outline the design of experiments to expose the short-
comings of HyperPlay and identify the impact on the agent.

Sampling Efficiency
The efficiency of the sampling process is tested by playing a
batch of games and recording the states visited in each round
when updating each of the models. Every round this number
is written to a log file and the files collated. The statistic is
examined and used to calculate the probability of success-
fully making a random selection as well as the cost of up-
dating the model. The resources for each role are set so that
it plays at well below the optimal level. This ensures good
variety in the game-play and a broad base for the calculation
of the statistic.

The HyperPlay process tests each move substitution in a
random order, thus we can gain an accurate estimate of the
probability in equation 2 by calculating the “first time” suc-
cesses in that round.

Biased Samples
Bias is measured by playing a batch of games and logging
the history footprint of each model for each round. The foot-
prints are examined for repetition and a frequency chart is
created. A Pearson’s χ2 test is then performed on the distri-
bution and a probability value is calculated. The resources
for each role are set so that it plays at well below the opti-
mal level. This ensures good variety in the game-play and a
broad base for the statistics.

Bias Remedies
These are examined by playing two batches of games, with
and without remedies. The final scores for a designated
player are averaged and reported along with a confidence
interval. The resources for each player are set so that the
player is competitive within a realistic time constraint based
on the game complexity and the common competition times.
In competition an agent would truncate its search to meet
the time constraints, this would distort the statistic so we al-
lowed the agent to complete the search for each round.

The first remedy was to inversely weight the results from
each model based on its sample frequency. The mathemat-
ical adjustment would give each element of an information
set an equal impact in the evaluation of outcomes. If an el-
ement was represented by 5 models then each model con-
tributed only 20% of its outcomes to the evaluation process.

The second remedy was to re-balance the sample by re-
placing a more frequently sampled history with a less fre-
quently sampled history so that each element was sampled
the same number of times. Although this may seem to be the
same as the first remedy it makes better use of the player’s
resources.

Roles
The roles were chosen to give meaningful results. In two-
player turn-taking games we use the second player for the
statistics as they receive imperfect-information first. In two-
player simultaneous play we choose arbitrarily.

Figure 3: Cost of sampling using HyperPlay compared to performing a random sample, as measured by states visited.

Experimental Procedure
Because of variable run times on different hardware we re-
port the number of states visited. When indicative times are
given they are for computation performed by a single agent
on an Intel Core i7-2600 @ 3.4GHz in a single thread.

Where appropriate a confidence level of 95% is used in a
two-tailed calculation using the standard deviation for a bi-
nomial distribution. Where an average is statistically mean-
ingless, a median and upper & lower quartiles are reported.

Batch sizes were calculated to give statistically meaning-
ful results. Generally each experiment had a batch size of
1000 games, or 10,000 observations.

Games
The basket of games chosen for experiments was drawn
from the games available within the GGP community, and
from the newly converted security games. A variety of in-
formation imperfections are represented in the games. Cut
down versions of the game are used, when possible, without
loss of generality.

Battleships in Fog is a two-player, turn-taking, random
start game with information gathering moves. It requires a
HP-II (Schofield and Thielscher 2015) player to be played
effectively.

Blind Breakthrough is a two-player, turn-taking blind
variant of the Breakthrough game. There are no informa-
tion gathering moves and it can be effectively played with a
HyperPlayer using a tree search for move evaluation.

Border Protection is a two-player, turn-taking security
game where one role is the random player. Percepts are pro-
vided to the defender to facilitate in-game response changes.
There are no information gathering moves and can be ef-
fectively played with a HyperPlayer using a tree search for
move evaluation.

Guess Who is a single-player mystery solving game
where all moves are information gathering moves. It requires
a HP-II player to be played effectively.

Hidden Connect is a two-player, turn-taking game that is
a blind version of Connect4. There are no information gath-
ering moves and it can be effectively played with a Hyper-
Player using a tree search for move evaluation.

KriegTTT is a two-player, simultaneous move game that
is a blind version of TicTacToe. There are no information
gathering moves and it can be effectively played with a Hy-
perPlayer using a tree search for move evaluation.

Mastermind is a single-player mystery solving game
where all moves are information gathering moves. It is
solved in the backtracking of invalid models by either HP
or HP-II player. A well resourced player can achieve a bi-
nary search.

Transit is a two-player, turn-taking security game where
one role is the random player. Percepts are provided to the
defender to facilitate in-game response changes. There are
no information gathering moves and it can be effectively
played with a HyperPlayer using a tree search for move eval-
uation.

Case Study
Game variants and sizes have been chosen to prove (or dis-
prove) the experimental objectives with a minimum of com-
putational resources. However, there is value in extending
the experimentation using one of the full scale versions of
a common game in the form of a case study. We use Blind
Breakthrough in the full 8x8 format to show how impractical
random sampling can be. We use a sub-optimal HyperPlayer
to ensure good variety in the game-play and a broad base for
the calculation of the probability in equation 2.

The intention is to show that random sampling would be-
come impossible within the normal time constraints, yet the
HyperPlayer could successfully maintain a bag of models
throughout the entire game. It should be noted that the Hy-
perPlayer is capable of taking individual models off line
if the backtracking process consumes too many resources.
This is a design features for managing large search spaces.

Results
We present the experimental results along with comments
that explain and highlight without drawing any conclusions.

Sampling Efficiency
In Figure 3 we show the HyperPlay cost of sampling com-
pared to taking a random sample. The lines on the chart do

Game Round Q1 Median Q3

Battleships In Fog 6 0.030 0.158 0.454

Blind Breakthrough 6 0.006 0.156 0.663

Border Protection 4 0.005 0.040 0.262

Guess Who 5 0.001 0.001 0.094

Hidden Connect 4 0.001 0.001 0.001

Krieg TTT 3 0.001 0.001 0.001

Mastermind 3 0.027 0.211 0.520

Transit 5 0.001 0.001 0.116

Figure 4: Probability of a uniformly distributed sample of an
information set created by HyperPlay in mid game.

not represent any continuous function, they just connect re-
sults from the same game. The horizontal axis is a measure
of completion of the game. When a game is 100% complete
then it is terminal and no sampling is required.

The game-play is different for each game with some be-
ing turn-taking and others not, some games have watershed
rounds where percepts collapse an information set. Thus,
there is no rhyme or reason for the shape of the curves.

The experimental accuracy is not depicted on the chart.
Each game was configured to provide approximately 10,000
observations for each data point on the chart.

The lone data point well above the 100% mark in Blind
Breakthrough is when the black player initially encounters
enemy pawns. The resulting re-sample is less efficient than
taking new random samples.

Uniform Distribution
Figure 4 shows the probability that a sample performed by
HyperPlay is uniformly distributed across an information set
in the middle of a game. From Figure 3 we see that game
play is not uniform, so the worst result (most biased) is
shown from the mid-game rounds.

As one playout of a game is not the same as another it is
not possible to average the results so we show a median and

Game Round Q1 Median Q3

Battleships In Fog 12 0.004 0.058 0.150

Blind Breakthrough 11 0.246 0.998 1.000

Border Protection 7 0.001 0.001 0.004

Guess Who 10 0.121 0.399 0.792

Hidden Connect 8 0.001 0.001 0.001

Krieg TTT 5 0.001 0.167 0.992

Mastermind 5 0.413 0.899 1.000

Transit 11 0.996 0.999 1.000

Figure 5: Probability of a uniformly distributed sample of an
information set created by HyperPlay in the end game.

Game Base Weight Balance

Battleships In Fog 82.0±2.4 85.3±2.2 82.8±2.3

Blind Breakthrough 52.5±3.1 51.4±3.1 53.2±3.1

Border Protection 51.0±3.1 49.2±3.1 51.0±3.1

Guess Who 67.8±2.9 68.6±2.9 69.4±2.9

Hidden Connect 37.2±3.0 36.6±3.0 36.0±3.0

Krieg TTT 51.6±3.1 50.9±3.1 51.7±3.1

Mastermind 92.8±1.6 93.3±1.6 93.8±1.5

Transit 72.2±2.8 74.6±2.7 73.0±2.8

Figure 6: Average performance of player using different
remedies to unbalanced samples of an information set.

upper and lower quartile readings of the probability value
from a Pearson’s χ2 test. The median value for Battleships
in Fog of 0.158 infers that there is a 15.8% probability the
sample is uniformly distributed.

Figure 5 shows a similar statistic for the end-game. Again
the worst result is shown for the final rounds of the game.

It is worth noting that some samples are more uniform at
the end of the game as the information set shrinks under cer-
tainty. Blind Breakthrough becomes a pawn swapping exer-
cise towards the end game and nears certainty. Mastermind
becomes certain as the binary search nears completion and
the Transit game almost always becomes certain at the end
when the evader is caught.

Remedy for Biased Samples
In Figure 6 we show the results of a batch of games played
with different player configurations. The base case is two
evenly matched players with no attempt to correct biased
samples. The weight remedy reduce the weighting of a sam-
ple proportional to its repetition, and the balance remedy re-
balances the sample every round. The mean values show a
95% confidence interval.

Round P (V alid(hR)) sup|{hR}| Active Models

1 100% 22 100%

2 100% 22 100%

- - - -

16 1.19% 4.2 E+11 71.9%

17 0.73% 1.5 E+13 70.3%

- - - -

32 < 0.01% 6.0 E+23 50.0%

33 < 0.01% 1.7 E+25 48.7%

Figure 7: Full sized Blind Breakthrough with the probability
of randomly choosing a valid play history, an upper bound
on the set size and the models still active.

Case Study
In Figure 7 we show the results from the full sized ver-
sion of Blind Breakthrough. Both players were resourced
just enough so as to exhibit a variety of game plays with-
out making “stupid” moves. The results show an estimated
upper bound on the set of play histories and the probability
that a random history is valid in the game being played.

Also note that some models are taken off line by the Hy-
perPlayer if they exceed 100,000 states visited in the back-
tracking stage. This is a design feature to prevent paralysis
of the player. Such models can always be brought back on
line if time permits.

Interpretation of Results
We present an interpretation of the results along with the
main insights gleaned from the conduct of the experiments.

Sampling efficiency results show a significant reduction
of the cost of sampling by using HyperPlay. The intuition
here is that the cost of backtracking the local subtree will
always be cheaper than starting each new sample attempt
from the root node. While there will always be exceptions8

the general rule is the longer and larger the game, the more
efficient HyperPlay becomes.

Biased samples results show that in every game tested the
sample became biased, with least mid-game bias in Master-
mind with a 21% probability of an unbiased sample. How-
ever, by the end-game three of the games had given the agent
enough percepts to allow it to re-sample in an unbiased way.

The biased sample is a genuine concern as many of the
search techniques are mathematically predicated on a uni-
form random sample of an information set.

Remedies for biased samples was the hardest aspect of
this research. That is, to find a repeatable, reproducible, re-
alistic situation where the bias needs to be corrected in order
to improve the agents performance. While it was possible to
manipulate the game-play to create scenarios where choices
were compromised by biased samples, these scenarios were
so improbable as to have little impact on the average game.

By and large, the remedies for biased samples do not im-
prove the agent’s performance. However, the cost of both
remedies is so small that it is prudent and mathematically
reassuring to implement them.

The case study game is popular in GGP competitions,
and so the results are very relevant to this work. In the 32nd
round of a game the HyperPlayer could expect 1.3 models of
a bag of 100 models to become inactive after each backtrack-
ing 100,000 states. The successful models took an average
of 745 states to update, giving a total cost of 166,000 states
to take the sample. Each valid random sample would cost
more than 32/2/0.01% > 160, 000 states. In this context,
the random sampler would be completely ineffective taking
only one sample for every 48 samples taken by the Hyper-
Player.

This result is totally consistent with the cut down version
of the game repoted in Figure 3 which shows a long term
cost of 2.2% for HyperPlay over random.

8The first encounter of enemy pawns in Blind Breakthrough
causes significant backtracking beyond the local subtree.

Conclusion
We conclude that HyperPlay is generally more efficient than
a random search, and in some cases an order of magnitude
more efficient. Clearly HyperPlay samples become biased,
but with easy remedy. In some cases random sampling is
impossible within the constraints of the game. In short, the
technique is efficacious in games with imperfect informa-
tion.

We expect this technique to be applicable in Artificial
General Intelligence applications wherever an information
set of indistinguishable action histories exists. Although
the technique was developed within the context of General
Game Playing it is not bound to that domain, or restricted by
the Game Description Language. Any search that can be de-
scribed using a connected, directed graph with a single root
node that is acyclic in its undirected form will benefit from
this technique.

Future Work
We previously mentioned Information Set MCTS (Cowling,
Powley, and Whitehouse 2012). This represents an impor-
tant advancement in imperfect-information game play with
the possibility of significantly improving the move selection
process for online players. Its primary focus is the forward
search of the game tree and the evaluation of the move op-
tions. In this paper we focused on deterministic sampling of
play histories (a backward looking search) and so we only
used rudimentary random playouts for move evaluation.

Future work in this area would be our next priority and is
likely to include:
• Can HyperPlay be coupled with ISMCTS to produce a

superior player,
• Can ISMCTS overcome the Strategy Fusion Error and re-

place HyperPlay-II which is a ”resource pig”, and
• Can a player based on ISMCTS successfully play games

like The Monty Hall Game which requires a weighted par-
ticle filter, and if not, can the HyperPlay ChoiceFactor be
incorporated into such a player?

Acknowledgments
This research was supported by the Australian Research
Council under grant no. DP150103034. The second author
is also affiliated with the University of Western Sydney.

References
Bošanskỳ, B.; Jiang, A. X.; Tambe, M.; and Kiekintveld, C.
2015. Combining compact representation and incremental
generation in large games with sequential strategies. In Pro-
ceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, 812–818. AAAI Press.
Bowling, M.; Burch, N.; Johanson, M.; and Tammelin, O.
2015. Heads-up limit holdem poker is solved. Science
347(6218):145–149.
Clune, J. 2007. Heuristic evaluation functions for general
game playing. In Proceedings of the AAAI Conference on
Artificial Intelligence, 1134–1139.
Cowling, P. I.; Powley, E. J.; and Whitehouse, D. 2012. In-
formation set monte carlo tree search. IEEE Transactions on
Computational Intelligence and AI in Games 4(2):120–143.
Dresden game server. http://ggpserver.general-game-
playing.de/ggpserver/. Accessed: 2016-08-30.
Edelkamp, S.; Federholzner, T.; and Kissmann, P. 2012.
Searching with partial belief states in general games with
incomplete information. In Proceedings of the German An-
nual Conference on Artificial Intelligence (KI), 25–36.
Frank, I., and Basin, D. 1998. Search in games with incom-
plete information: A case study in using Bridge card play.
Artificial Intelligence 100(1–2):87–123.
Genesereth, M. R.; Love, N.; and Pell, B. 2005. General
game playing: Overview of the AAAI competition. AI Mag-
azine 26(2):62–72.
Lisỳ, V.; Davis, T.; and Bowling, M. 2016. Counterfactual
regret minimization in sequential security games. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
- Workshop on Computer Poker and Imperfect Information
Games.
Love, N.; Hinrichs, T.; Schkufza, D. H. E.; and Genesereth,
M. 2006. General game playing: Game description lan-
guage specification. Technical Report LG–2006–01, Stan-
ford Logic Group.
Richards, M., and Amir, E. 2012. Information set generation
in partially observable games. In Proceedings of the AAAI
Conference on Artificial Intelligence.
Schäfer, J.; Buro, M.; and Hartmann, K. 2008. The UCT al-
gorithm applied to games with imperfect information. Ph.D.
Dissertation.
Schiffel, S., and Thielscher, M. 2014. Representing and
reasoning about the rules of general games with imper-
fect information. Journal of Artificial Intelligence Research
49:171–206.
Schofield, M. J., and Thielscher, M. 2015. Lifting
model sampling for general game playing to incomplete-
information models. In AAAI, 3585–3591.
Schofield, M., and Thielscher, M. 2016. The scalability of
the hyperplay technique for imperfect-information games.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence - Workshop on Computer Poker and Imperfect Infor-
mation Games.

Schofield, M.; Cerexhe, T.; and Thielscher, M. 2012. Hy-
perPlay: A solution to general game playing with imperfect
information. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 1606–1612.
Silver, D., and Veness, J. 2010. Monte-Carlo planning in
large POMDPs. In Proceedings of the Annual Conference
on Neural Information Processing Systems (NIPS), 2164–
2172.
Thielscher, M. 2010. A general game description language
for incomplete information games. In Proceedings of the
AAAI Conference on Artificial Intelligence, 994–999.
Tiltyard. http://tiltyard.ggp.org/. Accessed: 2016-08-30.
Veres, G., and Norton, J. 2001. Weighted particle filter
for state estimation. In Proceedings of the IASTED In-
ternational Conference: Control and Applications, Banff,
Canada, 115–120.
Yin, Z.; Jiang, A. X.; Johnson, M. P.; Kiekintveld, C.;
Leyton-Brown, K.; Sandholm, T.; Tambe, M.; and Sullivan,
J. P. 2012. Trusts: Scheduling randomized patrols for fare
inspection in transit systems. In Proceedings of the Innova-
tive Applications of Artificial Intelligence Conference.

