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Abstract. Unlike traditional game playing, General Game Playing is
concerned with agents capable of playing classes of games. Given the rules
of an unknown game, the agent is supposed to play well without human
intervention. For this purpose, agent systems that use deterministic game
tree search need to automatically construct a state value function to
guide search. Successful systems of this type use evaluation functions
derived solely from the game rules, thus neglecting further improvements
by experience. In addition, these functions are fixed in their form and
do not necessarily capture the game’s real state value function. In this
work we present an approach for obtaining evaluation functions on the
basis of neural networks that overcomes the aforementioned problems. A
network initialization extracted from the game rules ensures reasonable
behavior without the need for prior training. Later training, however,
can lead to significant improvements in evaluation quality, as our results
indicate.

1 Introduction

Developing an agent for a specific game allows to include game-specific knowledge
as data structures (e.g. as in [15]) or manually designed features (like in today’s
chess programs [10]). These specializations, however, restrict the agent in that it
cannot adapt to game modifications, let alone play completely different games.

In contrast, General Game Playing (GGP) is concerned with the development
of systems that understand the rules of previously unknown games and learn
to play these games well without human intervention. As such systems cannot
benefit from prior knowledge, they have to be endowed with high-level cognitive
abilities such as general strategic thinking and abstract reasoning. This makes
GGP a good example of a challenging problem which encompasses a variety of
AI research areas, including knowledge representation and reasoning, heuristic
search, planning and learning.

To allow for comparison of GGP agent systems, the Game Description Lan-
guage (GDL) has become standard. It allows to describe arbitrary deterministic
n -player games with complete information by giving a formal axiomatization of
their rules. Progress can be seen at the GGP competition held annually at the



AAAI Conference [8], where the following two different approaches have been re-
cently established in the development of general game playing agents: simulation-
based approaches [6, 7] employ probabilistic look-ahead search in Monte-Carlo
fashion, while knowledge-based systems refine domain knowledge (the game rules)
in order to extract an evaluation function (or state value function) for assessing
the leaf nodes in a depth-limited search tree [11, 2, 13]. Evaluation functions
used in the latter type of systems share, however, two major disadvantages:

– They are fixed in their form and do not necessarily capture the real state
value function of the game.

– They are determined solely on the basis of the game rules; later experience
is ignored.

While the former problem can be solved by using any general function approxi-
mator, the latter one can be addressed by employing learning algorithms. Though
neural networks represent a solution to the two issues, their training is known to
be both time consuming and not converging in general. However, an initializa-
tion as done in [16, 3] allows for a sound state evaluation without prior training.
In this paper we present an algorithm that, on the basis of C-IL2P [3], trans-
forms the game rules to a set of neural networks that can be employed for state
evaluation and need not be trained. Learning abilities, however, are retained,
and experiments indicate a significant increase in evaluation quality in this case.

The rest paper is organized as follows. In section 2, we give a brief introduc-
tion on the fields encompassed by our approach. This is followed, in section 3,
by a presentation of the transformation process of domain knowledge to a state
value function. In section 4, we present experimental results. These are discussed
in section 5. We conclude in section 6.

2 Background

2.1 Running Example: Pentago

For illustration purposes we use the game Pentago1 as an example throughout
this paper. Pentago is a two-player game played on a 6x6 board. The players take
turn in first marking a cell that is blank, followed by rotating (either clockwise
or counterclockwise) one of the four 3x3 quadrants of the board. The player wins
who first achieves a line (horizontal, vertical, or diagonal) with five of his marks.
If no blank cell is left on the board and nobody has won, the game ends in a
draw. Figure 1 shows a final board position which is won for the white player.
The four quadrants can be distinguished by their background color.

2.2 GDL

The Game Description Language (GDL) [12] has become the standard lan-
guage for GGP, allowing for the definition of deterministic n-player games with
1 The complete set of rules for this game, and for all others mentioned in this paper,

can be found at www.general-game-playing.de/game db/doku.php

www.general-game-playing.de/game_db/doku.php


Fig. 1. White wins a match of Pentago

complete information. Examples are popular games like Tic-Tac-Toe, Chess, or
Checkers.

GDL allows to give modular, logic-based specifications of games which are
interpreted as finite state machines subject to certain restrictions. Each player
has a specific role in a game. An actual match corresponds to traversing the
finite state machine until a terminal state is reached. A goal function is defined
on the set of terminal states that determines the outcome for each player. For the
formal specification of the goal, the language uses the keyword goal in axioms
of the form

(<= (goal ?role ?value) goalcondition)

where ?role is the role the player occupies and ?value gives the goal value (in
the interval [0, 100] by convention) for this player if goalcondition is fulfilled.
(<= (goal white 100) (line white)) in Pentago thus exemplifies a goal con-
dition where “white” (the player with the role “white”) wins 100 points in
case there is a line of white marks in the current state. While the roles in a
game are defined as ground facts, the auxiliary relation line can be resolved
down to facts holding in a state. These facts, called fluents, have the form
(fluent arg_1 ... arg_n) and can be queried with the keyword true. We
refer to [12] for the complete specification of GDL.

2.3 Knowledge-based State Value Functions

Existing knowledge-based GGP agents, such as [11, 2, 13], employ different ap-
proaches to construct a state value function that gives a degree of preference of
non-terminal states to guide search in an instance of the game (a match). For
this purpose they analyze the game description and extract position features
to be used in the value function. The automatic construction of an evaluation
function takes place in three phases as follows.

In the first phase, game-specific features are identified. To begin with, all
of the above mentioned systems attempt to detect static structures (that is,
which do not depend on the current state of a game) such as successor relations.
E.g., (succ 2 3) may define the constant 3 as the successor of 2 in a specific



ordering, which then may be used to define an ordering over possible values
for a variable which appears somewhere in the game rules. Note that this is a
syntactic rather than a lexical property.2 Successor relations are typically used
to represent quantities, counters, or coordinates. On the other hand, constants
without any underlying order often represent markers (like in Pentago) or pieces
(unique markers as the king in Chess).

These identified static structures can then be used to detect high-level struc-
tures. For example, a fluent with arguments from a successor relation may be
interpreted as a board, where the other arguments of this fluent either describe
the contents of the individual cells (e.g., markers or quantities) or identify a
specific instance of the board. The Pentago board, for example, is represented
by (cellholds ?q ?x ?y ?player), where ?x and ?y appear in a successor
relation and where an instance of this fluent holds for every pair (?x, ?y) in
every state. Thus, ?x and ?y can be identified as coordinates. Because specific
instances ?x and ?y can occur together with several instances of ?q, the latter
must be part of the coordinates as well. But ?q does not occur in an underlying
order, so that this argument is identified as marking different instances of the
board. The remaining argument ?player, then, must describe the contents of
the board cell. Thus, with the coordinates (?x ?y), with the four possible values
for ?q, and with ?player describing the board content, as a high-level structure
of Pentago one can identify four 3x3 boards, one for each quadrant.

In a similar fashion, quantities and other structural elements can be detected.
The identified structures can be combined arithmetically in order to construct
features out of them. In this way, a knowledge-based GGP system can measure,
for example, the distance of a pawn to the promotion rank in chess-like games,
or the difference in the number of pieces each player has still on the board in
the game of checkers, etc.

Other, game-independent features may be added, such as “mobility,” which is
a measure of how much control a player has in a given game state by counting the
number of available moves. Another feature may be “material,” characterizing
an advantage in the number of markers or pieces on a board (if applicable).

In the second phase of the automatic construction of an evaluation function,
useful features are selected. Common conditions for selecting a feature are sta-
bility (e.g., the absence of wild oscillation over its domain) [2], an estimation for
the effort it takes to compute a high-level feature, correlation with winning or
losing terminal states, and the appearance in the goal formulas of a game [13].

In the third and last phase, the selected features are combined in a single
state value function. Either the features are combined with fixed or estimated
weights according to some predefined scheme, or the goal function of the game
is fuzzified [13]. In the latter case, comparison relations that occur in the goal
function of the game can be substituted by the features detected in the first
phase. In this way, a boolean winning condition of having more markers than

2 This can be identified by checking whether the relation in question is a singleton
for each constant in any argument position, and whether its graph representation is
acyclic.



the opponent, for example, can be mapped onto an arithmetic condition. This
allows the player to prefer a lead with a higher margin to one with a smaller
margin.

2.4 Neuro-Symbolic Integration

Symbolic knowledge offers the advantage to draw precise conclusions, provided
there is a sound and sufficiently large knowledge base. Often, however, the knowl-
edge base is insufficient, incorrect, or simply unavailable. Learning systems, on
the other hand, can adapt to various domains, but require prior training and
are prone to errors due to indiscriminate or too few learning examples as well
as bad initialization. Neuro-Symbolic Integration attempts to unify both views
to maintain their advantages while eliminating drawbacks by exploiting syner-
gies. KBANN (Knowledge-Based Artificial Neural Network [16]) was the first
approach to convincingly utilize both paradigms. Initialized with an “approx-
imately correct” propositional domain theory, the network was automatically
generated and trained and eventually led to a correction of the initial theory.
Furthermore, KBANN learned much faster than randomly initialized nets and
was able to qualitatively outperform any other algorithm during training as well
as afterwards. While KBANN allowed the application of a standard learning
algorithm, the algorithm still had some weaknesses that made it more complex
than necessary and limited its application to domain theories with only a small
number of rules and antecedents per rule.

In [9] it was shown that three-layer recurrent neural networks can represent
propositional logic programs without any restrictions regarding the number of
rules or antecedents. Learning via backpropagation, however, was not intended.
Though it was possible to enhance this result to some extent to first-order logic
(see [1] for an overview), it remains an open question whether this purely the-
oretical algorithm can be put into practice for a problem domain that is as
challenging as GGP.

A combined approach was finally presented in [4], allowing an intuitive one-
to-one transformation of propositional logic to neural nets while maintaining
learning capabilities. We will use a more general version [3] by the same author.

3 From Domain Knowledge to State Values

Using the standard approaches explained above to identify and select features
for state evaluation, we pay particular attention to the construction of the value
function. As described, existing GGP systems use evaluation functions which
are mathematical combinations of individual features. Though weights or similar
measures of influence are determined during the analysis of the game rules, the
functions are structurally fixed prior to the analysis and only cover a small part of
the space of possible state value functions, which may not include useful (let alone
optimal) value functions for the game at hand. Moreover, these functions remain



if argument is then

a fact (true fact) return fact
a negated argument (not argument) return ¬prop(argument)
the head of a clause (<= h b_1) return

∨
1≤i≤n

prop(bi)

...
(<= h b_n)

the body of a clause (c_1, ..., c_n) return
∧

1≤i≤n
prop(ci)

an inequality (distinct x1 x2) return false if x1 = x2, else true

Table 1. Transforming a single goal condition to a propositional proof tree

static and do not adapt to playing experience. This is partly due to the one-
time challenge situation enforced by the GGP championship rules that propose
games as unique and non-repeating within the contest [8]. As a consequence,
learning over matches is not applicable within this context. Nevertheless, the
ability to adapt would allow for constant refinement of the evaluation function
if the underlying formulas for the heuristics were designed in a dynamic way.

For this purpose, we will use neural networks as an established method to
approximate functions. The idea is that by applying a neuro-symbolic translation
algorithm, we can transform a ground-instantiated goal condition encoded in
GDL to a bipolar neural net with a sigmoidal activation function that exactly
captures its behavior and need not be trained. In this way, we would obtain a
baseline state value function that is correct for all terminal states and provides a
measure of preference for all non-terminal states by calculating fluent-wise their
similarity to goal states.

3.1 Goal Conditions as Propositional Proof Trees

Consider the set of rules of a specific game defined in GDL. The given goal for-
mulas define for every terminal state and for every role ?p in the game a goal
value ?gv. For any specific rule of the form (<= (goal ?p ?gv) conditions),
the given conditions can be evaluated for any current (terminal or non-terminal)
state. We can ground-instantiate a goal clause by iteratively substituting every
free variable by the ground terms obtained from the signature of the game de-
scription. Algorithm prop(argument) (see Table 1) transforms a ground-instan-
tiated goal condition to a propositional proof tree.

As some of the facts are static (that is, do not depend on the current state
such as successor relations), they can instantly be proved to be false or true and
subsequently be replaced by a propositional false or true. Naturally, this may
lead to other simplifications, which can easily be implemented and hence shall
not be explained further.

By calling prop on a ground-instantiated goal condition, we can thus obtain
a propositional proof tree whose edges are either identities or negations, whose
leafs are queries of facts in the current state, and whose non-leaf nodes are either
conjunctions or disjunctions.



3.2 Propositional Proof Trees as Neural Networks

As has been shown in [16, 9], it is possible to encode propositional logic as a
neural network. The two algorithms, however, were developed under different
considerations. While [16] was mainly concerned with eliminating disadvantages
of neural nets by the use of logic (namely, indifferent initialization, convergence
problems, and long training time), [9] translated logic programs to neural nets
so as to benefit from advantages of the different representation. An algorithm
that got rid of the problems of each of the two approaches is described in [3] and
will be used here with some modifications. The original algorithm was used for
logic programs where literals in the body of a clause were interpreted as their
conjunctions, while clauses with the same head were interpreted as disjunctions
of their bodies. Therefore, we use the rules for encoding multiple clauses with
the same head for disjunctions, and literals within a clause as rules for conjunc-
tions. Furthermore, the net was built up as a recurrent net to implement the
immediate consequent operator of the logic program. As this stepwise fashion is
not needed, we build up a simpler feed-forward architecture that is similar to
the propositional proof tree.

Consider a layered feed-forward neural net with the following properties:
if neuron i is a successor of neuron j (e.g. there is a directed connection from
neuron j to neuron i), then the output of neuron i is defined as oi = h(

∑
j wijoj),

where h(x) is the bipolar activation function h(x) = 2
1+e−βx − 1. We define the

interval (Amin, 1] to denote truth and [−1, Amax) to denote falsity. Without loss
of generality we set Amin = −Amax. Then we can translate every node of the
propositional proof tree to a neuron by calling the following algorithm on the
root of the tree and an “empty” neural net:

1 prop_to_net(node , net) {

2 if (count_children(node) > 0) {

3 for each (c in children(node)) {

4 if (is_positive(c))

5 add_conn(net , node , c, W);

6 else

7 add_conn(net , node , c, -W);

8 prop_to_net(c, net);

9 }

10 add_conn(net , node , bias , threshold_weight(node));

11 }

12 else

13 mark_as_input_node(net , node);

14 }

Basically, the algorithm does the following: for each non-leaf node (line 2) in
the propositional tree an edge is added from the node to each of its children with
weight W if the child is positive (that is, not negated; line 5) and −W otherwise
(line 7). The algorithm is called recursively for each child of the current node
(line 8), and a connection to the bias unit (whose output is always 1) is added



so as to function as a threshold. Its weight is determined by the type of the node
(conjunction or disjunction) and the number n of its children:

thresholddisj(n) = (1+Amin)∗(n−1)
2 ∗W (1)

thresholdconj(n) = (1+Amin)∗(1−n)
2 ∗W (2)

Leafs of the tree are marked as input nodes (line 13) and used to evaluate
the current state s in the match: if fact holds in s, the node returns 1, else −1.

Amin / Amax and W are subject to some restrictions to ensure logically sound
behavior:

Amin >
max(disj, conj)− 1
max(disj, conj) + 1

(3)

W ≥ 2
β
∗ ln(1 + Amin)− ln(1−Amin)

max(disj, conj)(Amin − 1) + Amin + 1
(4)

Here, disj is the largest number of children that a disjunction node in the tree
has, while conj is the largest number of children a conjunction node has. Param-
eter β controls the steepness of the activation function h(x) and is usually set
to 1. Note that the absolute weight wij of each connection has to be increased
by a small random float to avoid symmetry effects when learning.

Encoding the goal conditions as neural network thus maintains the logical
sound behavior of an automated proof procedure (for a proof see again [3])
while enabling it to perform “soft computing” and to adapt to experience via a
standard backpropagation algorithm.

Practical Aspects of C-IL2P Though the algorithm is logically sound, its
application in the GGP domain is not as straightforward. Recall that the inter-
val [−1, Amax) denotes falsity and (Amin, 1] truth of a fact. A neuron’s output
representing a conjunction is thus higher than Amin iff the output of all positive
preceding neurons is higher than Amin and of its negative preceding neurons is
lower than Amax. Due to the monotonicity of the activation function, we know
the output of a neuron to be lower if fewer of its antecedents are fulfilled. A
problem, however, arises if no or few antecedents are fulfilled: in these cases the
absolute value of the neuronal activation is high and, because of the squashing
of the activation function, the output of the neuron stays approximately the
same. In other words, for conjunction neurons with few fulfilled antecedents the
derivative h′(x) = 1 − h(x)2 is near zero and small changes in the input (e.g.
one preceding neuron changing from −1 to +1) therefore have only little impact
on the output of the neuron. While these differences of the output are small but
still recognizable in the case of just one neuron, they eventually become smaller
than machine precision after passing through several neurons. As a consequence,
the neural network loses its ability to effectively guide search as it erroneously
evaluates several states to the same value although there is a difference in their
state value.



Regarding the network parameters, there are two reasons for this behavior.
The first is the restriction of Amin (equation 3): while for a small number of rule
antecedents k, Amin may be set to a small value as well, higher k fix it near 1
with the result that the intervals for truth and falsity become too small to, e.g.,
distinguish one neuronal state representing false from another. In the same way
one can argue that with a high Amin the “forbidden zone” [Amax, Amin] (the
interval of output values “between false and true”) becomes very large, resulting
in a loss of output space, i.e., output resolution of the neuron.

Another reason is the restriction of the weight W (equation 4): for high values
of W the space of activation values is larger, the absolute neuronal input is more
likely far away from zero and thus its derivative close to zero. High absolute
weights therefore contribute to the problem.

We are, however, not interested in a strict propositional evaluation of a goal
condition, but in a degree of preference between states. Specifically, the following
two conditions have to be satisfied:

– A terminal state fulfilling the underlying goal function will yield the greatest
possible network output.

– Any state will yield a smaller value than another one if it constitutes a
worse matching of the corresponding goal function, that is, it is fluent-wise
less similar to the state pattern that corresponds to the goal function.

Therefore, we calculate the lower bound lA = max(disj,conj)−1
max(disj,conj)+1 for Amin and set it

such that it enables the smallest possible weight. With Amin ∈ (l, 1) , obviously
the following condition is satisfied:

Amin = (lA − 1) ∗ α + 1 (5)
α ∈ (0, 1) (6)

We numerically determined W to be minimal for 0.15 ≤ α ≤ 0.3 and set it
to α = 0.2. As this is not enough, we additionally ignore the weight condition
(equation 4) and set it to a fixed value W = 1.

3.3 From Neural Networks to State Values

To finally obtain a state value, we map the output of the neural networks
oplayer,gv ∈ [−1, 1] to values in [0, 1] and multiply these with the correspond-
ing goal value. In this way, we obtain the share vplayer,gv(s) that each pair of
network and goal value contributes to the state value. The normalized sum of
these shares then forms our value function in the interval [0, 100].

vplayer,gv(s) = oplayer,gv(s)+1
2 ∗ gvp (7)

Vplayer(s) =
∑

gv∈GV
vplayer,gv(s)∑

gv∈GV
gvp

∗ 100 (8)



With the selection of p ∈ [1,∞) we can choose the degree to which higher
goal values are more influential on the state value function. For p = 1 every
goal value is considered linearly and for p → ∞ only the highest goal value is
considered, resulting in a riskier behavior.

As we have to ensure that any calculated state value is better than a real
loss (where gv = 0) and worse than a real win (gv = 100), the final state value
is set to V (s)′ = V (s) ∗ 0.98 + 1

3.4 Increasing Flexibility

The resulting set of neural networks can be enhanced in several ways. Any feature
obtained by domain analysis or designed manually can be introduced in the
networks by adding an input node for it, normalizing the output of the node to
[−1, 1], and connecting it to the output nodes of all networks for a player. In
much the same way, spatial or quantitative comparisons in the goal conditions
can be substituted by a more detailed feature to increase expressiveness.

3.5 Learning

As result of the transformation we get a set of neural networks to which back-
propagation learning can be applied. To train these neural networks, we use
terminal states sterm from past matches which can be obtained by self-play or
are a by-product of probabilistic look-ahead searches as applied in Monte-Carlo
search [6, 7]. The goal value of the terminal state indicates the corresponding
network which then can be trained by presenting value 1 as signal for the output
neuron. All other networks are trained with −1.

We can further increase the amount of available examples by applying the
TD(λ) algorithm as used, e.g., in TD-Gammon [15]. By assuming the prede-
cessors of a terminal state to likely leading to the goal value of the terminal
state, we can use these predecessors as weaker but still valid training examples.
We therefore discount the training signal relative to the distance to the termi-
nal state in order to weaken the impact of the predecessor state on the neural
network.

The training signal t(s) for the k-th predecessor of the terminal state sterm−k

is calculated thus:
t(sterm−k) = t(sterm) ∗ λk (9)

The parameter λ ∈ [0, 1] controls the speed of decay of the training signal.
The network corresponding to the terminal state is thus trained with the sig-
nals 1, λ, λ2, . . . for the terminal state, its predecessor, the predecessor of the
predecessor, and so on.

We further enhance TD(λ) to include domain knowledge by checking the
predecessors of the terminal state subject to learning whether they inevitably
lead to a terminal state with the same goal value. This is done by employing
a full-depth game tree search and, in case the search yields a positive answer,
substituting a potentially flawed training signal by a provably correct and more



expressive one. Note that the required tree search was already performed during
the match and can be reused here.

Assuming sterm leads to a goal value gv(sterm) we can thus train the corre-
sponding neural network with the following signal:

t(sterm−k) =
{

1 : minimax(sterm−k) = gv(sterm)
λk : else

}
(10)

Altogether, the network training over several states of one match has two
major benefits:

– The network prefers stable features over wildly oscillating ones. The impor-
tance of this concept has been discussed in [2] and is implicitly included
here.

– The learned patterns match states preceding the terminal states. Along with
feedforward search during matches the algorithm thus exhibits a behavior
comparable to bidirectional search.

3.6 Transformation of Pentago Rules

For better understanding we will explain the approach in the domain of the
game Pentago by showing the result of the transformation for the winning goal
condition for the player with the role “white”. The goal condition in this game is
given as (<= (goal white 100) (line white)). A white line, according to the
rules, can be a white row, column, or diagonal. As the three cases are analogous,
we will just concentrate on white winning with a row. The definition of auxiliary
predicate (row ?player), after substituting ?player by white, is:

(<= (row white)
(role white)
(true (cellholds ?q1 ?x1 ?y1 white))
(globalindex ?q1 ?x1 ?y1 ?x1g ?yg)
(succ ?x1g ?x2g)
...
(succ ?x4g ?x5g)
...
(true (cellholds ?q5 ?x5 ?y5 white))
(globalindex ?q5 ?x5 ?y5 ?x5g ?yg))

Hence, a white row is implied by a conjunction of the following facts. The expres-
sion cellholds is a fluent which describes the contents of individual cells in a
game state. Relation globalindex is essentially a function which translates the
local quadrant coordinates ?q1, ?x1, and ?y1 to the global coordinates ?x1g and
?yg. Predicate succ describes a successor relation that connects five instances of
cellholds such that the global x-coordinate of the second cell is a successor of
the global x-coordinate of the first cell, and so on. All cellholds fluents need to



refer to the same y-coordinate ?yg. The head of the above clause, row(white),
is implied if there exists an instantiation for the 21 free variables such that each
of the atoms in the body holds.

To translate this goal condition to a neural network, we have to ground-
instantiate the rule. A naive ground instantiation would yield at least 321 in-
stances, as each domain of the variables has a size greater or equal to 3. While
instantiations of this size cannot be handled efficiently, the inherent structure
of the rule can be easily exploited. Because successor relations are functional,
each variable ?xg2, ..., ?xg5 is in fact a function of ?xg1. The domain of
?xg1 shrinks accordingly, indicating that the starting point of a row must have
x-coordinate 1 or 2; if it started at 3, the penultimate cell in the row would have
no successor.

The globalindex relation is functional and injective as well, allowing to
bring down the number of different ground instances of the rule to 12, where all
variables are functions of the global coordinates A1, A2, B1, . . . , F2. With these
twelve possible rows on the board we end up with a proof tree consisting of a
disjunction of the rows with each of them being a conjunction of five adjacent
cells. The role relation can be statically evaluated to true and thus immediately
omitted in the conjunctions.

The resulting net consists of an input layer with 36 nodes of the form
(true (cellholds ?q ?x ?y white)), a first hidden layer representing the 12
instances of the row rule as a conjunction of five adjacent cells, and a second
hidden layer representing the generalized row rule as a disjunction of the twelve
ground-instantiated ones. A similar structure is added for the possibility of a
vertical or a diagonal white line, resulting in a total of three neurons in the third
hidden layer. The output node would then again be a disjunction of these three
cases.

4 Experiments

For testing purposes we implemented a standard General Game Player according
to the approach described above. To evaluate its quality and efficiency, we let
it play against “Fluxplayer” [13], the best non-simulation based system, ranked
at least third in the three recent AAAI GGP World Championships 2006-2008.
We refer to the agents with “Neuro” and “Fluxplayer” respectively throughout
the experiments.

4.1 Experimental Setup

The tests were run on a dual-processor system at 3.16 GHz with 768 MB RAM
available for each agent. The roles were switched after each match, thus forming
pairs of matches in which each agent had the first move once. Both agents used
α-β-search. For learning, we used all “solved” states that could be proven to lead
to a terminal state with the same goal value. If the number of these states was
less than 10% of the states occurring in the match, “unsolved” states were used



in addition. In this way, at least 10% of the match states were used for training.
To distinguish solved from unsolved states, we reused the values calculated in
the match. Unsolved states were discounted by the factor of λ = 0.8 and the
learning rate was set to 0.001.

The tests were run in two different games: Pentago and a 3D version of Tic-
Tac-Toe where the first player to achieve a line of four marks in a 4x4x4 cube
wins. The results can be seen in Table 2. For each of the two games we examined
the two dimensions Init vs Learning and 1-ply vs Real-Time:

Init 1-ply The quality of the initialized evaluation function was determined in
300 matches with a search depth of 1 and newly initialized networks in each
match.

Learning 1-ply The improvement of evaluation accuracy through learning was
determined by running 500 consecutive matches, starting with a newly ini-
tialized network and searching with depth 1. The test was run 5 times to
minimize possible random effects.

Init Real-Time The quality of the initialized evaluation function in a real-time
scenario was determined in 300 matches with newly initialized networks in
each match. Each system had 100 seconds before a match started and 5
seconds for each move.

Learning Real-Time The improvement of playing strength through learning
in a real-time scenario was determined by running 500 consecutive matches
starting with a newly initialized network. Each system had 100 seconds be-
fore a match started and 5 seconds for each move. The test was run 5 times
to minimize possible random effects.

4.2 Results

Pentago 3D-Tic-Tac-Toe
#Matches Fluxplayer Neuro Fluxplayer Neuro

Init 1-ply 300 57.33 42.67 50 50
Learning 1-ply 5x500 25.72 74.28 50 50

Init Real-Time 300 48.36 51.64 38.67 61.33
Learning Real-Time 5x500 45.46 54.54 45.5 54.5

Table 2. Average Goal Value achieved

As can be seen, the 1-ply performance differs in the two games. In Pentago,
Neuro wins 43% in the initial scenario, but reaches 74% when learning, showing
that the initialized networks are near a local optimum.

In 3D-Tic-Tac-Toe, however, the player who has the first move has such a
big advantage that it can enforce a win, resulting in a 50% win rate each. As
no examples for how to win as non-starting player are available, learning has no
impact on the win rate.



Fig. 2. Evolution of Win Rate in the Learning Real-Time Scenario

The real-time performance of Neuro in both games is at least equal to that
of Fluxplayer. In Pentago, the initial real-time performance lies at roughly 52%.
This can be partly attributed to a state evaluation rate approximately twice as
high as that of Fluxplayer. The result is improved by another 3% with learning.

In 3D-Tic-Tac-Toe, the initial real-time performance with a 61% win rate
is significantly higher than that of Fluxplayer. For this game, Neuro examines
about 30% less states than Fluxplayer. The results show that learning decreases
the win rate, which might indicate overfitting.

In general, it can be seen that learning has a positive effect if done with
caution. Figure 2 depicts the evolution of the win rate in each game by plotting
the moving maximum, average and minimum of the recent 10 pairs of matches.
Obviously, learning did not converge. However, Neuro achieved in each test run
in both games at least a 70% win rate over at least 20 matches at some point
throughout the experiments, indicating its potential.

5 Discussion

As can be seen from our initial experiments, the neural approach to General
Game Playing can prove advantageous when compared to the currently best
non-simulation based system. The relative evaluation quality and, in particular,
the real-time performance both depend on the type of the game. Given that
the system works in principle while still being in an early development stage
regarding possible optimizations, it is likely to outperform the current version of
Fluxplayer after thorough parameter tuning and full exploitation of its learning
and extension capabilities.

We have seen that learning leads to a significant boost in evaluation quality
in the 1-ply scenario in Pentago. On the other hand, it only had a small effect in
the real-time scenarios, indicating an overfitting of the network. The drop in win-
rate in Pentago when switching from “learning 1-ply” to “learning real-time” as
well as the lack of convergence of the win rates support this explanation.

While the initial results look promising and should be put on a broader em-
pirical basis, there are some further theoretical problems related to the ideas
presented in this paper. The major disadvantage of the approach is that it re-
quires the use of ground-instantiated fluents. Depending on the complexity of



the game, the number of ground instances is subject to combinatorial explosion
and can thus easily become too large to be handled by a neural network in an
efficient manner. Although there are possibilities to encode first-order logic in
neural networks to some degree, current results are not convincing, as they are
bound by machine precision for real numbers [14] or have not yet been applied
to non-toy examples.

For this reason, we employ several techniques to limit or work around the
problem for the time being.

– By exploiting domain constraints, we limit the number or the domain of free
variables as demonstrated in the Pentago example.

– Clauses like (<= c (a ?x) (b ?x)), where variable bindings hold over more
than just one antecedent, or clauses with too many possible ground instances,
are redirected to the automated theorem proving system. In this case, we do
not transform the clause, but add it as an input node.

Other problems are directly related to learning and can be seen as a conse-
quence of the induction principle. For example, we have to assume the training
states to be distributed among the game tree and opponents to play near optimal
to avoid overfitting or biasing of the networks.

6 Conclusions

We have presented a method that overcomes the major restrictions of today’s
knowledge-based GGP systems. It allows to derive a state value function from the
goal definition for a game, provided it can be ground-instantiated with reasonable
effort. The goal conditions are used to initialize neural networks such that they
need not be trained. The evaluation function can then benefit from training with
states extracted from past matches, as our experimental results have shown.

6.1 Future Work

The overall evaluation quality is primarily based on the initial evaluation quality
and its increase through training, making both the main areas of possible im-
provement. As none of the parameters used in the experiments were optimized,
an analytical parameter determination of the C-IL2P parameters (Amin, W ) and
an autonomous adaptation of the learning parameters (learning rate, discount
factor, . . . ) to specific games could further improve evaluation quality.

Furthermore, we intend to exploit the newly gained flexibility by adding new
connections or hidden layer nodes to allow for the emergence of new features or
by integrating features generated by other means. In fact, the connection weights
of the networks offer a utility feedback for those features that could give rise to
feature generation algorithms like in [5].

For the future, we intend to conduct further experiments in other games,
address the above issues, and implement a complete GGP system on the basis
of the approach.
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