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Abstract
GDL-III, a description language for general game
playing with imperfect information and introspec-
tion, supports the specification of epistemic games.
These are characterised by rules that depend on the
knowledge of players. GDL-III provides a simpler
language for representing actions and knowledge
than existing formalisms: domain descriptions re-
quire neither explicit axioms about the epistemic
effects of actions, nor explicit specifications of ac-
cessibility relations. We develop a formal semantics
for GDL-III and demonstrate that this language, de-
spite its syntactic simplicity, is expressive enough to
model the famous Muddy Children domain. We also
show that it significantly enhances the expressive-
ness of its predecessor GDL-II by formally proving
that termination of games becomes undecidable, and
we present experimental results with a reasoner for
GDL-III applied to general epistemic puzzles.

1 Introduction
General game-playing (GGP) systems can understand the rules
of new strategy games at runtime and learn to play these
games effectively without human intervention [Genesereth et
al., 2005]. The interest for AI lies in the fact that general game-
playing expertise requires algorithms beyond those designed in
advance for specific games [Genesereth and Thielscher, 2014],
exemplified through the annual international GGP competition
since 2005 [Genesereth and Björnsson, 2013].

The language GDL, which uses the syntax and seman-
tics of logic programming, has become the standard for de-
scribing the rules of games to general game-playing sys-
tems [Genesereth et al., 2005]. The extension GDL-II has
been developed with the aim to include general imperfect-
information games [Schiffel and Thielscher, 2014]. Several
general game-playing systems have recently been built to
play this broader class of games too [Edelkamp et al., 2012;
Schofield and Thielscher, 2015]. However, even the extended
language does not support the specification of games with
epistemic goals [Ågotnes et al., 2013] or, more generally,
with rules that depend on the epistemic state of players. For
even though we can mathematically reason about knowl-
edge of players in imperfect-information games, it is not

possible to refer to knowledge within a GDL-II rule. An
example requiring this extended expressiveness are the so-
called Russian Cards Problems [van Ditmarsch et al., 2006;
Cordón-Franco et al., 2013], in which two cooperating players
want to inform each other about their hands without a third
player being able to learn anything from their (public) com-
munication. GDL-II lacks the means to express such games
since goal rules cannot refer to the knowledge of players.

With the addition of a single new keyword, the recently pro-
posed GDL-III (for: GDL with imperfect information and intro-
spection [Thielscher, 2016]) provides a description language
suitable for epistemic general game playing. The additional
keyword can be used to express individual, possibly nested
knowledge, e.g. that player A knows that her cards are known
to player B, as well as common knowledge. More generally,
the extension to epistemic game rules is necessary in all appli-
cations of general game playing for domains where the goal of
multiple agents is to gain, share and hide knowledge [Cooper
et al., 2016]. GDL-III provides a simpler language for repre-
senting actions and knowledge than existing formalisms like,
for example, DEL (Dynamic Epistemic Logic [Bolander and
Andersen, 2011]), in that neither explicit axioms about the
epistemic effects of actions are required, nor explicit specifica-
tions of accessibility relations.

In this paper, we will formally define the semantics of
GDL-III. It highlights the added expressiveness that players’
knowledge can influence the state transition system for the
game, a feature that is not available in GDL-II. We will for-
mally prove that termination of games becomes undecidable
in GDL-III, which shows that this language goes significantly
beyond the expressiveness of its predecessor.

While the main motivation for the extended language is
to describe of epistemic games for the purpose of general
game playing, we will also present experimental results where
GDL-III is used to encode, and automatically solve, epistemic
puzzles such as “Cheryl’s Birthday” [Chang, 2015]. Notably,
this does not require any game-playing intelligence beyond
the ability to compute legal playouts based on the game rules.

2 General Game Playing With GDL
The Game Description Language (GDL) is a formal language
for specifying the rules of strategy games to a general game-
playing system [Genesereth et al., 2005]. It uses a prefix-
variant of the syntax of logic programs along with the follow-



1 (role ann) (role bob) ... (role ken) (role random)
2 (init (round 0))
3
4 (yesno 0) (yesno 1) (yes 1)
5 (<= (legal random (muddy ?a ?b ... ?k))
6 (true (round 0))
7 (yesno ?a) (yesno ?b) ... (yesno ?k)
8 (or (yes ?a) ... (yes ?k)))

9 (<= (legal ?c noop)
10 (role ?c) (distinct ?c random) (true (round 0)))
11 (<= (legal random noop) (not (true (round 0))))
12 (<= (next (has ann mud)) (does random (muddy 1 ?b ... ?k)))
13 (<= (next (has bob mud)) (does random (muddy ?a 1 ... ?k)))
14 ...
15 (<= (next (has ?c mud)) (true (has ?c mud)))
16 (<= (sees ?c (dirt ?d)) (true (has ?d mud)) (distinct ?c ?d))

Figure 1: First part of a GDL-description of the MUDDYCHILDREN problem (schematically shown for k ≥ 1 players).

ing special keywords (the last two were added in GDL-II for
imperfect-information games [Schiffel and Thielscher, 2014]):

(role R) R is a player
(init F) feature F holds in the initial position
(true F) feature F holds in the current position
(legal R M) R has move M in the current position
(does R M) player R does move M
(next F) feature F holds in the next position
terminal the current position is terminal
(goal R V) player R gets payoff V

(sees R P) player R is told P in the next position
random the random player (aka. Nature)

GDL-II can and has been used to describe a variety of com-
monly played imperfect-information games (see, for example,
ggpserver.general-game-playing.de). Here, we
will describe one of the most commonly known epistemic
domains as a game in order to demonstrate the expressiveness
of GDL-III, beginning with the non-epistemic part.

Example 1 For a GDL-description of the famous Muddy Chil-
dren Puzzle, Figure 1 shows the rules of an “initialisation”
round by which the players are randomly muddied. Lines 1–2
introduce the roles and the initial game state. The moves are
specified by the rules for legal: Lines 5–8 defines the random
muddying of the children (at least one, according to line 8).
Lines 9–10 prescribe a no-op to the children in the first round
and to random for the rest of the game. Lines 12–15 specify
the effect of the random move on each of the children’s fore-
heads and the persistence of mud. Line 16 implies that each
child can see everyone else’s forehead except his or her own.

Any game description G that obeys certain general syntac-
tic restrictions—for details we refer to Love et al. [2006]—
determines a state transition system as follows. The derivable
instances of (role R) define the players. The initial state
consists in the derivable instances of (init F). In order to
determine the legal moves of a player in any given game state,
this state has to be encoded using the keyword true: Let
S = {f1, . . . , fn} be a state (more specifically, a finite set
of ground terms over the signature of G), then G is extended
by the n facts Strue = { (true f1) . . . (true fn)}. Those
instances of (legal R M) that follow from G∪Strue define
all legal moves M for player R in position S. In the same way,
the clauses with terminal and (goal R N) in the head de-
fine, respectively, termination and goal values relative to the
encoding of a given position. Finally, to determine a position
update and the percepts of the players after a joint move, let
M denote that players r1, . . . , rk take moves m1, . . . ,mk and

define Mdoes = { (does r1 m1) . . . (does rk mk) }. All in-
stances of (next F) that follow fromG∪Mdoes∪Strue com-
prise the updated position; likewise, the derivable instances
of (sees R P) describe what a player perceives after joint
move M in a given position S. All this is summarised below.
Definition 1 ([Schiffel and Thielscher, 2014]) The seman-
tics of a valid GDL-II game description G is given by
• R = {r : G |= (role r)}
• s0 = {f : G |= (init f)}
• t = {S : G ∪ Strue |= terminal}
• l = {(r,m, S) : G ∪ Strue |= (legal r m)}
• u(M,S) = {f : G ∪Mdoes ∪ Strue |= (next f)}
• I = {(r,M, S, p) : G ∪Mdoes ∪ Strue |= (sees r p)}
• g = {(r, v, S) : G ∪ Strue |= (goal r v)}
Schiffel and Thielscher [2014] define legal play sequences

M1, . . . ,Mn of joint moves Mi (determining a move Mi(r)
for each r ∈ R) such that there are states s0, s1, . . . , sn with
• (r,Mi(r), si−1) ∈ l for all r ∈ R (legality of moves);
• si = u(Mi, si−1) (position update).

Two legal sequences δ, δ′ of the same length n are called
indistinguishable for a player r ∈ R, written δ ∼r δ′, if r’s
moves and percepts are the same throughout, that is, for all
i ∈ {1, . . . , n}:
• Mi(r) =M ′i(r);
• {p : (r,Mi, si−1, p) ∈ I}={p′ : (r,M ′i , s′i−1, p′) ∈ I}.

It is worth noting that these definitions, which are based on
the objective game rules about the percepts of players as given
by a GDL-II description, imply standard properties about the
relations of actions and knowledge, notably synchronicity,
perfect recall and no miracles [van Benthem, 2014].

3 GDL-III: Semantics
The general game description language GDL-II is expressive
enough to model games that give rise to complex epistemic
models for players’ knowledge [Ruan and Thielscher, 2014].
But the language does not support any references to players’
knowledge in the game rules themselves, in order to specify
knowledge goals, for example, or to require players to be
truthful about their knowledge. We have therefore proposed
to extend the syntax of GDL-II to GDL-III by one additional
keyword for Introspection [Thielscher, 2016]:

(knows R P) player R knows P in the current position
(knows P) P is common knowledge

ggpserver.general-game-playing.de


17 (<= (isMuddy ?c) (true (has ?c mud)))
18 (<= (legal ?c (say Yes)) (knows ?c (isMuddy ?c)))
19 (<= (legal ?c (say No)) (role ?c) (distinct ?c random)
20 (not (knows ?c (isMuddy ?c))))
21 (<= (sees ?c (said ?d ?x)) (does ?d (say ?x)))

Figure 2: The remaining GDL-III game rules for MUDDYCHILDREN
(without termination or goal rules).

Example 1 (cont’d) The new keyword is used in Figure 2 to
complete the description of MUDDYCHILDREN: Every child
must sayYes if, and only if, they know that they themselves
are muddy (lines 17–20); and the children hear each other’s
announcement (rule 21).

The example nicely illustrate a unique feature of GDL-III as
a knowledge representation language for epistemic domains:
Only objective rules need to be given, which specify what
agents observe and can do. While these rules implicitly de-
termine what agents can know in principle, as we will show
in this this section, it is left entirely to general game-playing
systems themselves to reason about what the game rules imply
about their and the other players’ knowledge.

The new keyword uses reification, whereby a defined pred-
icate, P, is used as an argument of another predicate.1 A
simple syntactic requirement ensures that nesting of knowl-
edge is not circular: There must be some ordering > on all
predicate symbols P that occur as argument of knows such
that P > Q whenever P itself depends on (knows R Q) or
(knows Q) [Thielscher, 2016].

The extended language GDL-III can be used to describe
common epistemic imperfect-information games to general
game-playing systems. An example are Russian Card Prob-
lems, where a winning condition for player Alice is that it is
common knowledge that player Cath does not know anyone
else’s cards [Cordón-Franco et al., 2013]. In GDL-III,

(<= (knowsSomeCard ?r)
(knows ?r (has ?s ?c)) (distinct ?r ?s))

(<= (blind ?r) (not (knowsSomeCard ?r)))
(<= (goal alice 100) (knows (blind cath))..)

The interested reader can find the complete GDL-III descrip-
tion of a Russian Cards game in an accompanying technical
report [Thielscher, 2017], along with a Public Announcement
game [Ågotnes and van Ditmarsch, 2011] as another example.

We now define a formal semantics for GDL-III in two stages.
First, we extend the logical interpretation of a set of game
rules according to Definition 1 by incorporating the encoding
of a given set K = {(knows r1 p1), . . . , (knows rn pm),
(knows q1), . . . , (knows qn)} of instances of the knowledge
predicate.2 Most components of a game in GDL-III are evalu-
ated relative to a given set K.

1Nested knowledge can be expressed with the help of aux-
iliary predicates; for example, (knows a knows b p) along
with (<= knows b p (knows b p)) says that a knows that
b knows p. Syntactic sugar could of course be used to allow for
actual nesting of knows handled by preprocessing.

2Here and in the following, we assume that knowledge sets K
are always restricted to the relevant instances of knows-expressions,
that is, which occur in some rule in the underlying GDL-description.

Definition 2 The pre-semantics of a GDL-III game descrip-
tion G is given by sets R, s0 as in Definition 1 along with
• t = {(S,K) : G ∪ Strue ∪K |= terminal}
• l = {(r,m, S,K) : G ∪ Strue ∪K |= legal(r,m)}
• u(M,S,K) = {f : G ∪Mdoes ∪ Strue ∪K |= next(f)}
• I={(r,M, S,K, p) : G∪Mdoes∪Strue∪K |= sees(r, p)}
• g = {(r, v, S,K) : G ∪ Strue ∪K |= goal(r, v)}

Example 1 (cont’d) Suppose the current game state is given
as S = {(has bob mud)}.

If K = { }, then (bob,(sayNo), S,K) ∈ l according to
rule 19–20. This would also be Bob’s only legal move when
K = {(knows ann (isMuddy bob)),(knows ken
(isMuddy bob))}, by rules 18–20.

But if, say, K ′ = {(knows bob (isMuddy bob))},
then game rule 18 implies that (bob,(sayYes), S,K ′) ∈ l.

It is important to note that the pre-semantics merely tells us
how to determine all game-specific predicates relative to some
knowledge state. Determining the correct K is the purpose of
the second step in the definition of the semantics for GDL-III.

This second step requires an inductive characterisation of le-
gal play sequences and their resulting knowledge states. Com-
mon knowledge is defined using the notion of the reflexive,
transitive closure ∼+ of a given family of indistinguishability
relations ∼r (one for every role r in R). Formally, ∼+ is the
smallest relation such that for all δ, δ′δ′′:
• δ ∼+ δ and
• if δ ∼+ δ′ and δ′ ∼r δ′′ for some r ∈ R then δ ∼+ δ′′.

Definition 3 Let G be a game description along with all the
sets and relations it describes according to Definition 2.
• The play sequence of length 0, denoted by ε, is legal and

satisfies ε ∼r ε, for all r ∈ R. It results in state s0 and
knowledge state Kε as the smallest set that satisfies

Kε = {(knows r p) : r ∈ R, G ∪ strue0 ∪Kε |= p}
∪ {(knows p) : G ∪ strue0 ∪Kε |= p}3

• For the inductive definition, let δ be a legal play sequence
of length n ≥ 0 resulting in (sn,Kn).
Sequence δ followed by M , written δM , is a legal play
sequence of length n + 1 if (M(r), sn,Kn) ∈ l for all
r ∈ R . It results in state sδM = u(M, sn,Kn) and, as
the knowledge state, the smallest KδM that satisfies

KδM = {(knows r p) : G ∪ strueδ′M ′ ∪KδM |= p

for all δ′M ′∼r δM}
∪ {(knows p) : G ∪ strueδ′M ′ ∪KδM |= p

for all δ′M ′∼+ δM}

(1)

This definition uses a straightforward generalisation from
GDL-II of the notion of (in-)distinguishable sequences
(of length n+ 1): Relation δM ∼r δ′M ′ holds if role r
cannot distinguish δ from δ′ and takes the same move
and obtains the same percepts in M . Formally,

3Hence, as in GDL-II there is no uncertainty about the initial state.
However, any desired initial epistemic model can be obtained by just
one random move [Ruan and Thielscher, 2014].



– δ ∼r δ′
– M(r) =M ′(r)

– {p : (r,M, sn,Kn, p) ∈ I}
= {p′ : (r,M ′, s′n,K ′n, p′) ∈ I}

This is well-defined for any GDL-III game description G with
acyclically defined knowledge predicates: Kδ,M can be “con-
structed” by, first, evaluating all (knows r p) and (knows p)
instances for which p itself does not depend on knows and,
then, evaluating the other instances in accordance with the
hierarchy. This implies that knowledge states are always con-
sistent. It is also easy to verify that Definitions 2 and 3 always
produce a single (knowledge) state transition system.

Definition 3 can be understood as follows: Players know
everything that follows from the initial state (Kε). Legality
and effects of moves are determined inductively from actual
state sn and knowledge stateKn. As in GDL-II, two legal play
sequences δM and δ′M ′ cannot be distinguished by role r
after the last move if they were indistinguishable beforehand
(i.e., δ ∼r δ′) and if the player made the same legal move
in both M and M ′ and obtained the same percepts. This
(in-)distinguishability relation in turn determines the evalu-
ation of the knowledge predicates, including common knowl-
edge, for the resulting knowledge state KδM .

Example 1 (cont’d) For the sake of brevity, we only show
the (non-elementary) 2-children variant of our example game
(with ann and bob). Let the three possible joint actions in the
initial round (cf. 5–8 in Figure 1) be denoted by 01,11,10.
Since the game rules are common knowledge, all children
know that at least one of them is muddy after the first round.
Nothing is observed as a direct consequence of this choice by
random , however. Hence the knowledge state, which initially
is empty (no one is muddy and ignoring other knowledge),
does not change in any of the cases:

Kε = { } = K01 = K11 = K10

According to the rules in Figure 2, the two children can only
say No, denoted by NN below. However, by game rule 16
they get to see each other’s forehead, which determines the
following (in-)distinguishability after the next round:

01 · NN ∼ann 11 · NN ∼bob 10 · NN (2)

In particular, Bob can distinguish 01 · NN from 11 · NN after
receiving an information token about Ann’s being muddy;
similarly for Ann. From (1) in Definition 3 and relation (2),
along with game rules 12–15 and 17, it follows that

K01·NN = {(knows ann (isMuddy bob)),
(knows bob (isMuddy bob)) }

K11·NN = {(knows ann (isMuddy bob)),
(knows bob (isMuddy ann)) }

K10·NN = {(knows ann (isMuddy ann)),
(knows bob (isMuddy ann)) }

Hence, without having seen his own forehead, Bob can (in fact,
must) say Yes in 01·NN; the same for Ann in 10·NN; and both
can only say No in 11 · NN. Now, according to rule 21, Ann
can hear what Bob says. She can thus distinguish 01 · NN · NY
from 11 ·NN ·NN, where Y abbreviates(say Yes). Likewise,

Bob can distinguish 10 · NN · YN from 11 · NN · NN. All play
sequences thus become distinguishable by both players, hence:

K11·NN·NN = {(knows ann (isMuddy ann)),
(knows ann (isMuddy bob)),
(knows bob (isMuddy ann)),
(knows bob (isMuddy bob)) }

To summarise, if only one of the children is muddied by the
initial random move, then he or she will know after the next
round. If both are muddy, they will know one round later.

The argument can be easily generalised to prove that if l ≥ 1
of k children are muddied, then it takes l + 1 rounds for all
children to know who is muddy, for any l ≤ k and k ∈ N.

4 On the Expressiveness of GDL-III
The two-stage, inductive semantics for GDL-III is consider-
ably different from the state-transition systems for its two pre-
decessor languages, which can be defined without induction.
This indicates that the addition of the epistemic keyword sig-
nificantly enhances the expressiveness of the game description
language. Indeed, as we will show in the following, extend-
ing GDL-II to GDL-III has the somewhat surprising effect
that termination of games becomes undecidable even under
the usual syntactic restrictions that guarantee finiteness of the
state space.

The intuitive reason for this is that even over a finite game
state space, the knowledge that players have of each other,
and of each other’s knowledge, can grow arbitrarily. This is of
course true for GDL-II games as well. But game rules in that
language can only be conditioned on the actual game state and
not the knowledge of the players, which suffices to guarantee
decidability of termination. In contrast, in GDL-III the end
of a game may be conditioned on the epistemic structure. In
order to formally prove that this leads to the undecidability
of termination, we adapt a technique introduced by Bolander
and Andersen [2011] of representing a Turing machine and its
tape with the help of an epistemic structure.

Let an arbitrary Turing machine (TM) be given, with fi-
nite set of states Q, binary alphabet {blank,marked}
and initially blank tape. We construct a GDL-III game with
random and two players, called ann and bob, as follows.
The game states are built from the finite set of features
Q∪{blank, marked, (right ann), (right bob)}. The
initial game state is encoded by rule 2 in Figure 3, where
q0 ∈ Q is the starting state of the TM.

Each instruction of the Turing machine is translated to a
small set of legal moves for random. Moves by random are
only partially observed by the two players, thus leading to a
new knowledge structure that corresponds to the next state
of the Turing machine and its tape. As an example, Figure 3
shows the encoding for transitions of the form

(q,blank) → (q′,marked, right) (3)

Put in words, if the TM is in state q and over a blank cell, then
the cell gets marked, the TM transitions to state q′ and the
head moves to the right. This instruction gets translated into
a set of eight possible moves, abbreviated as (i ?r ?x)
in Figure 3 with ?r ∈ {ann,bob} and ?x ∈ {1...4}.



1 (role ann) (role bob) (role random)
2 (init q0) (init blank) (init (right ann))
3
4 (legal ann noop) (legal bob noop)
5 (<= (legal random (i ann ?x))
6 (not (true (right bob))) (pre ?r ?x))
7 (<= (legal random (i bob ?x))
8 (not (true (right ann))) (pre ?r ?x))
9 (<= notQ (not (true q)))

10 (<= (pre ?r 1) (knows ?r notQ))
11 (<= (pre ?r 2) (true q) (true (right ?r)) (true blank))
12 (<= (pre ?r 3) (knows ?r q) (true (right ?r)) (true blank))
13 (<= (pre ?r 4) (not (true q)) (not (knows ?r notQ)))
14
15 (<= (sees ?r1 i) (role ?r1) (does random (i ?r ?x)))

16 (<= (sees ann 3) (does random (i bob 3)))
17 (<= (sees ann 4) (does random (i bob 4)))
18 (<= (sees bob 3) (does random (i ann 3)))
19 (<= (sees bob 4) (does random (i ann 4)))
20 (<= (next ?f) (true ?f) (does random (i ?r 1)))
21 (<= (next marked) (does random (i ?r 2)))
22 (<= (next blank) (does random (i ?r 3)))
23 (<= (next q’)
24 (or (does random (i ?r 3)) (does random (i ?r 4))))
25 (<= (next (right bob))
26 (or (does random (i ann 3))(does random (i ann 4))))
27 (<= (next (right ann))
28 (or (does random (i bob 3))(does random (i bob 4))))
29 (<= (next blank) (true blank) (does random (i ?r 4)))
30 (<= (next marked) (true marked)(does random (i ?r 4)))

Figure 3: Encoding a Turing Machine in GDL-III, with the specific type of instruction (3) as example.

These arguments are used to determine which of the possible
moves are actually legal depending on the game state and the
knowledge of the players according to rules 5–13.

Suppose, as an example, instruction (3) occurs in the TM-
program with q = q0 and q′ = q1. From the initial state given
by line 2 and from rules 5–13 it follows that only (i ann 2)
and (i ann 3) are actual legal moves for random in this
state. Both players learn that an i-action happens according
to rule 15. But only Bob knows which of the two, because he
gets to see 3 in one case (rule 18) but not the other. Follow-
ing rules 20–30, the states resulting from (i ann 2) and
(i ann 3) are as follows, where it is also indicated that
Ann cannot distinguish between them:4

marked ∼ann q1, blank, (right bob) (4)

This epistemic structure corresponds to the state of the TM
after marking the initial cell and moving the head to the right
cell, which is blank. The reader is invited to verify that if the
TM-program contains another instance of instruction (3) with
q = q1 and q′ = q2, then the game rules in Figure 3 entail
the following epistemic structure after the next move:5

marked ∼ann marked ∼bob q2, blank, (right ann) (5)

This shows how, despite a finite state space, the epistemic state
can grow arbitrarily and thus model an unbounded TM tape.

To summarise, the instance of action (i ?r ?x) with
?x = 1 applies to all “possible worlds” in the knowledge
structure except for the one that corresponds to the cell cur-
rently under the head of the TM and the one immediately to
the right; alternative ?x = 2 is for the cell under the head; and
alternative ?x = 3 is for the next cell to the right in case it has
not been seen before (and hence is set to blank). Alternative
?x = 4 handles the cell to the right in case it has been seen
before (which, in terms of the epistemic structure, means there
is a possible state that player ?r cannot distinguish from the
state in which q holds, cf. rule 13).

Lack of space does not allow us to provide game rules
for the other types of TM-instructions, which can be defined
similar to those shown in Figure 3. To prove the main result, let

4More precisely, Ann cannot distinguish the two legal play se-
quences that lead to the two states.

5To see why, note in particular that (i bob 1) is legal in the
first state in (4) and leaves it unchanged according to rule 20.

qf ∈ Q be the (only) final state of the TM. The following rules
say that the game terminates when it is no longer common
knowledge that qf is false:

(<= notQF (not (true qf)))
(<= terminal (not (knows notQF)))

Hence the game ends if and when the epistemic structure
for the knowledge of the players contains an accessible state
where qf became true; e.g., if q2 is the final TM state, then
terminal would be true under knowledge state (5). This
leads to the following result.
Theorem 1 The GDL-III game that encodes a Turing ma-
chine TM with binary alphabet, initially blank tape and a
single final state terminates if, and only if, TM halts.

5 Solving Epistemic Puzzles With GDL-III
Epistemic puzzles are characterised by multiple agents that
reason about each other’s (lack of) knowledge in the course
of a sequence of actions. A common approach to axiomatis-
ing epistemic puzzles is the use of (multi-)modal logics, e.g.
Dynamic Epistemic Logic [van Ditmarsch et al., 2005]. With
the addition of introspection, the game description language
provides an alternative, general formalism for encoding of
epistemic puzzles, which can then be automatically solved by
a mere “legal reasoner” as proposed in [Thielscher, 2016].
Example 2 [Chang, 2015] Albert and Bernard want to know
Cheryl’s birthday. She draws a list with a number of possible
dates and then tells them separately the correct month and day,
respectively. A dialogue follows in which Albert first says that
he doesn’t know the birthday and that he knows that Bernard
doesn’t know it either, then Bernard says that he now knows
the date, and after that Albert announces that finally he does
so too. Figure 4 shows how this puzzle can be described in
GDL-III in such a way that every legal playout corresponds to
a solution and vice versa.6

To test the scalability of a GDL-III legal reasoner, we ran
experiments on a 2.8 GHz processor with 8 GB of RAM

6It is worth noting that the description in Figure 4 is not meant
to be actually played by general GDL-III players but rather to be
used by a mere “legal” player to solve this puzzle. An alternative
formalisation, to test the strategic abilities of general game-playing
systems, would require the definition of a goal for the three roles etc.



1 (role albert) (role bernard) (role cheryl)
2 (date may 15) (date may 16) (date may 19)
3 (date jun 17) (date jun 18) (date jul 14) (date jul 16)
4 (date aug 14) (date aug 15) (date aug 17)
5 (succ 0 1) (succ 1 2) (succ 2 3) (succ 3 4) (init (step 0))
6 (<= (legal cheryl (choose ?m ?d)) (true (step 0)) (date ?m ?d))
7 (<= (sees albert ?m) (does cheryl (choose ?m ?d)))
8 (<= (sees bernard ?d) (does cheryl (choose ?m ?d)))
9 (<= (next (secret ?m ?d)) (does cheryl (choose ?m ?d)))

10 (<= (next (secret ?m ?d)) (true (secret ?m ?d)))
11 (<= (next (step ?n)) (true (step ?m)) (succ ?m ?n))
12 (<= (legal albert noop) (or (true (step 0)) (true (step 2))))
13 (<= (legal bernard noop) (not (true (step 2))))
14 (<= (legal cheryl noop) (not (true (step 0))))

15 (<= (birthday ?m ?d) (true (secret ?m ?d)))
16 (<= (knowsDate ?r) (knows ?r (birthday ?m ?d)))
17 (<= (notKnowsDate ?r)(not (knowsDate ?r)))
18 (<= (legal albert sayUnknown)
19 (true (step 1)) (not (knowsDate albert))
20 (knows albert (notKnowsDate bernard)))
21 (<= (legal bernard sayKnown)
22 (true (step 2)) (knowsDate bernard))
23 (<= (legal albert sayKnown)
24 (true (step 3)) (knowsDate albert))
25 (<= (sees ?r ?m)
26 (role ?r)
27 (or (does albert ?m) (does bernard ?m)))
28 (<= terminal (true (step 4)))

Figure 4: CHERYLSBIRTHDAY: a possible description of this puzzle using the syntax of GDL with introspection. Cheryl begins by picking
a date (rule 6), of which Albert and Bernard only get to see the month and day, respectively (lines 7–8). Using three defined properties
(lines 15–17), announcements are modelled by two moves (sayUnknown, sayKnown) whose preconditions assume players to be truthful
(lines 18–24) and which are public (rule 25–27).

with http://potassco.sourceforge.net, an off-
the-shelf answer set solver, for interpreting GDL-III rules.
Times are reported in seconds (CPU time). The original prob-
lem consists of 10 dates across 4 different months and 6 dif-
ferent days. We kept a similar ratio of different “months” and
“days” as we increased the problem size (# of dates) in order
to ensure that the randomly chosen instances are equally diffi-
cult in that the number of solutions averages to approximately
one.7 The results are summarised in the table below for each
size and averaged over 1,000 random problem instances. They
demonstrate how the average time to compute legal play se-
quences increases since this game requires maintaining and
evaluating the knowledge state of both roles, including what
they entail about one player’s knowledge of the other player.

#dates #months #days avg #solutions avg time
10 5 5 0.57 0.00
100 30 30 1.37 0.01
1000 200 200 1.07 0.20
10000 1500 1500 0.68 3.79

6 Related Work and Conclusion
The extended general game description language GDL-III
shares with its predecessor GDL-II the unique feature that
game designers have to specify only the objective rules about
what players can see and do. Rules about how moves and
percepts affect the knowledge of players are not required.
Our semantics of the knowledge operator in GDL-III inherits
the concept of indistinguishability of play sequences used to
characterise the evolution of knowledge in GDL-II, assuming
players with perfect recall [Schiffel and Thielscher, 2014].
Knowledge preconditions and knowledge goals in GDL-III
therefore refer to what players can and cannot know in princi-
ple given the observations they make throughout a game.

The added expressiveness necessitates a semantics where
state transition systems, which provide the full semantics for
GDL-II, act merely as a pre-semantics. The complete seman-
tics for GDL-III accounts for knowledge feeding back into the

7Cheryl’s Birthday would of course be less famous if it did not
have a unique solution, but problems with no or multiple solutions
are equally relevant for testing the runtime behaviour of a controller.

definition of legal play sequences. This significantly enhances
the expressiveness of game descriptions, but it also leads to
the undecidability of termination of games in general. This
does not affect the practicality of the language for general
game playing, however. Since all reachable (epistemic) states
are finite, all reasoning problems, such as determining legal
moves, remain decidable. A game designer can easily guaran-
tee termination of a game, e.g. through the standard use of a
step counter [Genesereth and Björnsson, 2013].

Our experiments have shown how the size of the informa-
tion sets of players influences the runtimes of a basic reasoner,
unlike in case of GDL-II. Explicitly maintaining the set of
relevant legal play sequences is practically viable for short
epistemic games or puzzles. However, many games will re-
quire compact representations of information sets, e.g. as has
been proposed for Kriegspiel [Ciancarini and Favini, 2007],
or approximations via state sampling [Long et al., 2010].

Several languages for epistemic multi-agent domains have
been proposed recently, including [Kominis and Geffner, 2015;
Muise et al., 2015; Jiang et al., 2016]. These differ from
GDL-III in that they all require explicit specifications of what
an agent knows (respectively, believes) as the result of an
action or sensing. To axiomatise MUDDYCHILDREN in any
of these languages, for instance, you would need to provide
explicit axioms on the effect of a child (not) saying “yes” on ev-
eryone else’s knowledge. Likewise, epistemic puzzles similar
to Cheryl’s Birthday have been solved using model checking
systems for Dynamic Epistemic Logic [van Ditmarsch et al.,
2005]. Again, the main difference is that DEL requires an ex-
plicit encoding of an epistemic structure in form of a concrete
accessibility relation for the problem in question.

The proposed encoding of epistemic puzzles uses GDL dif-
ferent from its main purpose in general game playing, because
no players actually play the game. Yet it is an interesting
by-product of having a basic reasoner for the new language el-
ement. GDL-III also has applications in general game playing
beyond the description of epistemic games. For example, it
could be used by GDL-II players to generate logical strategy
rules by which they condition their moves on their knowl-
edge. Beyond general game playing, GDL-III can be used for
general multi-agent epistemic problems [Cooper et al., 2016].

http://potassco.sourceforge.net
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