
Under consideration for publication in Theory and Practice of Logic Programming 1

ALPprolog — A New Logic Programming Method
for Dynamic Domains

CONRAD DRESCHER
Computing Laboratory, University of Oxford, UK

(e-mail: Conrad.Drescher@comlab.ox.ac.uk)

MICHAEL THIELSCHER
School of Computer Science and Engineering, The University of New South Wales, Australia

(e-mail: mit@cse.unsw.edu.au)

submitted 24 January 2011; revised 15 April 2011; accepted 30 April 2011

Abstract

Logic programming is a powerful paradigm for programming autonomous agents in dynamic do-
mains, as witnessed by languages such as Golog and Flux. In this work we present ALPprolog, an
expressive, yet efficient, logic programming language for the online control of agents that have to
reason about incomplete information and sensing actions.

KEYWORDS: reasoning about actions, agent logic programs

1 Introduction

Programming autonomous agents that behave intelligently is one of the key challenges
of Artificial Intelligence. Because of its declarative nature, and high level of abstraction,
logic programming is a natural choice for this task. This is witnessed by e.g. the two major
exponents of agent programming languages that are based on classical logic programming,
namely Golog (Levesque et al. 1997) and Flux (Thielscher 2005a).

Both these languages combine a language for specifying the agent’s behaviour with an
axiomatic theory that describes the agent’s environment. In the case of Golog the strategy
language is procedural in nature (though implemented in Prolog), and the action theory
is the classical Situation Calculus (McCarthy and Hayes 1969) in Reiter’s version (Reiter
2001a). For Flux the strategy language is full classical logic programming, and the action
theory is the more recent Fluent Calculus (Thielscher 1999).

In a recent work (Drescher et al. 2009) we have developed Agent Logic Programs
(ALPs), a new declarative strategy language that is based upon a proof calculus in the
style of classical SLD-resolution. Contrary to Golog and Flux the ALP framework is para-
metric in the action theory: any background theory that allows to infer when an action is
applicable, and what the effects of the action are, can be used. Exploiting this generality we
have recently (Thielscher 2010b) been able to give a semantics for the BDI-style language
AgentSpeak (Bordini et al. 2007). Another distinctive feature of the theoretical framework

2 Conrad Drescher and Michael Thielscher

is the elegant handling of incomplete information for offline planning via disjunctive sub-
stitutions. By default, ALPs are combined with our new Unifying Action Calculus (UAC)
(Thielscher 2011) that encompasses the major logical action calculi, including both the
Situation Calculus and the Fluent Calculus, as well as many planning domain description
languages. The ALP formalism stays entirely within classical logic.

The implementation of any fragment of the ALPprolog framework consists of (1) an
implementation of the proof calculus, and (2) an action theory reasoner. Existing mature
Prolog technology can be used out of the box for (1) unless disjunctive substitutions enter
the picture. For (2) we can also exploit existing technology: E.g. Golog implements a
fragment of the Situation Calculus, and Flux handles a fragment of the Fluent Calculus.
In (Drescher et al. 2009) the implementation of a Description Logic-based fragment of the
Fluent Calculus is described.

In this work we present ALPprolog, where the underlying action theory is an essentially
propositional version of the Fluent Calculus in the UAC that includes a simple, yet power-
ful model of sensing. ALPprolog is intended for the online control of agents, where actions
are immediately executed. This starkly contrasts with offline reasoning, where agents may
make assumptions to see where these are leading. ALPprolog was developed specifically
for the efficient handling of large ground state representations, something that we consider
to be practically useful. To this end ALPprolog combines strong-points of Golog and Flux:

• From Golog it takes the representation of the agent’s state knowledge in full propo-
sitional logic via prime implicates; and

• From Flux it takes the principle of progression: The agent’s state knowledge is up-
dated upon the execution of an action. In standard Golog the agent’s initial state
knowledge is never updated. 1 Instead, queries referring to later time-points are
rewritten until they can be evaluated against the initial state knowledge, something
which becomes a hindrance to good performance as the sequence of executed actions
grows.

We emphasise that ALPprolog is an agent programming language in the spirit of classi-
cal logic programming in Prolog: The straightforward operational semantics provides the
programmer with a powerful means to actively determine the sequence of actions that an
agent executes. ALPprolog 2 can be obtained at alpprolog.sourceforge.net.

The remainder of this paper is organised as follows: In Section 2 we recall the basics
of the ALP framework, and in Section 3 we introduce ALPprolog. We evaluate the perfor-
mance of ALPprolog in Section 4, and conclude in Section 5.

2 ALPs in a Nutshell

The purpose of agent logic programs is to provide high-level control programs for agents
using a combination of declarative programming with reasoning about actions. The syntax
of these programs is kept very simple: standard (definite) logic programs (see e.g. (J.W.
Lloyd 1987)) are augmented with just two special predicates, one — written do(α) —

1 But there is a version of Golog where the initial state is periodically updated (Sardina and Vassos 2005).
2 The name is a play on ALPs, propositional logic, and the implementation in plain Prolog.

ALPprolog — A New Logic Programming Method for Dynamic Domains 3

to denote the execution of an action by the agent, and one — written ?(ϕ) — to verify
properties against (the agent’s model of) the state of its environment. This model, and
how it is affected by actions, is defined in a separate action theory. This allows for a clear
separation between the agent’s strategic behaviour (given by the agent logic program itself)
and the underlying theory about the agent’s actions and their effects. Prior to giving the
formal definition, let us illustrate the idea by an example agent logic program.

Example 1
Consider an agent whose task is to find gold in a maze. For the sake of simplicity, the states

of the environment shall be described by a single fluent (i.e., state property): At(u, x) to
denote that u ∈ {Agent,Gold} is at location x . The agent can perform the action Go(y)

of going to location y , which is possible if y is adjacent to the current location of the
agent. The following ALP describes a simple search strategy via a given list of locations
(choice points) that the agent may visit, and an ordered collection of backtracking points.
We follow the Prolog convention of writing variables with a leading uppercase letter.

explore(Choicepoints,Backtrack) :- % finished, if
?(at(agent,X)), ?(at(gold,X)). % gold is found

explore(Choicepoints,Backtrack) :-
?(at(agent,X)),
select(Y,Choicepoints,NewChoicepoints), % choose a direction
do(go(Y)), % go in this direction
explore(NewChoicepoints,[X|Backtrack]). % store the choice

explore(Choicepoints,[X|Backtrack]) :- % go back one step
do(go(X)),
explore(Choicepoints,Backtrack).

select(X,[X|Xs],Xs).
select(X,[Y|Xs],[Y|Ys]) :- select(X,Xs,Ys).

Suppose we are given a list of choice points C , then the query :- explore(C,[]) lets
the agent systematically search for gold from its current location: the first clause describes
the base case where the agent is successful; the second clause lets the agent select a new
location from the list of choice points and go to this location (the declarative semantics and
proof theory for do(α) will require that the action is possible at the time of execution);
and the third clause sends the agent back using the latest backtracking point.

The example illustrates two distinct features of ALPs: (1) The agent strategy is defined
by a logic program that may use arbitrary function and predicate symbols in addition to the
signature of the underlying action theory. (2) The update of the agent’s belief according to
the effects of its actions is not part of the strategy. Formally, ALPs are defined as follows.

Definition 1
Consider an action theory signature Σ that includes the pre-defined sorts ACTION and
FLUENT, along with a logic program signature Π.
• Terms are from Σ ∪Π.
• If p is an n-ary relation symbol from Π and t1, ...,tn are terms, then p(t1, ...,tn)

is a program atom.

4 Conrad Drescher and Michael Thielscher

• do(α) is a program atom if α is an ACTION term in Σ.

• ?(ϕ) is a program atom if ϕ is a state property in Σ, that is, a formula (represented
as a term) based on the FLUENTs in Σ.

• Clauses, programs, and queries are then defined as usual for definite logic programs,
with the restriction that the two special atoms cannot occur in the head of a clause.

2.1 Declarative Semantics: Program + Action Theory

The semantics of an ALP is given in two steps. First, the program needs to be “tempo-
ralised,” making explicit the state change that is implicit in the use of the two special
predicates, do(α) and ?(ϕ). Second, the resulting program is combined with an action
theory as the basis for evaluating these two special predicates. The semantics is then the
classical logical semantics of the expanded program together with the action theory.

Time is incorporated into a program through macro-expansion: two arguments of sort
TIME 3 are added to every regular program atom p(x̄), and then p(x̄, s1, s2) is under-
stood as restricting the truth of the atom to the temporal interval between (and includ-
ing) s1 and s2 . The two special atoms receive special treatment: ?(ϕ) is re-written to
Holds(ϕ, s), with the intended meaning that ϕ is true at s; and do(α) is mapped onto
Poss(α, s1, s2), meaning that action α can be executed at s1 and that its execution ends
in s2 . The formal definition is as follows.

Definition 2
For a clause H:-B1,...,Bn (n ≥ 0), let s1, . . . , sn+1 be variables of sort TIME.

• For i = 1, . . . , n, if Bi is of the form

– p(t1,...,tm), expand to P (t1, . . . , tm, si, si+1) .
– do(α), expand to Poss(α, si, si+1) .
– ?(ϕ), expand to Holds(ϕ, si) ∧ si+1 = si .

• The head atom H=p(t1,...,tm) is expanded to P (t1, . . . , tm, s1, sn+1).

• The resulting clauses are understood as universally quantified implications.

Queries are expanded exactly like clause bodies, except that

• a special constant S0 — denoting the earliest time-point in the underlying action theory
— takes the place of s1 ;

• the resulting conjunction is existentially quantified.

Example 1 (cont.)
The example program of the preceding section is understood as the following axioms,

which for notational convenience we have simplified in that all equations between TIME

3 Which specific concept of time is being used depends on how the sort TIME is defined in the underlying action
theory, which may be branching (as, e.g., in the Situation Calculus) or linear (as, e.g., in the Event Calculus).

ALPprolog — A New Logic Programming Method for Dynamic Domains 5

variables have been applied and then omitted.

(∀)Explore(c, b, s1, s1) ⊂ Holds(At(Agent, x), s) ∧ Holds(At(Gold, x), s1)

(∀)Explore(c, b, s1, s4) ⊂ Holds(At(Agent, x), s1) ∧ Select(y, c, c′, s1, s2)∧
Poss(Go(y), s2, s3) ∧ Explore(c′, [x|b], s3, s4)

(∀)Explore(c, [x|b], s1, s3) ⊂ Poss(Go(x), s1, s2) ∧ Explore(c, b, s2, s3)

(∀)Select(x, [x|x′], x′, s1, s1) ⊂ true
(∀)Select(x, [y|x′], [y|y′], s1, s2) ⊂ Select(x, x′, y′, s1, s2)

The resulting theory constitutes a purely logical axiomatisation of the agent’s strategy,
which provides the basis for logical entailment. For instance, macro-expanding the query
:- explore(C,[]) from the above example results in the temporalised logical for-
mula (∃s) Explore(C, [], S0, s) . If this formula follows from the axioms above, then that
means that the strategy can be successfully executed, starting at S0 , for the given list of
choice points C . Whether this is actually the case of course depends on the additional
action theory that is needed to evaluate the special atoms Holds and Poss in a macro-
expanded program.

Macro-expansion provides the first part of the declarative semantics of an agent logic
program; the second part is given by an action theory in form of a logical axiomatisation
of actions and their effects. The overall declarative semantics of agent logic programs is
given by the axiomatisation consisting of the action theory and the expanded program.

Let us next introduce the fragment of the UAC corresponding to the Fluent Calculus.
The UAC that is used to axiomatise the action theory is based on many-sorted first order
logic with equality and the four sorts TIME, FLUENT, OBJECT, and ACTION. By convention
variable symbols s, f , x, and a are used for terms of sort TIME, FLUENT, OBJECT, and
ACTION, respectively. Fluents are reified, and the standard predicate Holds : FLUENT ×
TIME indicates whether a fluent is true at a particular time. The predicate Poss(a, s1, s2)

means that action α can be executed at s1 and that its execution ends in s2 . The number
of function symbols into sorts FLUENT and ACTION is finite.

Definition 3 (Action Theory Formula Types)
We stipulate that the following formula types are used by action theories:

• State formulas express what is true at particular times: A state formula Φ[s̄] in s̄

is a first-order formula with free variables s̄ where

— for each occurrence of Holds(f, s) we have s ∈ s̄ ;
— predicate Poss does not occur.

A state formula is pure if it does not mention predicates other than Holds .
• A state property φ is an expression built from the standard logical connectives and

terms F (x̄) of sort FLUENT. With a slight abuse of notation, by Holds(φ, s) we
denote the state formula obtained from state property φ by replacing every occur-
rence of a fluent f by Holds(f, s) . In an expanded program Π we always treat
Holds(φ, s) as atomic. State properties are used by agent logic programs in ?(Phi)
atoms.

• The initial state axiom is a state formula φ(S0) in S0 , where S0 denotes the initial
situation.

6 Conrad Drescher and Michael Thielscher

• An action precondition axiom is of the form

(∀)Poss(A(x̄), s1, s2) ≡ πA[s1] ∧ s2 = Do(A(x̄), s1),

where πA[s1] is a state formula in s1 with free variables among s1, x̄ . This axiom
illustrates how different actions lead to different situation terms Do(A(x̄), s1) . Sit-
uations constitute the sort TIME in the Fluent Calculus and provide a branching time
structure.

• Effect axioms are of the form

Poss(A(~x), s1, s2) ⊃∨
k

(∃~yk)(Φk[s1] ∧ (∀f)[(
∨
i

f = fki ∨ (Holds(f, s1) ∧
∧
j

f 6= gkj))

≡ Holds(f, s2)]).

Such an effect axiom has k different cases that can apply — these are identified
by the case selection formulas Φk[s1] which are state formulas in s1 with free
variables among s1, ~x, ~yi . The fki (and gkj , respectively) are fluent terms with
variables among ~x, ~yk and describe the positive (or, respectively, negative) effects
of the action, given that case k applies.

• Domain constraints are universally quantified state formulas (∀s)δ[s] in s .
• Auxiliary axioms are domain-dependent, but time-independent, additional axioms

such as e.g. an axiomatisation of finite domain constraints.

An action theory D is given by an initial state axiom DInit , finite sets DPoss and DEffects

of precondition and effect axioms. Moreover domain constraints Ddc and auxiliary axioms
Daux may be included. For illustration, the following is a background axiomatisation for
our example scenario as a basic Fluent Calculus theory in the UAC.

Example 1 (cont.)
Our example program can be supported by the following domain theory.

• Initial state axiom

Holds(At(Agent, 1), S0) ∧ Holds(At(Gold, 4), S0)

• Precondition axiom

Poss(Go(y), s1, s2) ≡ (∃x)(Holds(At(Agent, x), s1) ∧ (y = x+ 1 ∨ y = x− 1))

∧ s2 = Do(Go(y), s1)

• Effect axiom

Poss(Go(y), s1, s2) ⊃
(∃x)(Holds(At(Agent, x), s1) ∧
[(∀f)Holds(f, s2) ≡ (Holds(f, s1) ∨ f = At(Agent, y)) ∧ f 6= At(Agent, x)]).

Given this (admittedly very simple, for the sake of illustration) specification of the back-
ground action theory, the axiomatisation of the agent’s strategy from above entails, for
example, (∃s) Explore([2, 3, 4, 5], [], S0, s) . This can be shown as follows. First, observe
that the background theory entails

Holds(At(Agent, 4), S) ∧ Holds(At(Gold, 4), S),

ALPprolog — A New Logic Programming Method for Dynamic Domains 7

where S denotes the situation term Do(Go(4),Do(Go(3),Do(Go(2), S0))) . It follows
that Explore([5], [3, 2, 1], S, S) according to the first clause of our example ALP. Con-
sider, now, the situation S′ = Do(Go(3),Do(Go(2), S0)) , then action theory and strategy
together imply

Holds(At(Agent, 3), S′) ∧ Select(4, [4, 5], [5], S′, S′) ∧ Poss(Go(4), S′, S)

By using this in turn, along with Explore([5], [3, 2, 1], S, S) from above, according to the
second program clause we obtain Explore([4, 5], [2, 1], S′, S) . Continuing this line of rea-
soning, it can be shown that

Explore([3, 4, 5], [1],Do(Go(2), S0), S)

and hence, Explore([2, 3, 4, 5], [], S0, S)

This proves the claim that (∃s) Explore([2, 3, 4, 5], [], S0, s) . On the other hand e.g. the
query (∃s) Explore([2, 4], [], S0, s) is not entailed under the given background theory:
Without location 3 among the choice points, the strategy does not allow the agent to reach
the only location that is known to house gold.

2.2 Operational Semantics: Proof Calculi

We have developed two sound and complete proof calculi for ALPs that both assume the
existence of a suitable reasoner for the underlying action theory (Drescher et al. 2009).

The first proof calculus is plain SLD-resolution, only that Holds - and Poss -atoms are
evaluated against the action theory. This calculus is sound and complete if the underlying
action theory has the witness property: That is, whenever D � (∃x)φ(x) then there is a
substitution θ such that D � (∀)φ(x)θ . Note that in general action theories may violate
the witness property, as they may include disjunctive or purely existential information;
consider e.g. the case Holds(At(Gold, 4), S0) ∨ Holds(At(Gold, 5), S0) , where the exact
location of the gold is unknown.

Hence the second proof calculus, intended for the general case, resorts to constraint
logic programming, and the notion of a disjunctive substitution: Still assuming that the
gold is located at one of two locations the query D � (∃x)Holds(At(Gold, x) can now
be answered positively via the disjunctive substitution x → 4 ∨ x → 5 . Disjunctive
substitution together with the respective principle of reasoning by cases are a powerful
means for inferring conditional plans.

For the online control of agents, however, assuming a particular case is unsafe. But if we
use the plain SLD-resolution-based ALP proof calculus on top of action theories that lack
the witness property we obtain a nice characterisation of cautious behaviour in a world of
unknowns (albeit at the cost of sacrificing logical completeness). For ALPprolog this is the
setting that we use.

In both proof calculi we adopt the ”leftmost” computation rule familiar from Prolog.
This has many advantages: First, it simplifies the implementation, as this can be based
on existing mature Prolog technology. Second, state properties can always be evaluated
against a description of the ”current” state. Last, but not least, this ensures that actions are
executed in the order intended by the programmer — this is of no small importance for the
online control of agents.

8 Conrad Drescher and Michael Thielscher

3 ALPprolog

We next present ALPprolog — an implementation of the ALP framework atop of action
theories in a version of the Fluent Calculus that

• uses (a notational variant of) propositional logic for describing state properties;
• is restricted to actions with ground deterministic effects; and
• includes sensing actions.

The intended application domain for ALPprolog is the online control of agents in dy-
namic domains with incomplete information.

3.1 ALPprolog Programs

An ALPprolog program is an ALP that respects the following restrictions on the ?(Phi)
atoms in the program:

• All occurrences of non-fluent expressions in φ are positive.
• So called sense fluents S(~x) that represent the interface to a sensor may only occur

in the form ?(s(X)). Sense fluents are formally introduced below.

Because ALPprolog programs are meant for online execution the programmer must en-
sure that no backtracking over action executions occurs, by inserting cuts after all action
occurrences. Observe that this applies to sensing actions, too. It is readily checked that —
after the insertion of cuts — the ALP from example 1 satisfies all of the above conditions.

3.2 Propositional Fluent Calculus

In this section we introduce the announced propositional fragment of the Fluent Calculus.
The discussion of sensing is deferred until section 3.3.

For ease of modelling we admit finitely many ground terms for fluents and objects,
instead of working directly with propositional letters. An action domain D is then made
propositional by including the respective domain closure axioms. For actions, objects, and
fluents unique name axioms are included — hence we can avoid equality reasoning.

The basic building block of both the propositional Fluent Calculus and ALPprolog are
the so-called prime implicates of a state formula φ(s) :

Definition 4 (Prime Implicate)
A clause ψ is a prime implicate of φ iff it is entailed by φ, is not a tautology, and is not
entailed by another prime implicate.

The prime implicates of a formula are free from redundancy — all tautologies and im-
plied clauses have been deleted. For any state formula an equivalent prime state formula
can be obtained by first transforming the state formula into a set of clauses, and by then
closing this set under resolution, and the deletion of subsumed clauses and tautologies.

Prime state formulas have the following nice property: Let φ be a prime state formula,
and let ψ be some clause (not mentioning auxiliary predicates); then ψ is entailed by φ

if and only if it is subsumed by some prime implicate in φ , a fact that has already been

ALPprolog — A New Logic Programming Method for Dynamic Domains 9

exploited for Golog (Reiter 2001a; Reiter 2001b). This property will allow us to reduce
reasoning about state knowledge in ALPprolog to simple list look-up operations.

Formally the propositional version of the Fluent Calculus is defined as follows.

Definition 5 (Propositional Fluent Calculus Domain)
We stipulate that the following properties hold in propositional Fluent Calculus domains:

• The initial state DInit is specified by a ground prime state formula.
• The state formulas φ(s1) in action preconditions Poss(a, s1, s2) ≡ φ(s1) ∧ s2 =

Do(a, s1) are prime state formulas.
• The effect axioms are of the form

Poss(A(~x), s1, s2) ⊃∨
k

(Φk[s1] ∧ (∀f)[(
∨
i

f = fki ∨ (Holds(f, s1) ∧
∧
j

f 6= gkj))

≡ Holds(f, s2)]),

where each Φk[s1] is a prime state formula. This implies that existentially quanti-
fied variables that may occur in case selection formulas (cf. definition 3) have been
eliminated by introducing additional cases.

• Only so-called modular domain constraints (Herzig and Varzinczak 2007) may be
included. Very roughly, domain constraints are modular if they can be compiled into
the agent’s initial state knowledge, and the effect axioms ensure that updated states
also respect the domain constraints. In the Fluent Calculus this holds if the follow-
ing two conditions are met (Thielscher 2011): Condition (1), says that for a state that
is consistent with the domain constraints and in which an action A(~x) is applica-
ble, the condition Φi[S] for at least one case i in the effect axiom for A holds.
Condition (2) requires that any possible update leads to a state that satisfies the do-
main constraints. Formally, let S, T be constants of sort TIME. Ddc the domain
constraints, DPoss the precondition axioms, and DEffects the effect axioms. The fol-
lowing must hold for every action A(~x) : There exists i = 1, . . . , n such that

|= Ddc[S] ∧ πA[S] ∧ (∃~yi)Φi[S], (1)

and for every such i ,

|= Ddc[S] ∧ πA[S] ∧Υi[S, T] ⊃ Ddc[T]. (2)

Non-modular, fully general domain constraints greatly complicate reasoning.
• Auxiliary time-independent axioms may be included if they can faithfully be repre-

sented in the Prolog dialect underlying the implementation. This deliberately sloppy
condition is intended to allow the programmer to use her favourite Prolog library.
However, we stipulate that auxiliary predicates occur only positively outside of Daux

in the action domain D in order to ensure that they can safely be evaluated by Prolog.
They also must not occur in the initial state formula at all. The update mechanism
underlying ALPprolog can handle only ground effects. Hence, if auxiliary atoms are
used in action preconditions, case selection formulas of effect axioms, then it is the
burden of the programmer to ensure that these predicates always evaluate to ground
terms on those variables that also occur in the action’s effects.

10 Conrad Drescher and Michael Thielscher

On the one hand clearly every propositional Fluent Calculus domain can be transformed
to this form. On the other hand it is well known that in general compiling away the quan-
tifiers in a state formula can result in an exponential blow-up, as can the conversion to
conjunctive normal form. We believe that the simplicity of reasoning with prime impli-
cates outweighs this drawback.

Propositional action domains can still be non-deterministic. For example, for an appli-
cable action two different cases may be applicable at the same time. The resulting state
would then be determined only by the disjunction of the cases’ effects. What is more, it
would be logically unsound to consider only the effects of one of the cases. For the online
control of agents in ALPprolog we stipulate that for an applicable action at most a single
case applies, greatly simplifying the update of the agent’s state knowledge.

Definition 6 (Deterministic Propositional Fluent Calculus)
A propositional Fluent Calculus domain is deterministic if the following holds: Let a be
an applicable ground action. Then there is at most one case of the action that is applicable
in the given state.

For example, an action theory is deterministic if for each effect axiom all the cases are
mutually exclusive. Next assume we have an applicable deterministic action with e.g. two
case selection formulas φ(s) and ¬φ(s) , where neither case is implied by the current
state. Here, instead of updating the current state with the disjunction of the respective
effects, ALPprolog will employ incomplete reasoning.

3.3 Propositional Fluent Calculus with Sensing

We make the following assumptions concerning sensing: At any one time, a sensor may
only return a single value from a fixed set R of ground terms, the sensing results. However,
the meaning of such a sensing result may depend upon the concrete situation of the agent.

Example 1 (cont.)
Assume that now one of the cells in the maze contains a deadly threat to our gold-hunting

agent. If the agent is next to a cell containing the threat she perceives a certain smell,
otherwise she doesn’t: She can sense whether one of the neighbouring cells is unsafe; but
the actual neighbouring cells are only determined by the agent’s current location.

Definition 7 (Sensor Axiom)
A sense fluent S(x) is a unary fluent that serves as interface to the sensor. We assume the
sort SENSEFLUENT to be a subsort of sort FLUENT. A sensor axiom then is of the form

(∀s, x, ~y)Holds(S(x), s) ≡
∨

R∈R
x = R ∧ φ(x, ~y, s) ∧ ψ(x, ~y, s),

for a ground set of sensing results R . Here φ(x, ~y, s) is a prime state formula that selects
a meaning of the sensing result R , whereas the pure prime state formula ψ(x, ~y, s) de-
scribes the selected meaning. We stipulate that sensor axioms (which are a form of domain
constraint) may only be included if they are modular.

Clearly φ(x, ~y, s) should be chosen so as to be uniquely determined in each state. If
auxiliary axioms are used in φ(x, ~y, s) then again the programmer must ensure that these
evaluate to ground terms in order that a ground state representation can be maintained.

ALPprolog — A New Logic Programming Method for Dynamic Domains 11

Example 1 (cont.)
The following is the sensor axiom for our gold-hunter:

(∀)Holds(PerceiveSmell(x), s) ≡

x = true ∧ Holds(At(Agent, y), s) ∧ Neighbours(y, ~z) ∧
∨
z∈~z

Holds(ThreatAt(z), s)

∨

x = false ∧ Holds(At(Agent, y), s) ∧ Neighbours(y, ~z) ∧
∧
z∈~z

¬Holds(ThreatAt(z), s))

Theoretically, the combination of sensing with the online control of an agent is quite
challenging: It is logically sound to to consider the disjunction of all possible sensing re-
sults for offline reasoning. In the online setting, however, upon the observation of a sensing
result we henceforth have to accept this result as being true; that is, at runtime we add the
result to the action theory, something which is logically unsound. On the other hand, it also
does not make sense to stipulate that the sensing result be known beforehand.

3.4 Action Theory Representation

We continue by describing how the underlying action theory is represented in ALPprolog.
As basic building block we need a representation for prime state formulas. For notational
convenience we will represent (¬)Holds(f, s) literals by the (possibly negated) fluent
terms only, and, by an abuse of terminology, we will call such a term (¬)f a fluent literal.
A convenient Prolog representation for such a state formula is a list, where each element is
either a literal (i.e. a unit clause) or a list of at least two literals (a non-unit clause). In the
following we call such a list a PI-list.

Definition 8 (Action Theory Representation)
Action theories as defined in definition 6 are represented in ALPprolog as follows:

• The initial state is specified by a Prolog fact initial_state(PI-List).,
where PI-Listmentions only ground fluent literals. Domain constraints other than
sensor axioms have to be compiled into PI-List.

• a Prolog fact action(A,Precond,EffAx)., for each action a , has to be in-
cluded, where

— A is an action function symbol, possibly with object terms as arguments;
— Precond is a PI-list, the action’s precondition;
— EffAx is a list of cases for the action’s effects with each case being a pair

Cond-Eff, where the effect’s condition Cond is a PI-list, and the effects
Eff are a list of fluent literals; and

— all variables in EffAx also occur in Precond.

• If present, auxiliary axioms Daux are represented by a set of Prolog clauses. The
predicates defined in the auxiliary axioms must be declared explicitly by a fact
aux(Aux)., where Aux denotes the listing of the respective predicate symbols.

12 Conrad Drescher and Michael Thielscher

The sensor axioms are represented as Prolog facts sensor_axiom(s(X),Vals).,
where

• s is a sense fluent with object argument X; and
• Vals is a list of Val-Index-Meaning triples, where

— Val is a pair X-result_i, where result_i is the observed sensing re-
sult;

— Index is a PI-list consisting of unit clauses; and
— Meaning is a PI-list, mentioning only fluent literals and only variables from

Val and Index.

The sense fluents have to be declared explicitly by a fact sensors(Sensors).,
where Sensors is a listing of the respective function symbols. This is necessary in order
to distinguish sense fluents, ordinary fluents, and auxiliary predicates in PI-lists.

3.5 Reasoning for ALPprolog

Reasoning in ALPprolog works as follows: For evaluating the program atoms we readily
resort to Prolog. The reasoner for the action theory is based on the principle of progression.
Setting out from the initial state, upon each successful evaluation of an action’s precondi-
tion against the current state description, we update the current state description by the
action’s effects.

Reasoning about the action comes in the following forms:

• Given a ground applicable action a , from the current state description φ(s1) and
the action’s positive and negative effects compute the description of the next state
ψ(s2) (the update problem).

• Given a description φ(s) of the current state, check whether {φ(s)}∪Daux � ψ(s) ,
where ψ(s) is some state formula in s , but not a sense fluent (the entailment prob-
lem).

• For a sensing action, i.e. a query Holds(S(x), s) , integrate the sensing results ob-
served into the agent’s state knowledge (the sensing problem).

In the following we consider each of these reasoning problems in turn.

3.5.1 The Update Problem

It turns out that solving the update problem is very simple. Let State be a ground PI-
List, and let Update be a list of ground fluents. The representation of the next state is then
computed in two steps:

(1) First, all prime implicates in State that contain either an effect from Update, or
its negation, are deleted, resulting in State1.

(2) The next state NextState is given by the union of State1 and Update.

Starting from a ground initial state only ground states are computed.
The correctness of this procedure can be seen e.g. as follows: In (Liu et al. 2006;

Drescher et al. 2009) algorithms for computing updates in a Fluent Calculus based upon
Description Logics have been developed. The above update algorithm constitutes a special
case of these algorithms.

ALPprolog — A New Logic Programming Method for Dynamic Domains 13

3.5.2 The Entailment Problem

When evaluating a clause ψ against a ground prime state formula φ , ψ is first split into
the fluent part ψ1 , and the non-fluent part ψ2 . It then holds that ψ is entailed by φ if
there is a ground substitution θ such that

• ψ1θ is subsumed by some prime implicate in φ ; or
• some auxiliary atom P (~x)θ from ψ2 can be derived from its defining Prolog

clauses.

Computing that the clause ψ1 is subsumed by φ can be done as follows:

• If ψ1 is a singleton, then it must be a prime implicate of φ (modulo unification).
• Otherwise there must be a prime implicate in φ that contains ψ1 (modulo unifica-

tion).

Hence the entailment problem for ALPprolog can be solved by member, memberchk,
and subset operations on sorted, duplicate-free lists.

The following example illustrates how reasoning in ALPprolog can be reduced to sim-
ple operation on lists. It also illustrates the limited form of reasoning about disjunctive
information available in ALPprolog:

Example 2 (Disjunctions and Substitutions in ALPprolog)
Assume that the current state is given by [[at(gold,4),at(gold,5)]]. Then

the query ?([at(gold,X)]) fails, because we don’t consider disjunctive substitutions.
However, on the same current state the query ?([[at(gold,X),at(gold,Y)]])
succeeds with X=4 and Y=5.

3.5.3 The Sensing Problem

Sensing results have to be included into the agent’s state knowledge every time a sensing
action is performed, i.e. a literal ?(s(X)) is evaluated. This works as follows:

• First we identify the appropriate sensor axiom sensor_axiom(s(X),Vals).
• Next we identify all the [X-result_i]-Index-Meaning triples in Vals such

that result_i matches the observed sensing result, and unify X with result_i.
• We then locate the unique Index-Meaning s.t. the current state entails Index.
• Finally, we adjoin Meaning to the current state and transform this union to a PI-list.

3.6 Soundness of ALPprolog

At the end of section 3.3 we have already mentioned that adding sensing results to the ac-
tion theory at runtime makes the subsequent reasoning logically unsound wrt. the original
program plus action theory. If we add the set of sensing results observed throughout a run
of an ALPprolog program, however, then we can obtain the following soundness result:

Proposition 1 (Soundness of ALPprolog)
Let Π be a ALPprolog program on top of an action domain D . Let Σ be the union of

the sensor results observed during a successful derivation of the ALPprolog query Γ with
computed answer substitution θ . Then D ∪Π ∪ Σ � Γθ .

14 Conrad Drescher and Michael Thielscher

Proof (Sketch)
It is well-known that SLD-resolution is sound for any ordinary program atom. A query
(∃)Holds(φ, s), where φ is not a sense fluent, is only evaluated successfully if there is
a substitution θ such that D � (∀)Holds(φ, s)θ . Assume we observe the sensing result
Ri ∈ R for a sense fluent S(x, s) . In general we have (cf. Definition 7):

D � (∀)Holds(S(x, s)) ∧
∨

R∈R
x = R, but D 2 (∀)Holds(S(x, s)) ∧ x = Ri.

For soundness, we have to add the observed sensing result as an additional assumption to
the theory: D ∪ {Holds(S(Ri, s))} � (∀)Holds(S(x, s)) ∧ x = Ri .

4 Evaluation

We have evaluated the performance of ALPprolog via the so-called Wumpus World (Rus-
sell and Norvig 2003) that is a well-known challenge problem in the reasoning about ac-
tion community. Essentially, the Wumpus World is an extended version of the gold-hunter
domain from example 1. The main features that make it a good challenge problem are in-
complete information in the form of disjunctions and unknown propositions, and reasoning
about sensing results.

We have used both Flux and ALPprolog to solve Wumpus Worlds of size up to 32×32. 4

We have done this using three different modellings:

(1) In (Thielscher 2005b) a Flux model is described that uses quantification over vari-
ables — this is beyond ALPprolog.

(2) We have evaluated both languages on a ground model.
(3) We have artificially increased the size of the ground model by making the connec-

tions between cells part of the state knowledge.

A first observation is that both languages roughly scale equally well in all models. Using
(1) Flux is slightly faster than ALPprolog using (2). Let us then point out that on ground
models Flux and ALPprolog maintain the same state representation: Flux also computes
the prime implicates. On the encoding (2) ALPprolog is roughly one order of magnitude
faster than Flux, whereas on (3) the difference is already two orders of magnitude. The key
to the good performance of ALPprolog then is that it handles large state representations
well: By encoding states as sorted lists (of lists) some of the search effort necessary in
Flux can be avoided. If, however, we use Flux’ capability of handling quantified variables
in the state knowledge for a more concise encoding, then ALPprolog and Flux are again
on par, with Flux even having slightly the edge. In general, we expect ALPprolog to excel
on problem domains that feature large state representations that are not easily compressed
using quantification.

It has already been established that Flux gains continuously over standard Golog the
more actions have to be performed (Thielscher 2005a). As ALPprolog scales as well as
Flux the same holds for ALPprolog and Golog. The version of Golog with periodically
progressed state knowledge is slightly slower than Flux (Sardina and Vassos 2005).

4 The distribution of ALPprolog contains the Wumpus World example for both ALPprolog and Flux.

ALPprolog — A New Logic Programming Method for Dynamic Domains 15

Let us also compare ALPprolog, Flux, and Golog from a knowledge representation per-
spective: Both ALPprolog and Flux allow the programmer to define new auxiliary predi-
cates for the agent strategy that are not present in the action theory, a practically very useful
feature that is missing from Golog. Also, the propositional variables used in Golog instead
of the finitely many ground terms used in ALPprolog make it hard for the programmer to
fully exploit the power of Prolog’s unification mechanism. In this regard Flux, on the other
hand, excels in that the programmer can include fluents containing (possibly quantified)
variables in the agent’s state knowledge. Contrary to ALPprolog and Golog, however, Flux
does not support arbitrary disjunctions.

5 Conclusion and Future Work

In this work we have presented ALPprolog, an efficient logic programming language for
the online control of autonomous agents in domains that feature incomplete information
and sensing. On the one hand, it can be argued that the state-of-the-art languages Golog
and Flux already successfully address this application domain. On the other hand, we have
shown that ALPprolog excels because of its efficient reasoning with large ground state
representations, something that we expect to be quite useful in practice.

For future work, there are two interesting directions: On the one hand it would be nice
to extend ALPprolog to offline planning. The disjunctive substitutions in the general ALP
proof calculus provide a powerful form of reasoning about conditional plans, or planning
in the presence of sensing in the sense of (Levesque 1996).

On the other hand we plan to fruitfully apply ALPprolog in the domain of General Game
Playing. General Game Playing (Genesereth et al. 2005) is a new exciting AI research
challenge aiming at the integration of manifold AI techniques: A program (also called a
player) is given an axiomatisation of the rules of a game. The player then computes a
strategy/heuristic that it uses to play and hopefully win the game. The main challenge of
General Game Playing consists of constructing suitable heuristics.

However, at its base the player also needs a means to represent, and reason about, the
state of the game. Up to now the games played in General Game Playing have been re-
stricted to complete information (Love et al. 2008) — but clearly games with incomplete
information constitute a bigger challenge (Thielscher 2010a). We intend to include tech-
niques from ALPprolog into the successful Flux-based Fluxplayer (Schiffel and Thielscher
2007).

Acknowledgements. We appreciate the helpful comments by the reviewers. This work was
partially supported by DFG Grant TH 541/14. C. Drescher wishes to acknowledge support
by EPSRC Grant EP/G055114/1. M. Thielscher is the recipient of an Australian Research
Council Future Fellowship (project number FT 0991348). He is also affiliated with the
University of Western Sydney.

References

BORDINI, R., HÜBNER, J., AND WOOLDRIDGE, M. 2007. Programming Multi-Agent Systems in
AgentSpeak using Jason. Wiley.

16 Conrad Drescher and Michael Thielscher

DRESCHER, C., LIU, H., BAADER, F., GUHLEMANN, S., PETERSOHN, U., STEINKE, P., AND

THIELSCHER, M. 2009. Putting abox updates into action. In Proceedings of the Seventh Interna-
tional Symposion on Frontiers of Combining Systems (FroCoS 2009). Trento, Italy.

DRESCHER, C., SCHIFFEL, S., AND THIELSCHER, M. 2009. A declarative agent programming
language based on action theories. In Proceedings of the Seventh International Symposion on
Frontiers of Combining Systems (FroCoS 2009). Trento, Italy.

GENESERETH, M. R., LOVE, N., AND PELL, B. 2005. General game playing: Overview of the
AAAI competition. AI magazine 26, 2, 62–72.

HERZIG, A. AND VARZINCZAK, I. 2007. Metatheory of actions: Beyond consistency. Artificial
Intelligence 171, 16–17, 951–984.

J.W. LLOYD. 1987. Foundations of Logic Programming. Springer.
LEVESQUE, H., REITER, R., LESPÉRANCE, Y., LIN, F., AND SCHERL, R. 1997. GOLOG: A logic

programming language for dynamic domains. Journal of Logic Programming 31, 1–3, 59–83.
LEVESQUE, H. J. 1996. What is planning in the presence of sensing? In Proceedings of the Thir-

teenth National Conference on Artificial Intelligence (AAAI 1996). Portland, Oregon, USA, 1139–
1146.

LIU, H., LUTZ, C., MILICIC, M., AND WOLTER, F. 2006. Updating description logic ABoxes.
In Proceedings of the Tenth International Conference on Principles of Knowledge Representation
and Reasoning (KR 06). Lake District of the UK.

LOVE, N., HINRICHS, T., HALEY, D., SCHKUFZA, E., AND GENESERETH, M. 2008. General
game playing: Game description language specification. Tech. rep., Stanford University.

MCCARTHY, J. AND HAYES, P. J. 1969. Some philosophical problems from the standpoint of artifi-
cial intelligence. In Machine Intelligence 4, B. Meltzer and D. Michie, Eds. Edinburgh University
Press, 463–502.

REITER, R. 2001a. Knowledge in Action: Logical Foundations for Describing and Implementing
Dynamical Systems. MIT Press, Cambridge, MA.

REITER, R. 2001b. On knowledge-based programming with sensing in the situation calculus. ACM
Transactions on Computational Logic 2, 4, 433–457.

RUSSELL, S. J. AND NORVIG, P. 2003. Artificial Intelligence: a modern approach, 2nd international
edition ed. Prentice Hall, Upper Saddle River, N.J.

SARDINA, S. AND VASSOS, S. 2005. The wumpus world in IndiGolog: A preliminary report. In
Proceedings of the Workshop on Nonmonotonic Reasoning, Action and Change at IJCAI.

SCHIFFEL, S. AND THIELSCHER, M. 2007. Fluxplayer: A successful general game player. In
Proceedings of the Twenty-second National Conference on Artificial Intelligence (AAAI 2007).
AAAI Press, Menlo Park, CA, 1191–1196.

THIELSCHER, M. 1999. From situation calculus to fluent calculus: State update axioms as a solution
to the inferential frame problem. Artificial Intelligence 111, 1–2, 277–299.

THIELSCHER, M. 2005a. FLUX: A logic programming method for reasoning agents. Theory and
Practice of Logic Programming 5, 4–5, 533–565.

THIELSCHER, M. 2005b. A FLUX agent for the Wumpus World. In Proceedings of the Workshop on
Nonmonotonic Reasoning, Action and Change at IJCAI, L. Morgenstern and M. Pagnucco, Eds.
Edinburgh, UK, 104–108.

THIELSCHER, M. 2010a. A general game description language for incomplete information games.
In Proceedings of the Twenty-fourth National Conference on Artificial Intelligence (AAAI 2010).
AAAI Press, Atlanta, 994–999.

THIELSCHER, M. 2010b. Integrating action calculi and AgentSpeak: Closing the gap. In Proceed-
ings of the International Conference on Principles of Knowledge Representation and Reasoning
(KR). Toronto, 79–89.

THIELSCHER, M. 2011. A unifying action calculus. Artificial Intelligence Journal 175, 120–141.

