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the one that has minimal number of values in its domain, dominated all otherstatic orderings. Here, we present three new dynamic variable ordering (dvo)heuristics, derived as a result of our studies of phase transition phenomena ofcombinatorial problems, and compare these against two existing heuristics.Tsang, Borrett, and Kwan's study of CSP algorithms [22] shows that theredoes not appear to be a universally best algorithm, and that certain algorithmsmay be preferred under certain circumstances. We carry out a similar investi-gation with respect to dvo heuristics in an attempt to determine under whatconditions one heuristic dominates another.In the next section we give a background to the study. We then go on todescribe four measures of the constrainedness of CSP's, and in Section 4 describe�ve heuristics, based on these measures. The empirical study is reported inSection 5, the heuristics are then discussed with respect to previous work inSection 6, and conclusions are drawn in Section 7.2 BackgroundA constraint satisfaction problem consists of a set of n variables V , each variablev 2 V having a domain of valuesMv of size mv, and a set of constraints C. Eachconstraint c 2 C of arity a restricts a tuple of variables hv1; : : : ; vai, and speci�esa subset ofM1�M2� : : :�Ma, each element of which is a combination of valuesthe variables are forbidden to take simultaneously by this constraint. In a binaryCSP, which the experiments reported here are exclusively concerned with, theconstraints are all of arity 2. A solution to a CSP is an assignment of a value toevery variable satisfying all the constraints. The problem that we address hereis the decision problem, i.e. �nding one solution or showing that none exists.There are two classes of complete search algorithm for the CSP, namelythose that check backwards and those that check forwards. In algorithms thatchecks backwards, the current variable vi is instantiated and checking takes placeagainst the (past) instantiated variables. If this is inconsistent then a new valueis tried, and if no values remain then a past variable is reinstantiated. In al-gorithms that check forwards, the current variable is instantiated with a valueand the (future) uninstantiated variables are made consistent, to some degree,with respect to that instantiation. Chronological backtracking (BT), backmark-ing (BM), backjumping (BJ), conict-directed backjumping (CBJ), and dynamicbacktracking (DB) are algorithms that check backwards [11, 5, 6, 10], whereasforward checking (FC) and maintaining arc-consistency (MAC) are algorithmsthat check forwards [13, 18]. This study investigates only forward checking al-gorithms, and in particular forward checking combined with conict-directedbackjumping (FC-CBJ) [15].Algorithm FC instantiates variable vi with a value xi and removes from thedomains of future variables any values that are inconsistent with respect to thatinstantiation. If the instantiation results in no values remaining in the domainof a future variable, then a new value is tried for vi and if no values remain forvi (i.e. a dead end is reached) then the previous variable is reinstantiated (i.e.chronological backtracking takes place). FC-CBJ di�ers from FC; on reaching a



dead end the algorithm jumps back to a variable that is involved in a conictwith the current variable [15].In selecting an algorithm we will prefer one that takes less search e�ortthan another, where search e�ort is measured as the number of times pairs ofvalues are compared for compatibility, i.e. consistency checks. Generally, checkingforwards reduces search e�ort, as does jumping back.The order in which variables are chosen for instantiation profoundly inu-ences search e�ort. Algorithms that check backwards tend to use variable order-ing heuristics that exploit topological parameters, such as width, induced widthor bandwidth, and correspond to static instantiation orders (i.e. they do notchange during search) [21]. Algorithms that check forwards have additional in-formation at their disposal, such as the current size of the domains of variables.Furthermore, since domain sizes may vary during the search process, forwardchecking algorithms may use dynamic variable ordering (dvo) heuristics [17],and it is this class of heuristics that is investigated here.3 ConstrainednessMany NP-complete problems display a transition in solubility as we increase theconstrainedness of problem instances. This phase transition is associated withproblems which are typically hard to solve [2]. Under-constrained problems tendto have many solutions and it is usually easy to guess one. Over-constrainedproblems tend not to have solutions, and it usually easy to rule out all possiblesolutions. A phase transition occurs in between when problems are \criticallyconstrained". Such problems are usually di�cult to solve as they are neitherobviously soluble or insoluble. Problems from the phase transition are oftenused to benchmark CSP and satis�ability procedures [22, 9]. Constrainednesscan be used both to predict the position of a phase transition in solubility [23,20, 16, 7, 19] and, as we show later, to motivate the construction of heuristics.In this section, we identify four measures of some aspect of constrainedness.These measures all apply to an ensemble of random problems. Such measuresmay suggest whether an individual problem from the ensemble is likely to besoluble. For example, a problem with larger domain sizes or looser constraintsis more likely to be soluble than a problem with smaller domains or tighter con-straints, all else being equal. To make computing such measures tractable, we willignore speci�c features of problems (like the topology of the constraint graph)and consider just simple properties like domain sizes and constraint tightness.One simple measure of constrainedness can be derived from the size of prob-lems in the ensemble. Size is determined by both the number of variables andtheir domain sizes. Following [7, 8], we measure problem size via the size of thestate space being explored. This consists of all possible assignments of values tovariables, its size is simply the product of the domain sizes, Qv2V mv. We de�nethe size (N ) of the problem as the number of bits needed the number of bitsneeded to describe a point in the state space, so we have:N =def Xv2V log2mv (1)



A large problem is likely to be less constrained and has a greater chance of beingsoluble than a small problem with the same number of variables and constraintsof the same tightnesses.A second measure of constrainedness is the solution density of the ensemble.If the constraint c on average rules out a fraction pc of possible assignments,then a fraction 1� pc of assignments are allowed. The average solution density,� is the mean fraction of assignments allowed by all the constraints. The meansolution density over the ensemble is,� = Yc2C(1� pc) (2)Problems with loose constraints have high solution density. As noted above, allelse being equal, a problem with a high solution density is more likely to besoluble than a problem with a low solution density.A third measure of constrainedness is derived from the size and solution den-sity. E(N ), the expected number of solutions for a problem within an ensembleis simply the size of the state space times the probability that a given elementin the state space is a solution. That is,E(N ) = �2N = Yv2V mv �Yc2C(1� pc) (3)If problems in an ensemble are expected to have a large number of solutions, thenan individual problem within the ensemble is likely to be loosely constrained andto have many solutions.The fourth and �nal measure of constrainedness, � is again derived fromthe size and solution density. This has been suggested as a general measureof the \constrainedness" of combinatorial problems [8]. It is motivated by therandomness with which we can set a bit in a solution to a combinatorial problem.If � is small, then problems typically have many solutions and a given bit canbe set more or less at random. For large �, problems typically have few or nosolutions and a given bit is very constrained in how it can be set. � is de�nedby, � =def 1� log2(E(N ))N (4)= � log2(�)N= �Pc2C log(1� pc)Pv2V log(mv) (5)If � � 1 then problems have a large expected number of solutions for theirsize. They are therefore likely to be under-constrained and soluble. If � � 1then problems have a small expected number of solutions for their size. Theyare therefore likely to be over-constrained and insoluble. A phase transition insolubility occurs inbetween where � � 1 [8]. This is equivalent for CSPs to theprediction made in [19] that a phase transition occurs when E(N ) � 1.



4 Heuristics for ConstrainednessMany heuristics in CSPs branch on what can often be seen as an estimate ofthe most constrained variable [8]. Here, we describe two well known heuristicsfor CSPs and three new heuristics. We use the four measures of constrained-ness described above. These measures were de�ned for an ensemble of problems.Each measure can be computed for an individual problem, but will give onlyan estimate for the constrainedness of an individual problem. For example, aninsoluble problem has zero solution density and this may be very di�erent fromthe measured value of �. Even so, such measures can provide both a good indi-cation of the probability of a solution existing and, as we show here, a heuristicestimate of the most constrained variable.Below, we adopt the following conventions. When a variable vi is selected asthe current variable and instantiated with a value, vi is removed from the set ofvariables V , constraint propagation takes place, and all constraints incident onvi, namely Ci, are removed from the set of constraints C. Therefore V is the setof future variables, C is the set of future constraints, mj is the actual size of thedomain of vj 2 V after constraint propagation, pc is the actual value of constrainttightness for constraint c 2 C after constraint propagation, and Cj is the set offuture constraints incident on vj . All characteristics of the future subproblemare recomputed and made available to the heuristics as local information.4.1 Heuristic FFHaralick and Elliott [13] proposed the fail-�rst principle for CSPs as follows: \Tosucceed, try �rst where you are most likely to fail." The reason for attemptingnext the task which is most likely to fail is to encounter dead-ends early on andprune the search space. Applied as a constraint ordering heuristic this suggeststhat we check �rst the constraints that are most likely to fail and when appliedas a variable ordering heuristic, that we choose the most constrained variable.An estimate for the most constrained variable is the variable with the smallestdomain. That is we choose vi 2 V such that mi is a minimum.An alternative interpretation of this heuristic is to branch on vi such that wemaximize the size of the resulting subproblem, without considering the constraintinformation on that variable. That is, choose the variable vi 2 V that maximizesXv2V�vi log(mv) (6)where V � vi is the set of future variables with vi removed, and is the same asselecting the variable vi which maximizes the denominator of equation (5).4.2 Heuristic BzThe Brelaz heuristic (Bz) comes from graph colouring [1]; we wish to �nd acolouring of the vertices of a graph such that adjacent vertices have di�erentcolours. Given a partial colouring of a graph, the saturation of a vertex is thenumber of di�erently coloured vertices adjacent to it. A vertex with high satura-tion will have few colours available to it. The Bz heuristic �rst colours a vertex of



maximum degree. Thereafter Bz selects an uncoloured vertex of maximum sat-uration, tie-breaking on the degree in the uncoloured subgraph. Bz thus choosesto colour next what is estimated to be the most constrained vertices.When applying Bz to a CSP we choose the variable with smallest domain sizeand tie-break on degree in the future subproblem. That is, choose the variablewith smallestmi and tie-break on the variable with greatest future degree jCij. Ina fully connected constraint graph, Bz will behave like FF, because all variableshave the same degree.4.3 Heuristic RhoThe Rho (�) heuristic branches into the subproblem that maximizes the solutiondensity, �. The intuition is to branch into the subproblem where the greatestfraction of states are expected to be solutions. To maximize �, we select thevariable vi 2 V that maximizes Yc2C�Ci(1� pc) (7)where C�Ci is the set of future constraints that do not involve variable vi, and(1�pc) is the looseness of a constraint. If we express (7) as a sum of logarithms,Pc2C�Ci log(1�pc), then this corresponds to selecting a variable that minimizesthe numerator of (5). Expression (7) gives an estimate of the solution densityof the subproblem after selecting vi. More concisely (and more computationallye�cient), we choose the future variable vi that minimizesYc2Ci(1� pc) (8)This is the variable with the most and/or tightest constraints. Again, we branchon an estimate of the most constrained variable.4.4 Heuristic E(N)The E(N) heuristic branches into the subproblem that maximizes the expectednumber of solutions, E(N ). This will tend to maximize both the subproblemsize (the FF heuristic) and its solution density (the Rho heuristic). Therefore,we select a variable vi 2 V that maximizesYv2V�vi mv � Yc2C�Ci(1� pc) (9)where V �vi is the set of future variables with vi removed, and C�Ci is the setof future constraints that do not involve variable vi. This can be more succinctly(and e�ciently) expressed as choose the variable vi 2 V that minimizesmi Yc2Ci(1� pc) (10)The E(N) heuristic has an alternative, intuitively appealing, justi�cation.Let N be the number of solutions to the current subproblem. At the root ofthe tree, N is the total number of solutions to the problem. If N=0, the currentsubproblems has no solutions, and the algorithm will at some point backtrack.



If N=1, the current subproblem has exactly one solution, and N will remainconstant on the path leading to this solution, but be zero everywhere else. As wemove down the search tree, N cannot increase as we instantiate variables. Theobvious heuristic is to maximize N in the future subproblem. We use E(N) asan estimate for N, so we branch into the subproblem that maximizes E(N). Andthis is again an estimate for the most constrained variable, as loosely constrainedvariables will tend to reduce N most. Consider a loosely constrained variable vithat can take any value in its domain. Branching on this variable will reduce Nto N/mi. Tightly constrained variables will not reduce N as much.4.5 Heuristic KappaThe Kappa heuristic branches into the subproblem that minimizes �. Therefore,select a variable vi 2 V that minimizes�Pc2C�Ci log(1� pc)Pv2V�vi log(mv) (11)Let � be the numerator and � be the denominator of equation (5), the de�-nition of �. That is, � = �Pc2C log(1 � pc) and � = Pv2V log(mv). Then weselect a variable vi 2 V such that we maximize the following�+Pc2Ci log(1� pc)� � log(mi) (12)This heuristic was �rst suggested in [8] but has not yet been tested extensivelyon a range of CSPs, and depends on the proposal in [8] that � captures a notionof the constrainedness of an ensemble of problems. We assume that � providesan estimate for the constrainedness of an individual in that ensemble. We againwant to branch on a variable that is estimated to be the most constrained,giving the least constrained subproblem. We estimate this by the subproblemwith smallest �. This suggests the heuristic of minimizing �.4.6 Implementing the heuristicsWe use all the above heuristics with the forward checking algorithm FC-CBJ.After the current variable has successfully been assigned a value (i.e. after domain�ltering all future variables have non-empty domains), the constraint tightnessis recomputed for any constraint acting between a pair of variables, vj and vk,such that values have just been removed from the domain of vj or vk, or both. Tocompute constraint tightness pc for constraint c acting between variables vj andvk we count the number of conicting pairs across that constraint and divide bythe product of the new domain sizes. This counting may be done via consistencychecking and will take mj �mk checks. Constraint tightness will then be in therange 0 (all pairs compatible) to 1 (all pairs are conicts). When computing thesum of the log looseness of constraints (i.e. the numerator of equation (5)), ifpc = 1 a value of �1 is returned. Consequently, the Kappa heuristic will selectvariable vj or vk next, and the instantiation will result in a dead end.



In the FF heuristic the �rst variable selected is the variable with smallestdomain size, and when all variables have the same domain size we select �rst thelowest indexed variable v1. For the Bz heuristic saturation is measured as theinverse of the domain size; i.e. the variable with smallest domain size will havelargest saturation. Consequently, when the constraint graph is a clique FF andBz will have identical behaviours.Search costs reported in this paper do not include the cost in terms of con-sistency checks of recomputing the constraint tightness. This overhead makessome of the heuristics less competitive than our results might suggest. However,our main concern here is to establish sound and general principles for selectingvariable ordering heuristics. In the future, we hope to develop book-keeping tech-niques and approximations to the heuristics that reduce the cost of re-computingor estimating the constraint tightness but which still give good performance.5 The ExperimentsThe experiments attempt to identify under what conditions one heuristic is bet-ter than another. Initially, experiments are performed over uniform randomlygenerated CSP. In a problem hn;m; p1; p2i there will be n variables, with a uni-form domain of size m, p1:n:(n�1)2 constraints, and exactly p2m2 conicts overeach constraint [16, 19]. This class of problem is then modi�ed such that weinvestigate problems with non-uniform domains and constraint tightness.When plotting the results, problems will be measured in terms of their con-strainedness, �. This is because in some experiments we vary the number ofvariables and keep the degree of variables  constant, vary the tightness of con-straints p2, and so on. By using constrainedness we hope to get a clear picture ofwhat happens. Furthermore, in non-uniform problems constrainedness appearsto be one of the few measures that we can use. It should be noted that in theexperiments the complexity peak does not always occur exactly at � = 1, andthat in sparse constraints graphs the peak tends to occur at lower values of �,typically in the range 0.6 to 0.9. This has been observed empirically in [16], andan explanation is given by Smith and Dyer [19].In all of the graphs we have kept the same line style for each of the heuristics.The labels in the graphs have then been ordered, from top to bottom, to corre-spond to the ranking of the heuristics in the phase transition. The best heuristicwill thus appear �rst.5.1 Uniform Problems, Varying Constraint Graph Density p1The aim of this experiment is to determine how the heuristics are a�ected aswe vary the number of constraints within the constraint graph. The experimentswere performed over problems with 20 variables, each with a domain size of 10.In Figure 1, we plot the mean performance for sparse constraint graphs4 withp1 = 0:2, maximally dense constraint graphs with p1 = 1:0 and constraint graphsof intermediate density p1 = 0:5. At each density 1,000 problems were generatedat each possible value of p2 from 0:01 to 0:99 in steps of 0:01.4 Disconnected graphs were not �ltered out since they had little e�ect on performance.
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magnitude worse than the median of 288 checks at this point.5.2 Uniform Problems, Varying Number of Variables n
0

10000

20000

30000

40000

50000

60000

0.6 0.7 0.8 0.9 1 1.1 1.2

m
ea

n 
ch

ec
ks

Kappa

FF
Rho

Kappa
E(N)

Bz (a) n = 30 0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

0.6 0.7 0.8 0.9 1 1.1 1.2

m
ea

n 
ch

ec
ks

Kappa

FF
Rho

Kappa
E(N)

Bz (b) n = 50
1000

10000

100000

1e+06

1e+07

20 30 40 50

pe
ak

 m
ea

n 
ch

ec
ks

number of variables

FF
Rho

Kappa
E(N)

Bz(c) Peaks of mean performance over nFig. 2. Mean performance for FC-CBJ + heuristics for hn; 10i with  = 5The aim of this experiment is to determine how the heuristics scale withproblem size. At �rst sight, this can be simply done by increasing the numberof variables n, while keeping all else constant. However, if n increases while p1 iskept constant the degree  of a variable (i.e. the number of constraints incidenton a variable) also increases. To avoid this, we vary p1 with n such that averagedegree  remains constant at 5, similar to [12]. To observe a phase transition,1,000 problems were then generated at each possible value of p2 from 0:01 to0:99 in steps of 0:01.In Figure 2, we plot the performance of each heuristic as we increase n. InFigures 2(a) and (b), we show the mean performance for n = 30 and n = 50respectively. The ranking of the heuristics remains the same as in the previousexperiment for constraint graphs of intermediate density. Though not shown, weobserved similar behaviour in the distribution of performance (e.g. median, 95%and higher percentiles). As before, the di�erences between the heuristics tend toopen up in the higher percentiles in the middle of the phase transition.



In Figure 2(c) we plot the peak in average search e�ort in the phase transitionregion for each value of n. This then gives a contour showing how search costincreases with n, for this class of problem. The Figure suggests that Bz, Kappaand E(N) scale in a similar manner. Using a least square linear �t on the limiteddata available, we conjecture that E(N) would become better than Bz whenn > 90, and Kappa would do likewise when n > 164. Further empirical studieson larger problems would be needed to con�rm this. However, Rho and FFappear to scale less well. The gradients of Figure 2(c) suggests that FF and Rhoscale with larger exponents than Bz, Kappa and E(N).5.3 Problems with Non-Uniform Constraint TightnessAll experiments considered above have constraints generated uniformly. That is,a single value of p2 describes the tightness of every constraint. At the start ofsearch, every constraint is equally tight, so a good measure of the constrained-ness of a variable is simply the number of constraints involving this variable(i.e. the variable's degree), together with its domain size. Even as we progressthrough search and tightnesses vary, this measure should still be reasonably ac-curate. This might explain why Bz has never been signi�cantly worse in earlierexperiments than Kappa or E(N ) which undertake the computationally heavyoverhead of measuring exact constraint tightnesses.If we are given a problem with signi�cantly varying constraint tightnesses wemust take account of this to measure constrainedness accurately. We thereforeexpect that Bz and FF may perform poorly on problems with varying constrainttightnesses, while the other heuristics should perform well, because they do takeaccount of constraint tightness. To test this hypothesis, we generated problemswith mainly loose constraints, but a small number of very tight constraints. Wedid this by generating problems with a multiple of 5 constraints, and choosingexactly 20% of these constraints to have tightness p2 = 0:8 (i.e. tight constraints)and the remainder tightness p2 = 0:2 (i.e. loose constraints). We expect Bz toperform poorly on these problems as it will tie-break on the number of constraintsand not the tightness of those constraints (the more signi�cant factor in thisproblem class).We set n = 30 and m = 10, and to observe a phase transition we varied theconstraint graph density, p1 from 187 to 1 in steps of 187 . Results are plotted inFigure 3. The 50% solubility point is at � � 0:64 when p1 = 2387 .Median performance, Figure 3(a), shows that as predicted Kappa and E(N)do well. Most signi�cantly, Bz is dominated by all except FF. This is the �rst ofour experiments so far where Bz has been shown to perform relatively poorly.Figure 3(b) shows the 75th percentiles for the �ve heuristics (i.e. 75% ofproblems took less than the plotted amount of search e�ort) and Figure 3(d)shows worst case. We see that at the 75th percentile there is a greater di�erencebetween the heuristics, suggesting a more erratic behaviour from FF and Bz.Mean performance (Figure 3(c)) and worst case performance (Figure 3(d)) showsthe existence of exceptionally hard problems for FF and Bz. The worst case forFF was 26,545 million consistency checks at � � 0:39, in a region where 100% of
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BzFig. 4. Performance of FC-CBJ, with n = 20, m = f10; 20g and p1 = 0:5labels at a given depth in the search tree. Two classes of heuristic are presented,global and local. Global heuristics �x the instantiation order at the start ofsearch, whereas local heuristics take account of information made available dur-ing search, such as actual domain sizes and constraint tightness. Nudel's localheuristics are thus dynamic variable ordering (dvo) heuristics. Three dvo heuris-tics are presented, IO2, IO3, and IO4. IO2 chooses \next below a node, thatvariable with minimum number mi of surviving labels after forward checking atthe node", and is equivalent to FF. Heuristic IO3 tie-breaks IO2 by choosingthe variable (with smallest domain) that most constrains future variables, andhas much in common with Bz. IO4 stops when any future constraint disallowsall tuples across that constraint. As Nudel says, this is not so much a heuristicbut an algorithmic step. IO4 is implicit in heuristics Rho, E(N), and Kappa.It is interesting to contrast our approach with Nudel's as both give theory-based variable ordering heuristics. Nudel gives measures that estimate the sizeof the remaining search tree, and then constructs heuristics which seek to min-imize these estimates. We have not related our measures directly to the searchtree. Instead we have sought to move into areas of the search tree likely to beunconstrained and therefore have solutions. When one makes certain simpli�ca-tions, both approaches can result in the same heuristic such as FF. However, thedetailed relationship between the approaches has not yet been fully analysed.Feldman and Golumbic [4] applied Nudel's heuristics to real-world constraintsatisfaction problems. Three heuristics are presented, one for a backward check-ing algorithm (BT), and two for a forward checking algorithm (FC1 and FC2).All three heuristics were applied as global/static orderings. Heuristic FC1 selectsvi with minimummiQi<j(1�pi;j), where pi;j is tightness of the constraint actingbetween vi and future variable vj . This corresponds to a global E(N) ordering.Heuristic FC2 takes into consideration all constraints, and selects variable viwith minimum miQj 6=i;k 6=i(1 � pj;k). As far as we can see, there is no corre-spondence between FC2 and the heuristics presented here. In their experimentsheuristic FC1 dominated FC2 on hard problems.The new dvo heuristics presented here may be used as global/static vari-



able ordering heuristics. When we have uniform constraint tightness, Rho willcorrespond to a reverse maximum cardinality ordering [3], suitable for forwardchecking algorithms. If all variables have the same constraint tightness then E(N)maximizes N (the FF heuristic), and if all variables have the same domain sizeE(N) simpli�es to maximizing � (the Rho heuristic). Like the E(N) heuristic, theKappa heuristic simpli�es to maximizing N (the FF heuristic) if all variableshave the same constraint tightness and to maximizing � (the Rho heuristic) if allvariable have the same domain size. Clearly, FF and Bz can be considered as lowcost surrogates of the minimize Kappa heuristic; both attempt to minimize (11)by maximizing the denominator, and Bz tie-breaks by estimating the numeratorof (11) by assuming all constraints are of the same tightness.7 ConclusionsThree new variable ordering heuristics for the CSP have been presented, namelyE(N), Rho, and Kappa. These new heuristics are a product of our investigationsinto phase transition phenomena in combinatorial problems. The new heuristicshave two properties in common. Firstly, they all attempt to measure the con-strainedness of a subproblem, and secondly, they attempt to branch on the mostconstrained variable giving the least constrained subproblem. The heuristics dif-fer in how they measure constrainedness, and what information they exploit.The new heuristics have been tested alongside two existing heuristics, namelyFail-First (FF) and Brelaz (Bz), and on a variety of uniform and non-uniformproblems, using a forward checking algorithm FC-CBJ. On uniform problems,the new heuristics perform similarly to each other and dominate FF. Bz wasconsistently better on sparse and moderately dense constraint graphs, and waseasier to calculate. As constraint graph density increased to the point of becom-ing a clique, Bz performance degraded to be the same as FF. With respect toproblem size, the new heuristics appear to scale better than FF and Bz.Problems with non-uniform constraint tightnesses exposed poor behaviourfrom Bz. This was expected, because Bz exploits information from the domainsizes and topology of the constraint graph, but ignores the tightness of con-straints. Experiments on problems with non-uniform domains demonstrated thatignoring information of domain sizes results in poor performance.In some respects the work reported here might be considered as a �rst forayinto a better understanding of what makes heuristics work. Further work couldinclude determining the importance of tie-breaking in the heuristic Bz, comparedto simply choosing the �rst variable sensibly. Faster substitutes for the heuristicswould allow us to investigate the hypothesis that the new heuristics scale betterthan the old. Little has been done to compare the ranking of the new heuristics onan individual problem basis. We would also like to investigate the performanceof the new heuristics in problems where there is a very large set of di�erentdomain sizes at the start of search.
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