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Each binary constraint c 2 C rules out some proportion pc of combinationsof values for a pair of variables. We call pc the \tightness" of a constraint.Two variables are adjacent if a constraint acts between them. The constraintsatisfaction decision problem is then to determine if there exists an assignmentof values to variables such that none of the constraints are violated. Consistencytechniques are often applied to simplify such decision problems either beforeor during search. Arc consistency (or AC) is the simplest and most commonlyused such technique. A problem is arc consistent if all values in all variablesare supported. A value i for variable v is supported if, when i is assigned to v,all variables adjacent to v can be assigned values without violating constraintson v. Any value which is not supported cannot occur in a solution and canbe removed. An arc consistency algorithm achieves an arc consistent state byrepeatedly removing unsupported values. If it succeeds, we have established AC.If not, a domain wipe out occurs, where one variable has all values in its domainremoved and the problem is insoluble. Therefore, the arc consistency decisionproblem is to determine if there exists a non-empty domain of supported valuesfor each variable. The arc consistency algorithms studied here are AC3 [12] andAC6 [2]. The worst case complexity of AC3 is O(em3) [13] and of AC6 is O(em2),where m is the size of the largest domain and e is the number of edges in theconstraint graph.3 Phase transitions in NPPhase transition behaviour has been studied in many NP-complete problems[4, 14, 9]. To unify such studies, [7] de�nes the constrainedness, � of an ensembleof combinatorial problems as,� =def 1� log2(hSoli)N (1)where N is the base 2 logarithm of the size of the state space, and hSoli is theexpected number of these states that are solutions. Since 0 � hSoli � 2N , � lies inthe range [0;1). If � = 0 then hSoli = N . Problems here are under-constrainedsince every state is expected to be a solution. If � =1 then hSoli = 0. Problemshere are over-constrained since no states are expected to be solutions. If � � 1both soluble and insoluble problems can occur. As problems are on the \knife-edge" between solubility and insolubility, it is often di�cult to �nd solutions orprove that none exist.This de�nition of constrainedness captures parameters used to study phasetransitions in a wide variety of NP-complete problems including constraint satis-faction [6], satis�ability [14], graph colouring [4] and number partitioning [9]. Aswe vary problem size, the location of the phase transition tends to occur over asmall range of �. Other parameters can be less stable. For example, the expectednumber of solutions, which is used to predict the location of the phase transitionin constraint satisfaction in [20], can grow exponentially with problem size. Inrandom 3-Sat problems, hSoli at the phase transition grows as 20:18N [8].



In this paper, it will be convenient to express � as,� = � log �N (2)where � = hSoli=2N is the solution density. That is, the probability that anarbitrarily chosen candidate in the ensemble is a solution.4 Phase transitions in PThe same methodology developed to study phase transitions in NP-completeproblems can be applied to polynomial problems. This yields several immediateresults. First, the measure of constrainedness of a particular polynomial prob-lem is the same as that for NP-complete problems. Consequently we are ableto observe experimentally scaling of computational cost, and this is consistentwith the theoretical worst-case complexity. Finally we use the de�nition of con-strainedness to design new heuristics and explain the performance of existingheuristics.There is an obvious complexity peak in graphs of the performance for theAC3 and AC6 algorithms in [2]. However, the phase transition in arc consistencywas not systematically studied till [10]. For example, in Figure 1 of [10] we see atransition from a region where problems do not bene�t from arc consistency, toone which can be proved insoluble by applying arc consistency. In between is aregion of problems whose domains get smaller when arc consistency is applied,and which tend to be the hardest to make arc consistent. Graphs in [10] areplotted against �csp, the constrainedness of the constraint satisfaction decisionproblem.Unlike NP-complete problems, the location of the phase transition in estab-lishing arc consistency does not occur around some �xed value of �csp closeto 1. For example, Table 1 of [10] reports the location of the phase transitionshifting from �csp � 1:08 to �csp � 3:68. This might suggest a di�erent ap-proach is needed to locate phase transitions in polynomial problems comparedto NP-complete problems.In the rest of the paper, we show that the phase transition in establishing arcconsistency is in fact very similar to that in NP-complete problems. The problemwith the presentation of results in [10] is that �csp is the constrainedness of theNP-complete decision problem: Is there a consistent assignment of values tovariables? But we are merely solving a polynomial problem, establishing arcconsistency, and �csp does not measure the constrainedness of this problem. Assoon as we compute the constrainedness of establishing arc consistency, we seevery similar phase behaviour in P as in NP.5 Constrainedness of arc consistencyTo compute the constrainedness of establishing arc consistency, �ac, we need todecide what the state space, S, and a solution within it look like. A solution



is a constraint satisfaction problem with arc consistent domains. Each pointin the state space represents a constraint satisfaction problem with variablesthat have domains that are some subset of the original domains. The number ofpossible subsets of the domain of v is 2mv . The size of the state space is thereforeQv2V 2mv , and hence N =Pv2V mv.We next calculate the probability q that a candidate state is arc consistent.Assume that a constraint c between variables x and y is represented by a con-ict matrix of size m0x by m0y. The candidate is arc consistent if there is at leastone allowable value in each row and each column of every conict matrix. Tosimplify the computation of the probability, q we assume independence betweenthe probability that there is an allowable value in each row and the probabilitythat there is an allowable value in each column. Whilst such an assumption isstrictly false, similar independence assumptions have proved very successful inpredicting the location of phase transitions in NP-complete problems. For ex-ample, in number partitioning, assuming independence between the binary digitpositions predicts the location of the phase transition to within a 4% accuracy[9].When we know the tightness of each constraint, it is easy to calculate ifthere is at least one allowable value. Our ensemble of problems has random in-dependent constraints, of tightness pc. Note that, on average, all arc consistencycandidates for this problem class have constraints that are the same tightness asthe corresponding constraints in the original problem. Thus, the values of pc foreach constraint c in the original problem can be used when assessing candidates.It follows that, q = Yc2C(1� pcm0x )m0y (1� pcm0y )m0xTo derive �, we need the mean value of q over the state space: � = 2�NPs2S qs.Due to variations in domain sizes over each candidate, this is not a simple cal-culation. Instead, we estimate � using a mean �eld approximation, and assumethat all candidates have an equal value of q, derived from an \average" candidatewith domain sizes half that of the original problem. This gives,� = Yc2C(1� pcmx=2)my=2(1� pcmy=2)mx=2That is, �ac = �Pc2C mx log2(1� pcmy2 ) +my log2(1� pcmx2 )2Xv2V mv (3)In the remainder of this paper, unless otherwise indicated, we use regular prob-lems with uniform domain size m, exactly p1n(n� 1)=2 constraints between thevariables, each of which has the same tightness p2. These problems are cate-gorised by the tuple of parameters hn;m; p1; p2i. We can then simplify �ac to:�ac = �12p1(n� 1) log2(1� p2m=2) (4)



6 Arc consistency phase transitionTo test this new parameter we ran experiments on establishing arc consistencywith hn;m; p1; p2i problems with a domain size m = 10 and a varying number ofvariables n. We �x the average degree of problems at 5 by setting p1 = 5=(n�1)and at each value of n change p2 in steps of 0.01. In Figure 1, we test 1000randomly generated problems at each value of p2, measuring the probability ofestablishing AC.
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20Fig. 1. Probability of establishing AC (y-axis) against �ac (x-axis) for varyingn As with NP-complete problems, a complexity peak for the cost of establishingarc consistency is associated with this probability phase transition. In Figure 2 weplot the computational cost (in terms of consistency checks) for AC3, establishingarc consistency for the same set of problems as in Figure 1. There is a familiareasy-hard-easy pattern. For �ac � 1, problems are under-constrained and it iseasy to �nd an arc consistent state. For �ac � 1, problems are over-constrainedand it is easy to observe domain wipe out. The hardest problems tend to occurin the phase transition in between when �ac � 1.The complexity peak for AC6 can be observed at similar values of �ac.Bessi�ere [2] reports experiments on problems h20; 5; 0:3; p2i, with p2 varying insteps of 0.05, with 10 problems at each value of p2. In Figure 4 (in [2]) thecomplexity peak for AC3 and AC6 occurs at 0:45 < p2 < 0:5 correspondingto 0:6 < �ac < 0:8. And in Figure 5 (again in [2]) the complexity peak forh12; 16; 0:5; p2i occurs at p2 = 0:8 corresponding to �ac = 0:73.Schiex et. al. established arc consistency with a non-uniform class of problemsin which domain size varied randomly between 5 and 25, solving 20 problemsat each value of constraint tightness [18]. They observed that \There is no clear\wipe-out" threshold as in the usual [�xed domain size] model" (page 221 of
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Fig. 2. Median consistency checks used by AC3 (y-axis) against �ac (x-axis) forvarying n.[18]). We performed experiments to determine if their observation holds truewhen we classify problems with respect to �ac.
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Fig. 3. Problems with non-uniform domain sizes. Y-axis on left and bold con-tour is computational cost, Y-axis on right and broken contour is probability ofestablishing AC. X-axis is �ac.Problems were generated with n = 20 and p1 = 0:5. Half of the variables wererandomly chosen to have a domain size of 10, with the rest having a domain sizeof 20. Constraint tightness, p2, was then varied from 0.01 to 0.99 in steps of 0.01,with 1000 problems at each point. When a problem was generated its �ac value



was then computed and AC3 was applied. Figure 3 shows a clear phase transitionin this non-uniform problem class, again at �ac � 1. The reason why this wasnot evident in [18] is due to variation in constrainedness of instances within theensemble. The contribution to �ac (in Equation (3)) by a single constraint issensitive to the tightness of the constraint and size of the domains involved inthat constraint.7 Finite size scalingIn NP-complete problem classes, the technique of �nite size scaling has beenborrowed from statistical mechanics [1] to model the change in the shape of thephase transition as problem size increases [11]. Around some critical value, �c,problems are indistinguishable except for a simple change in scale modelled bya power law. Finite-size scaling also works for this polynomial class. Following[7], we de�ne a rescaled parameter =def � � �c�c N1=� (5)(� � �c)=�c plays the same role as the reduced temperature, (T � Tc)=Tc in athermodynamic system whilst N1=� provides the scaling with problem size. Asin [7] we de�ne problem size as the number of bits needed to represent a state.In this case, we have N = nm. The values �c and � are found by analysis of theempirical data using the methodology outlined in [6]. This gives �c = 0:45 and� = 3:0. Figure 4 shows the same data as Figure 1 rescaled by plotting against. This graph shows that �nite size scaling successfully models the AC phasetransition.
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The rescaled parameter  has been used to model growth of search cost aswell as changes in probability as size increases in NP-complete problems [19, 6].Rescaling of the number of checks performed by AC3 also gives a simple andaccurate model of computational cost across the phase transition, even thoughAC3 is a polynomial algorithm. Furthermore this model gives close agreementwith previous theoretical results. As the worst case complexity of AC3 is O(em3),and as the number of edges in the constraint graph, e is proportional to nin this study and m is �xed, computational cost should grow linearly with n.Accordingly we perform linear regression on the median checks performed byAC3 from  = �3 to 7 in steps of 0.25, interpolating on observed data wherenecessary. Figure 5 shows that this linear model �ts the data of Figure 2 verywell. Note that the lines do not join points directly. Instead they join the values
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20Fig. 5. Median consistency checks used by AC3 (y-axis) against  (x-axis) forvarying n. Points represent observed data while lines join modelled values of thedata using linear regression.modelled by linear regression. For example at  = 0 the model is that checks� 189n � 167 while at  = 2 the model is 297n + 87. The closeness betweenthe lines and points indicate how accurately linear scaling models computationalcost. Note that the highest costs occur at  � 2, very close to the point where 50%of problems could be made arc consistent and 50% could not. This correlationhas been noted many times in NP-complete classes.We also investigate scaling when we �x the number of variables n = 20and vary the domain size. We use a constraint tightness p1 = 1 so that theconstraint graphs were cliques, and vary p2 at each value of m. The probabilityof establishing AC shows a clear phase transition as �ac varies. We again rescalethis data using �nite size scaling with N = nm, �c = 0:89 and � = 1:5. Figure6 shows that this models the phase transition very well.We also modelled the growth in computational cost as the domain size varies.
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10Fig. 7. Median consistency checks used by AC3 (y-axis) against  (x-axis) forvarying m. Points represent observed data while lines join modelled values.8 Constraint Ordering HeuristicsAt the heart of the AC3 algorithm is a set of directed constraints (often calledarcs) waiting to be revised. The main loop of AC3 deletes an arc from this setand revises it: depending on the result other arcs may be added to the set if notalready in it. This set of arcs is typically presented as a queue [12, 13, 21], suchthat arcs are removed in the order they were added, and propagation proceedsbreadth �rst. For �nite domains, we may use any other method for selecting thenext arc to revise, and this opens up the scope for constraint ordering heuristicsin AC3.Wallace and Freuder performed a study on a number of heuristics basedupon an intuitive ASAP (as soon as possible) principle where one attempts toprune domain values early [23]. They introduced heuristics based upon choosing(i) the arc with greatest constraint tightness, (ii) the arc for which the variablebeing checked for support has smallest domain size, (iii) an arc that will update anode which is involved in the most constraints. Heuristics (i) and (ii) worked well,reducing the number of checks by up to a factor of two over random selection orusing a queue. Heuristic (iii) did not signi�cantly reduced the number of checksover using a queue or random selection.For NP-complete problems, the heuristic of making a choice that minimisesthe constrainedness of the resulting subproblem can reduce search over standardheuristics [7]. The intuition is that we want to branch on the most constrainedvariable into the least constrained and therefore most soluble subproblem. Simi-larly, for a polynomial problem like AC, we can use �ac as a constraint orderingheuristic in AC3. Here, the set of choices is the arcs in the current set maintainedby AC3. We consider the remaining subproblem to have the same set of variablesas the original problem, but with only those arcs still remaining in the set. Weselect the arc whose removal minimises the value of �ac of the remaining sub-



problem, ignoring the fact that subsequent revision of this arc may lead to newarcs being added to the set. By Equation (3), we choose the directed constraintc from variable x to variable y which has the maximal value of:�mx log2(1� pcmy=2)Even though this heuristic can signi�cantly reduce the number of constraintchecks need to establish arc consistency, it may not reduce runtimes. As withNP-complete problems, there are proxies for the heuristic of minimising con-strainedness that are cheap to compute and that o�er good performance. Forinstance, heuristics (i) and (ii) from [23] can be viewed as surrogates of theminimise-�ac heuristic, and we should expect them to perform well. Heuristic (i)chooses c such that pc is maximised. Heuristic (ii) chooses c from x to y suchthat my is minimised. Everything else being equal, both these decisions reduce�ac.Using the minimise-�ac heuristic, we performed experiments on the prob-lem class h20; 10; 0:5i with p2 varied from 0 to 1 in steps of 0.01. Each pointin �gures 8 and 9 is the median value of 100 samples. For comparison with theminimise-�ac heuristic, we also implemented �ve variants of AC3 using a queue, astack2, picking a random element of the current set with no heuristic, and heuris-tics (i) and (ii) of [23]. We also report the number of revisions, i.e. the number
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Fig. 9. Median number of revisions performed by AC3 using various heuristics(y-axis) against �ac (x-axis) for h20; 10; 0:5i problemswhen domains are represented as intervals, arc revisions may take constant time.In this situation, checks is a poor measure of computational e�ort.At the phase transition, the �ac heuristic beats the other heuristics, whilst arandom choice is always worst. What is important is that if we ignore the cost ofthe �ac heuristic we see that it performs well. If we then have to compromise theheuristic to bring down its cost we might very well have rediscovered Wallace andFreuder's heuristics. Heuristics like these deserve further attention, for examplewithin search algorithms like maintaining arc consistency [17].9 Related WorkThere exist several polynomial problems in which phase transition behaviourhas been seen. For example, random 2-Sat problems have a phase transition insatis�ability at a ratio of clauses to variables, L=N of 1 [5], and it has long beenknown that random graphs display sharp thresholds in properties like graphconnectivity at critical values of the average degree [3].Evidence for a phase transition in establishing arc consistency can be foundin [2]. Bessi�ere's graphs show clear peaks in the complexity of AC3 and AC6.Bessi�ere's results suggest that AC4 [15], although of lower complexity, can per-form poorly away from the complexity peaks of AC3 and AC6. An empiricalstudy by Wallace rea�rms this; AC3 was nearly always better than AC4 [22].The phase transition in arc and path consistency was �rst studied in depthin [10] with problems from the class h20; 10; p1; p2i. Using data from Table 1 in[10], we can calculate values for �ac for this phase transition. Unlike �csp at thephase transition which varied from 1.08 to 3.68, the phase transition occurs from�ac � 0:6 to �ac � 1. In NP-complete problem classes, the phase transition insolubility usually occurs over a similar range of � [7].



Wallace and Freuder studied a number of constraint ordering heuristics forAC3, two of which we have shown to be proxies for the minimise �ac heuristic[23]. Nudel derived theoretically 8 constraint ordering heuristics, to maximisethe detection of dead ends in forward checking [16]. These heuristics are similarto combinations of those of [23], selecting a constraint with minimummv(1�pc),where v is a future variable and c is incident on the current variable.There appears to be scope for ordering heuristics within AC6. AC6 maintainsa set, the Waiting-List, of unsupported values waiting to be propagated. Eachelement of Waiting-List is a pair (j; b), where b is a value removed from thedomain of the jth variable. Associated with (j; b) is the set of values Sjb that areimmediately supported by (j; b) and require new support. One possible heuristicmay be to select (j; b) fromWaiting-List such that jSjbj is maximised. At presentwe are unsure what decisions within AC6 will tend to minimise constrainedness,but we think this is worth further investigation.10 ConclusionsWe have shown that the same methodology used to study phase transition be-haviour in NP-complete problems works with a polynomial problem class, estab-lishing arc consistency in constraint satisfaction problems. The same measure forthe constrainedness of an ensemble of problems that locates the phase transitionsin random NP-complete problems identi�es the location of a phase transition inestablishing arc consistency. A complexity peak for the cost of the AC3 andAC6 algorithms is associated with this transition. Finite size scaling of this con-strainedness parameter models both the scaling of the probability transition andof the search cost for AC3. This model of search cost agrees with the theoreticalcubic worst case for AC3 on problems at the phase transition. This measure ofconstrainedness and proxies for it can then be used as the basis for constraintordering heuristics that can reduce the number of checks and revisions performedby AC3.What general lessons might be learnt from this study? First, we can iden-tify and locate phase transitions in polynomial problem classes using the sameconstrainedness parameter developed to study NP-complete problems. Second,problems at the phase transition in polynomial problem classes can be moredi�cult to solve than over- or under-constrained problems away from the phaseboundary. Indeed, our empirical model of median search cost for problems atthe phase transition agrees with the theoretical worst case. Problems from thephase transition might therefore be useful for suggesting worst case asymptotesor, as in NP-complete domains, for benchmarking competing algorithms. Third,algorithms for polynomial problems can bene�t from heuristics to reduce search.As with NP-complete problems, minimising constrainedness (and proxies for itwhich are cheap to compute) may provide the basis of useful heuristics. Finally,other polynomial problems (for example, path consistency, Horn satis�abilityand polynomial approximation procedures for NP-complete problems) as well asother complexity classes might bene�t from similar phase transition analysis.
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