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Abstract

We study an online model of fair division designed
to capture features of a real world charity prob-
lem. We consider two simple mechanisms for this
model in which agents simply declare what items
they like. We analyse axiomatic properties of these
mechanisms such as strategy-proofness and envy
freeness. Finally, we perform a competitive anal-
ysis and compute the price of anarchy.

1 Introduction
Resource allocation is a fundamental problem facing soci-
ety. How do we share scarce and often costly resources be-
tween different parties? Due to environmental, economic and
technological changes, there is an ever increasing pressure on
the allocation of resources. The theoretical foundations of re-
source allocation have been developed using simple abstract
models. For example, one simple model for resource allo-
cation is fair division. Fair division problems are typically
categorised along several orthogonal dimensions: divisible or
indivisible goods, centralised or decentralised mechanisms,
cardinal or ordinal preferences, etc. (e.g. [Aziz et al., 2014;
Chevaleyre et al., 2006]). However, such categories do not
capture the richness of many real world fair division prob-
lems. This has motivated a call to develop more complex and
realistic models and mechanisms [Walsh, 2015]. In this paper,
we respond to this call by studying mechanisms for an online
fair division problem first proposed in [Walsh, 2014].

2 The Food Bank problem
Unfortunately, even in developed countries, poverty remains
a serious problem. For example, the 2012 report “Poverty In
Australia” estimated that over 2 million people (12.5% of the
population) are within the official definition of poverty (less
than half the median income) [Davidson, 2012]. Amongst the
young and old, the statistics are even worse (roughly 1 in 6
children, and 1 in 4 pensioners). These people struggle to feed
themselves and increasingly call upon food banks to help.
Food Bank Australia sees the demand on their services in-
crease by over 10% per annum. For this reason, they are keen
on improving the efficiency of their operations.

In cooperation with a social startup, FoodBank Local, we
have been helping Food Bank Australia develop technologies
to operate more effectively. So far, this has involved build-
ing an app to help collect and deliver donated food. This app
uses our vehicle routing solver to route their trucks. We are
now turning our attention to how the donated food is allo-
cated to different charities. This is an interesting fair division
problem. It has many traditional features. We want to allocate
food fairly between the different charities that feed differ-
ent sectors of the community. Goods are mostly indivisible.
The allocation does not use money as these are all charities.
However, the problem also has other features not traditionally
found in the academic literature on fair division. One of the
main novelties is that it is online. Food is donated throughout
the day and we must start allocating and distributing it almost
immediately, before we know what else will be donated. We
have therefore formulated an online model of their fair di-
vision problem, and studied mechanisms that can fairly and
efficiently allocate the donated food.

3 Online fair division
We have k agents and m items. Each agent has some (pri-
vate) utility for each item. One of the items appears at each
time step, each agent bids (i.e. reports a value) for it and the
allocation mechanism must assign it to one of the agents. The
next item is then revealed. This continues for m steps. To al-
locate items in this online model, we consider a simple class
of bidding mechanisms in which agents merely declare if they
like items or not. For instance, suppose a public kitchen has
a rotating schedule of fixed meals. A product that is not in
an upcoming meal would not be liked by the corresponding
agent. In addition, she would equally like all components of
the meal. The LIKE mechanism allocates the next item uni-
formly at random between agents that bid for the item. An
item is possibly allocated to an agent by the LIKE mecha-
nism if an agent bids for it and necessarily allocated if no
other agent bids for it.

One drawback of the LIKE mechanism is that agents can
get unlucky. It is possible for them to bid for every item
but have every coin toss go against them and not be allo-
cated anything at all. This is highly undesirable in our Food
Bank setting. A whole sector of the population will then not
be fed that night. We therefore consider a slightly more so-
phisticated mechanism that helps tackle this problem. The



BALANCED LIKE mechanism tries to balance the number
of items allocated to agents compared to the LIKE mech-
anism. It allocates the next item uniformly at random be-
tween those agents that value it that have so far received the
fewest items. The BALANCED LIKE mechanism is less likely
to leave agents empty handed than the LIKE mechanism. In
particular, an agent is guaranteed to be allocated at least one
item for every k items that they bid for. However, there is no
guarantee that it necessarily returns balanced allocations.

Given the order of items, we can compute the actual out-
come of both the LIKE and BALANCED LIKE mechanisms
efficiently. Each of the m steps takes O(k) time. Supposing
agents bid sincerely, computing the probability an agent gets
a particular item, as well as their expected utility is more chal-
lenging as there areO(km) possible outcomes. With the LIKE
mechanism, the probability that agent i gets item j is sim-
ply 1

qj
where qj is the number of agents who bid for j. The

expected utility is then
∑m
j=1

ui(j)
qj

where ui(j) is the pri-
vate utility of agent i for item j. With the BALANCED LIKE
mechanism, we can compute the probability that an agent gets
a particular item using dynamic programming. This exploits
the fact that the mechanism is Markovian. It doesn’t care how
we get to a particular state, just how many items each agent
has at this point. The states represent the number of items al-
located to each agent. We can compute the probability that an
agent gets a particular item, as well as the expected utility of
an agent in O(mk) space and time. Note that k is typically
smaller than m so O(mk) is likely to be better than O(km).

4 Strategy-proofness
As is common in the literature, we will consider the axiomatic
properties of these mechanisms. For example, we say that a
mechanism for online fair division is strategy-proof (weak
dominant strategy incentive compatible) if, with knowledge
of the items still to be revealed, the order in which they will be
revealed, and the private utilities of the other agents, an agent
cannot increase her expected utility by bidding differently to
their true preferences. We might prefer strategy-proof mech-
anisms as agents cannot manipulate the outcome to improve
their utility at the expense of agents who are less sophisticated
or knowledgeable.

Theorem 1 The LIKE mechanism is strategy-proof.

With the BALANCED LIKE mechanism, balancing the size
of the allocations has an unfortunate side effect: an agent can
now manipulate the outcome to increase their expected utility
by bidding strategically. In particular, an agent may choose
not to bid for an item now in the knowledge that this will bias
future allocation rounds in their favour. Such manipulations
may decrease the balance of the final allocation.

Theorem 2 The BALANCED LIKE mechanism is not
strategy-proof even when restricted to 0/1 utilities.

Proof. Suppose we are allocating items a, b and c in this
order between agents 1, 2 and 3 with agent 1 having utility
1 for all items, agent 2 for a and c, and agent 3 for b alone.
Then bidding sincerely gives agent 1 an expected utility of 9

8

but this increases to 5
4 if agent 1 strategically bids only for

items b and c and supposing the other agents bid sincerely. 2
It is a strong assumption to suppose that a strategic agent

has full knowledge of the items still to be revealed, the or-
der in which they will be revealed, and the private utilities
of the agents for these items. In practice, agents may only
have partial knowledge. This will greatly limit the willing-
ness of, say, a risk averse agent to be strategic. For instance,
if there is a chance that only items that you do not value will
arrive in the future, a risk averse agent will always sincerely
bid for an item that arrives now which they value. Interest-
ingly, when limited to just two agents and 0/1 utilities, the
BALANCED LIKE mechanism becomes strategy-proof even
under our strong assumption of complete knowledge.

Theorem 3 The BALANCED LIKE mechanism is strategy-
proof with 2 agents and 0/1 utilities.

Proof sketch. It is sufficient to prove that sincere play is
dominant strategy for one of the agents, say 1. Thus, we show
by induction that she does not have an incentive to misreport
her sincere valuation of any item.

Given a revealing order of the items, item i is allocated at
to either agent 1 or 2, or neither of them. We view the alloca-
tion process as an allocation tree as follows. A node labelled
by (i, (x, y)) encodes a decision point in the allocation pro-
cess where (1) item i is allocated and (2) x and y denote the
numbers of items already allocated to agents 1 and 2, respec-
tively. Depending on the allocation decision that is taken at
node (i, (x, y)), we arrive at child node of (i, (x, y)) which
is labelled either (i + 1, (x + 1, y)), (i + 1, (x, y + 1)) or
(i + 1, (x, y)) supposing item i is allocated to agent 1, agent
2 or neither of them. Let T (i, (x, y)) be the allocation sub-tree
starting from a node (i, (x, y)) at round i andU1(T (i, (x, y)))
be the total expected utility of agent 1 over that tree supposing
agents act sincerely.

Observation 1 The allocation tree has the following
memory-less property: if there is a node labelled by (i, (x, y))
and a node labelled by (i, (x′, y′)) such that x− y = x′− y′,
then the sub-trees T (i, (x, y)) and T (i, (x′, y′)) are identical.

The following lemmas can be proved by analysing the al-
location tree. The base cases are trivial, with i = m. In the
step cases, we suppose the lemma statements hold for items
i+ 1 to m and thus we show they hold for items i to m.

Lemma 1 For any integers x and y, and for all i = 1, . . . ,m,
U1(T (i, (x, y))) ≥ U1(T (i, (x− 1, y + 1)))

Lemma 2 For any integers x and y, and for all i = 1, . . . ,m,
U1(T (i, (x, y))) ≥ U1(T (i, (x− 1, y)))

Lemma 3 For any integers x and y, and for all i = 1, . . . ,m,
U1(T (i, (x, y))) ≥ U1(T (i, (x, y + 1)))

Using these lemmas, we can prove that agent 1 has no in-
centive to misreport her sincere valuation of any item. Let u′1
denotes agent 1’s insincere bid, i the last item for which agent
1 does not bid sincerely, and u1 her sincere valuation of item
i. Suppose that we are at node (i, (x, y)) and let us consider 2
cases. First, let u′1(i) = 1 whilst u1(i) = 0. By Observation 1
and Lemma 3, agent 1 has no incentive to bid u′1(i) for item
i. Second, let u′1(i) = 0 whilst u1(i) = 1. We focus on the



node (i, (x, y)) which leads to different sub-trees depending
on whether agent 1 reports u1 or u′1.

• If agent 2 does not bid for i, then agent 1 certainly gets
i under u1 but no one gets i if agent 1 reports u′1. Under
u1 we arrive at node (i+1, (x+1, y)), whereas under u′1
we arrive at node (i+1, (x, y)). By Lemma 2, u1 yields
at least as much utility as u′1 since U1(T (i + 1, (x +
1, y))) ≥ U1(T (i+ 1, (x, y))).
• If agent 2 bids for i and x < y, then agent 1 receives item
i under u1 and agent 2 receives the item under u′1. Since,
by Lemma 1, U1(T (i+1, (x+1, y))) ≥ U1(T (i, (x, y+
1))), reporting u1 yields at least as much utility to agent
1 as u′1.

• If agent 2 bids for i and x = y, then under u1 there are
two children of (i, (x, y)) labelled (i+1, (x+1, y)) and
(i + 1, (x, y + 1)), respectively. But under u′1, there is
only one child of (i, (x, y)), i.e. (i + 1, (x, y + 1)). By
Lemma 1,U1(T (i+1, (x+1, y))) ≥ U1(T (i+1, (x, y+
1))) and thus u1 yields at least as much utility to agent
1 as u′1.

• If agent 2 bids for i and x > y, then agent 2 receives
item i, no matter how agent 1 bids. Therefore, agent 1
has no incentive to report u′1 rather than u1.

This completes the proof of the theorem as agent 1 does
not have incentive to play insincerely in all cases. 2

The latter proof critically requires 0/1 utilities. It is easy
to give examples with more general utilities where the
BALANCED LIKE mechanism is not strategy-proof even with
2 agents.

Example 1 Consider 2 agents and 2 items, a and b. Agent 1
has utility 1

2 for both items, and agent 2 has utility 1
4 for item

a and 3
4 for item b, normalized to sum up to 1. If agents bid

sincerely for both items, then agent 2 has an expected utility
of 1

2 . However, by bidding strategically only for item b, agent
2 can increase their expected utility to 3

4 .

5 Impact on welfare
Strategic play can have both positive or negative effect on
the welfare of the community. We measure this from utilitar-
ian and egalitarian perspective. The former is the sum of the
expected utilities of the agents and thus measures the collec-
tive welfare. The latter is the expected utility of the worst-
off agent and thus measures individual welfare. As these two
objectives may conflict, we consider both measures. We con-
sider pure Nash equilibria in which no agent can get strictly
greater expected utility by changing their strategy. However,
there are pure Nash equilibria that have much smaller egali-
tarian and utilitarian welfare than sincere play for both mech-
anisms.

Theorem 4 There are instances with 0/1 utilities and k
agents, where the egalitarian and utilitarian welfare of sin-
cere play in the LIKE and BALANCED LIKE is k times the
corresponding welfare of at least one pure Nash equilibrium.

Proof. Consider an instance with k agents and k items. For
each i ∈ {1, . . . , k}, agent i values item i and no other item.

For sincere play, item i is assigned to agent i in both the LIKE
and BALANCED LIKE mechanisms, giving an egalitarian util-
ity of 1 and a utilitarian utility of k. Let us now consider the
pure Nash equilibrium where each agent bids for all items.
In the LIKE mechanism, with these bids, each agent is allo-
cated each item with probability 1

k . Since each agent values
exactly one item, this gives egalitarian welfare of 1

k and utili-
tarian welfare of 1. In the BALANCED LIKE mechanism, each
agent is allocated exactly one item. The probability that this
item is the one she likes is 1

k , giving again egalitarian welfare
of 1

k and utilitarian welfare of 1. 2
For the LIKE mechanism, a pure Nash equilibrium can-

not lead to greater egalitarian or utilitarian welfare than sin-
cere play as no player has an incentive not to bid for an item
she likes. Also, the example in the last proof involves many
agents that bid for items for which they have no value. As a
result, they end up again with lower expected utility. There-
fore, we further consider a subset of pure Nash equilibria by
supposing a small utility cost to liking (or taking delivery of)
an item. We call these simple pure Nash equilibria. Note that
sincere play is the only simple pure Nash equilibrium for the
LIKE mechanism, and therefore, there is no difference in wel-
fare between sincere play and simple pure Nash equilibria.

For the BALANCED LIKE mechanism, simple pure Nash
equilibria have the same utilitarian welfare as sincere play,
as each item is assigned to an agent who likes it. However,
we next show that a simple pure Nash equilibrium may have
smaller or greater egalitarian welfare than sincere play.

Theorem 5 There are instances with 0/1 utilities where the
egalitarian welfare of sincere play in the BALANCED LIKE
mechanism is strictly greater than the egalitarian welfare of
each simple pure Nash equilibrium.

Proof. The proof of Theorem 2 gives an instance where the
unique simple pure Nash equilibrium has less expected egal-
itarian utility than sincere play. 2

Theorem 6 There are instances with 0/1 utilities where the
egalitarian welfare of sincere play in the BALANCED LIKE
mechanism is strictly smaller than the egalitarian welfare of
each simple pure Nash equilibrium.

Proof. Consider the fair division of items a to f in alpha-
betical order between agents 1, 2 and 3 with the following
preferences: agent 1 has utility 1 for items a to c and 0 for d
to f , agent 2 has utility 1 for a, c, e and f and 0 for b and d and
agent 3 has utility 1 for a, b, d and f and 0 for c and e. By run-
ning the BALANCED LIKE mechanism, one always obtains
an allocation with egalitarian welfare of 1, except when the
items are allocated to the agents according to the sequence of
agents (2, 1, 1, 3, 2, 3), in which case the egalitarian welfare
is 2. By analysing the allocation tree of the BALANCED LIKE
mechanism, one can see that this instance has a unique sim-
ple pure Nash equilibrium which favours this allocation and
in which agent 1 does not bid for item a and all other bids are
the same. We obtain an egalitarian welfare of 13

12 for sincere
play and 9

8 for the simple pure Nash equilibrium. 2



6 Envy-freeness
How fair are these mechanisms? Is the BALANCED LIKE
mechanism more fair in some sense than the LIKE mech-
anism. Since the outcomes of our mechanisms are random,
we consider fairness notions both ex post (with respect to the
actual allocation achieved in a particular world) and ex ante
(with respect to the expected utility over all possible worlds).
One notion of fairness commonly considered in the fair di-
vision literature is envy freeness [Brams and Taylor, 1996].
An agent envies ex post/ex ante another agent if their util-
ity/expected utility of the other agent’s allocation is greater
than their utility/expected utility of their own allocation. A
mechanism is envy free ex post/ex ante if no agent envies an-
other ex post/ex ante. We also consider a weaker notion. An
agent has bounded envy ex post/ex ante of another agent if
there exists a constant r such that in every case their util-
ity/expected utility of the other agent’s allocation is at most
r greater than their utility/expected utility of their own allo-
cation. Similarly, we say that a mechanism is bounded envy
free ex post/ex ante with constant r if each agent has bounded
envy ex post/ex ante of every other agent with constant r.

If a mechanism is envy free ex post/ex ante then it is
bounded envy free ex post/ex ante, whilst if a mechanism is
(bounded) envy free ex post then it is (bounded) envy free
ex ante. It is easy to show that no mechanism for indivisible
items that allocates all items can be envy free ex post: suppose
we have one indivisible item and two or more agents who bid
for it. Regarding the other envy free properties, we prove the
following results.

Theorem 7 Supposing agents act sincerely, the LIKE mech-
anism is envy free ex ante. It is not bounded envy free ex post,
even with 0/1 utilities and 2 agents.

Proof. To prove envy freeness ex ante, we perform induction
over the number of items. In the base case, we have no items
to allocate, each agent receives an expected utility of 0, and
no agent envies another ex ante. For the induction step, we
suppose the allocation of the first m− 1 items is envy free ex
ante, and consider the mth item which is allocated. Suppose
j (≤ k) agents have non-zero utility for the mth item. Then
each agent receives this item in 1

j of the possible worlds. This
means that the new allocation remains envy free ex ante.

To show that the LIKE mechanism is not bounded envy free
ex post even with 0/1 utilities, suppose 2 agents have utility 1
for all m items. There is one outcome in which the first agent
gets lucky and is assigned every item. However, in this case,
the other agent assigns utility of m units greater to the first
agent’s allocation than to their own (empty) allocation. 2

As the LIKE mechanism is strategy-proof, it seems reason-
able to suppose agents act sincerely. By comparison, when
limited to 0/1 utilities, the BALANCED LIKE mechanism is
both envy free ex ante, and bounded envy free ex post.

Theorem 8 Supposing agents act sincerely, the
BALANCED LIKE mechanism with 0/1 utilities is envy
free ex ante and bounded envy free ex post with constant 1.

Proof sketch. Both proofs use induction on the number of
items. For envy freeness ex ante, the induction step uses case
analysis to show that the expected increase in utility for an

agent is at least as large as their expected increase in utility for
the allocation of any other agent. For bounded envy freeness
ex post, the induction step again uses case analysis to show
that the envy is at most 1 unit. 2

It is not hard to show that with general utilities, the
BALANCED LIKE mechanism is no longer envy free ex ante,
or bounded envy free ex post (or even, ex ante). Balancing the
allocation of items may prevent an agent who values an item
greatly from being allocated it.

Example 2 Consider 2 agents and 2 items, a and b. Suppose
agent 1 has utility 0 for a and p for b, but agent 2 has utility
1 for item a and p − 1 for item b where p > 2. Note that
both agents have the same sum of utilities for the two items.
If agents bid sincerely then agent 2 gets an expected utility
of just 1 and envies ex ante agent 1’s allocation which gives
agent 2 an expected utility of p− 1. As p is unbounded, agent
2 does not have bounded envy ex post or ex ante of agent 1.

To conclude, on the basis of envy freeness, provided
utilities are 0/1 (or close to this), we might consider the
BALANCED LIKE mechanism to be somewhat more fair than
the LIKE mechanism. On the other hand, when utilities
are not only 0/1 (or close to this), we might consider the
BALANCED LIKE mechanism to be somewhat less fair than
the LIKE mechanism.

7 Competitive analysis
A powerful technique to study online mechanisms is compet-
itive analysis [Sleator and Tarjan, 1985]. This identifies the
loss in efficiency due to the data arriving in an online fashion.
We say that a randomized mechanism M for online fair divi-
sion is c-competitive from an egalitarian/utilitarian perspec-
tive if there exists a constant a such that whatever the input
sequence of items π:

SWOPT ≤ c · SWM (π) + a

where SWM (π) is the egalitarian/utilitarian social welfare of
the mechanism on π, and SWOPT is the optimal egalitar-
ian/utilitarian social welfare of an (offline) assignment. We
suppose agents bid sincerely. The following results hold irre-
spective of the model of the adversary (oblivious, or adaptive
offline).

The LIKE mechanism is competitive when the number of
agents is bounded, even with general utilities.

Theorem 9 With general utilities and k agents, the LIKE
mechanism is k-competitive from an egalitarian or utilitar-
ian perspective.

Proof. With the LIKE mechanism, the worst case for every
agent is that every other agent bids against them. Hence, the
worst case is that their expected social welfare is 1

k the small-
est sum of utilities. By comparison, the best case for an agent
is that they receive the sum of their utilities. Hence, the com-
petitive ratio from an egalitarian or utilitarian perspective is
at worst k.

From an egalitarian perspective, this bound is met even
when utilities are just 0 or 1. Consider k2 items being divided
between k agents. The first agent has utility of 1 for the first
k items and 0 for all remaining items. The other agents have



utility 1 for all items. The optimal offline allocation achieves
egalitarian social welfare of k units, but the egalitarian social
welfare of the LIKE mechanism is just 1 unit.

From a utilitarian perspective, this bound is met even with
just k items. Suppose the ith agent has an utility of 1−(k−1)ε
for the ith item, and ε for all other items where ε is a small
non-zero constant. Note that the sum of the utilities for any
agent is normalized to 1 unit. The optimal utilitarian offline
allocation has a social welfare of k units as ε goes to zero,
whilst the utilitarian social welfare of the LIKE mechanism is
just 1 unit. 2

For example, with 2 agents and general utilities, the LIKE
mechanism is 2-competitive. That is, the egalitarian or utili-
tarian social welfare is at least 50% of the optimal (offline)
allocation. On the other hand, the BALANCED LIKE mecha-
nism is not competitive even with just 2 agents.

Theorem 10 With general utilities and 2 agents, the
BALANCED LIKE mechanism is not c-competitive from an
egalitarian or utilitarian perspective for any constant c.

Proof. Consider the fair division of items a to d in alpha-
betical order between agents 1 and 2 with the following pref-
erences: agent 1 has utility ε for items a and d, 1 − 2ε for b
and 0 for c and agent 2 has utility ε for b and c, 1 − 2ε for
d and 0 for a, where ε > 0 is a small positive constant. The
optimal egalitarian (utilitarian) offline allocation gives items
a and b to agent 1 and items c and d to agent 2. This has an
egalitarian (utilitarian) social welfare of 1 − ε unit (2 − 2ε
units). On the other hand, the BALANCED LIKE mechanism
results in an egalitarian (utilitarian) social welfare of just 2ε
(4ε), allocating items a and d to agent 1 and the other b and c
to agent 2. 2

Finally, when restricted to 0/1 utilities, every allocation of
the LIKE or BALANCED LIKE mechanism achieves the utili-
tarian social welfare of the optimal offline allocation. This is
because items only go to agents that value them.

8 Price of anarchy
The price of anarchy is closely related to the competitive ra-
tio but also takes into account agents acting strategically. The
price of anarchy measures how the efficiency of a decentral-
ized system degrades due to selfish behavior of its agents
compared to imposing a centralized solution based on sincere
preferences [Koutsoupias and Papadimitriou, 1999]. From an
egalitarian (utilitarian) perspective, the price of anarchy of
an online fair division mechanism is the ratio between the
optimal egalitarian (utilitarian) social welfare, and the small-
est egalitarian (utilitarian) social welfare of any equilibrium
strategy. We consider simple pure Nash equilibria (defined in
Section 5).

Theorem 11 With general utilities and k agents, the price of
anarchy of the LIKE mechanism is k for egalitarian welfare,
and for utilitarian welfare is greater than k− ε for any ε > 0.

Proof. Let us consider the equilibrium strategy with least
egalitarian (utilitarian) social welfare. Suppose an agent bids
for an item with non-zero utility. The worst case is when every
other agent bids against them. This gives an expected utility

which is 1
k of the sum of their utilities. By comparison, the

best case is that they receive the sum of their utilities.
From an egalitarian perspective, this bound is achieved

when k2 items are divided between k agents, the first agent
has utility 1 for the first k items, zero for the rest, and every
other agent has utility 1 for every item. Then it is a dominant
strategy for the first agent to bid for the first k items, and for
all other agents to bid for every item. This gives egalitarian
social welfare of 1, compared to the optimal egalitarian so-
cial welfare of k units.

From an utilitarian perspective, select ε′ such that 0 < ε′ <
ε

k·(k−1) . The bound is achieved when k items are divided be-
tween k agents, the ith agent has utility 1− (k − 1)ε′ for the
ith item and ε′ for the rest. The dominant strategy is for every
agent to bid for every item. In this case, the optimal utilitarian
social welfare is k ·(1−(k−1)·ε′) > k ·(1− (k−1)·ε

k·(k−1) ) = k−ε
whilst the utilitarian welfare of the LIKE mechanism is 1. 2

For the BALANCED LIKE mechanism, we have the follow-
ing lower bounds on the price of anarchy.
Theorem 12 With 0/1 utilities and k agents, the price of an-
archy of the BALANCED LIKE mechanism from an egalitar-
ian perspective is at least k.
Proof. Consider k2 items being divided between k agents.
The first agent has utility 1 for the first k items and 0 for
all remaining items. The other agents have utility 1 for all
items. The optimal egalitarian offline allocation gives the first
k items to the first agent, and k of the other items to each
of the other agents. This has an egalitarian social welfare
of k units. On the other hand, a dominant strategy with the
BALANCED LIKE mechanism is sincerity. This gives egali-
tarian social welfare of 1. 2
Theorem 13 With general utilities and k agents, the price of
anarchy of the BALANCED LIKE mechanism from a utilitar-
ian perspective is greater than k − ε for any ε > 0.
Proof. Consider an instance with k items. Select ε′ such that
0 < ε′ < ε

k·(k−1) . For each i ∈ {1, . . . , k}, agent i has utility
1−(k−1)·ε′ for item i and utility ε′ for all other items. In the
BALANCED LIKE mechanism, sincere play is the dominant
strategy, allocating one item to each agent. The probability
that agent i receives item i is k−1

k ·
k−2
k−1 · . . .

1
k−i+1 = 1/k.

Thus, the utilitarian welfare is 1 − (k − 1) · ε′ + (k − 1) ·
ε′ = 1. The optimal assignment achieves utilitarian welfare
of k · (1− (k − 1) · ε′) > k · (1− (k−1)·ε

k·(k−1) ) = k − ε. 2
Finally, with 0/1 utilities and either mechanism, it is a dom-

inant strategy for agents only to bid for (a subset of) the items
for which they have utility. Hence, both mechanisms achieve
the optimal utilitarian social welfare. Thus, there is no price
of anarchy from an utilitarian perspective in these cases.

9 Experiments
To determine the impact on social welfare of these mecha-
nisms we ran a number of experiments. We used a wide range
of problem instances: random 0/1 utilities, random Borda util-
ities, correlated 0/1 and Borda utilities generated with the
Pólya-Eggenberger urn model, as well as 0/1 and Borda util-
ities from PrefLib.org [Mattei and Walsh, 2013]. For reasons



of space, we report here just results with random 0/1 utilities.
We observed similar trends with the other classes (see [Alek-
sandrov et al., 2015]).
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Figure 1: Egalitarian price of anarchy, and competitive ra-
tio of BALANCED LIKE and LIKE mechanisms. (left) varying
items for 5 agents, (right) varying agents for 10 items.

We varied the number of agents from 2 to 5, and the num-
ber of items from 2 to 10. We sampled 100 instances at each
data point, computing the optimal (offline) allocation, and all
simple pure Nash equilibria by brute force. In Figure 1, we
plot (1) the competitive ratios (“like” and “balanced”), (2) the
price of anarchy (“balanced-”) and (3) the ratio between the
egalitarian welfare of the best simple pure Nash equilibrium
and the optimal allocation (“balanced+”). As these are ratios,
we plot geometric means. Arithmetic means are similar. We
note that the BALANCED LIKE mechanism (“balanced”) im-
proves the egalitarian welfare compared to the LIKE mecha-
nism (“like”) supposing sincere or strategic play of the agents.
Indeed, strategic play of the agents often increases social wel-
fare even in the worst case (“balanced-” compared to “bal-
anced”), though the effect is small.

In conclusion, BALANCED LIKE performed better than
LIKE with 0/1 utilities. Moreover, it remained superior in all
our experiments to the LIKE mechanism.

10 Related work
There is a large literature on the fair division of divisible and
indivisible goods. Almost all studies assume that all the goods
are present initially. There are, however, a few exceptions.
Walsh [2011] has proposed an online model of cake cutting.
However, in this model the agents arrive over time (not the
items), and the goods are divisible (not indivisible). Kash,
Procaccia and Shah [2014] have proposed a related model in
which agents again arrive over time, but there are now multi-
ple, homogeneous divisible goods (and not multiple, hetero-
geneous indivisible goods as here). Bounded envy freeness is
closely related to the “single-unit utility difference” property
that Budish, Che, Kojima and Milgrom [2013] prove can be
achieved in offline fair division with any randomized alloca-
tion mechanism that is envy free ex ante.

The LIKE and BALANCED LIKE mechanisms take an item-
centric view of allocation. They iterate over the items, al-
locating them in turn to agents. By comparison, there are
agent-centric mechanisms like the sequential allocation pro-
cedure which iterate over the agents, allocating items to them
in turn [Brams and Taylor, 1999]. These mechanisms have

attracted considerable attention in the AI literature recently
(e.g. [Bouveret and Lang, 2011; Kalinowski et al., 2013a;
2013b]). As our matching problem is one-sided (agents have
preferences over items, but not vice-versa), we cannot imme-
diately map results from there to here. There are also random-
ized mechanisms like in [Zhou, 1990] and [Bogomolnaia and
Moulin, 2001] which again take an agent-centric view of al-
location. It would be interesting future work to consider how
such agent-centric mechanisms could be modified to work
with online fair division problems.

11 Conclusions
Motivated by our work with a local Food Bank charity, we
have studied a simple online model of fair division, as well
as two simple mechanisms for this problem. To help decide
what mechanism to use in practice, we have studied axiomatic
properties of these mechanisms like strategy-proofness and
envy-freeness. In addition, we have undertaken a competitive
analysis, and computed their price of anarchy. A summary of
our results is given in Table 1.

mechanism LIKE BALANCED LIKE
strategy-proof X ×, X for k=2 & 0/1 utilities

envy free (ex ante) X ×, X for 0/1 utilities
bound envy free (ex post) × ×, X for 0/1 utilities

competitive X ×
price of anarchy (e) k ≥ k
price of anarchy (u) k, 1 for 0/1 utilities ≥ k, 1 for 0/1 utilities

Table 1: Overview of results for k agents. (e) = egalitarian,
(u) = utilitarian.

One possible take home message from this table is that
we might consider the BALANCED LIKE mechanism if the
items can be packaged together so that agents have similar
(i.e. 0/1) utility for all packages, and that we should other-
wise prefer the LIKE mechanism when this is not possible.
In future work, we plan to take into account other important
features of this real world allocation problem. For example,
as the charities have different abilities to feed their clients, we
need a model of online fair division in which the agents have
different entitlements. We will need to consider the impact
this has on axiomatic properties like strategy-proofness and
fairness. We will then be in a position to implement and field
a mechanism for online fair division in practice.
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