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Abstract
We consider the problem of fairly dividing a set
of items. Much of the fair division literature as-
sumes that the items are “goods” i.e., they yield
positive utility for the agents. There is also some
work where the items are “chores” that yield neg-
ative utility for the agents. In this paper, we con-
sider a more general scenario where an agent may
have negative or positive utility for each item.
This framework captures, e.g., fair task assignment,
where agents can have both positive and negative
utilities for each task. We show that whereas some
of the positive axiomatic and computational results
extend to this more general setting, others do not.
We present several new and e�cient algorithms for
finding fair allocations in this general setting. We
also point out several gaps in the literature regard-
ing the existence of allocations satisfying certain
fairness and e�ciency properties and further study
the complexity of computing such allocations.

1 Introduction
Consider a group of students who are assigned to a certain
set of coursework tasks. Students may have subjective views
regarding how enjoyable each task is. For some people, solv-
ing a mathematical problem may be fulfilling and rewarding.
For others, it may be nothing but torture. A student who gets
more cumbersome chores may be compensated by giving her
some valued goods so that she does not feel hard done by.

This example can be viewed as an instance of a classic fair
division problem. The agents have di↵erent preferences over
the items and we want to allocate the items to agents as fair
as possible. The twist we consider is that whether an agent
has positive or negative utility for an item is subjective. Our
setting is general enough to encapsulate two well-studied set-
tings: (1) “good allocation” where agents have positive utili-
ties for the items and (2) “chore allocation” in which agents
have negative utilities for the items. Our setting also cov-
ers (3) “allocation of objective goods and chores” where the
items can be partitioned into chores (that yield negative util-
ity for all agents) and goods (that yield positive utility for all
agents). Setting (3) covers several scenarios where an agent
could be compensated by some goods for doing some chores.

In this paper, we suggest a very simple yet general model
of allocation of indivisible items that properly includes chore
and good allocation. For this model, we present some case
studies that highlight that whereas some existence and com-
putational results can be extended to our general model, in
other cases the combination of good and chore allocation
poses interesting challenges not faced in subsettings. Our
central technical contributions are several new e�cient algo-
rithms for finding fair allocations.
Contributions.
• We first formalize fairness concepts for the general set-

ting. Some fairness concepts directly extend from the
setting of good allocation to our setting. Other fairness
concepts such as “envy-freeness up to one item” (EF1)
and “proportionality up to one item” (PROP1) need to
be generalized appropriately.

• We then show a careful generalization of the decentral-
ized round robin algorithm that finds an EF1 allocation
when utilities are additive.

• We also present a di↵erent polynomial-time algorithm
that always returns an EF1 allocation even when the
agents’ utility functions are arbitrary (not necessarily ad-
ditive).

• Turning our attention to an e�cient and fair alloca-
tion, we show that for the case of two agents, there ex-
ists a polynomial-time algorithm that finds an EF1 and
Pareto-optimal (PO) allocation for our setting. The al-
gorithm can be viewed as an interesting generalization
of the Adjusted Winner rule [Brams and Taylor, 1996a;
1996b] that is designed for divisible goods.

• If we weaken EF1 to PROP1, then we show that there
exists an allocation that is not only PROP1 but is also
contiguous (assuming that items are placed in a line).
We further give a polynomial-time algorithm that finds
such allocation.

Related work Fair allocation of indivisible items is a cen-
tral problem in several fields including computer science
and economics [Aziz et al., 2015; Brams and Taylor, 1996a;
Bouveret, Chevaleyre, and Maudet, 2016; Lipton et al., 2004].
There are several established notions of fairness, including
envy-freeness and proportionality.
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The idea of envy-freeness up to one good was implicit in
the paper by Lipton et al. [2004]. Today, it has become a
well-studied fairness concept in its own right [Budish, 2011].
Caragiannis et al. [2016] further popularized it, showing that
a natural modification of the Nash welfare maximizing rule
satisfies EF1 and PO for the case of goods. Barman, Murthy,
and Vaish [2018] recently presented a pseudo-polynomial-
time algorithm for computing an allocation that is PO and
EF1 for goods. EFX (envy-freeness up to an extreme item)
was introduced by Caragiannis et al. [2016].

Aziz [2016] noted that the work on multi-agent chore al-
location is less developed than that of goods and that re-
sults from one to the other may not necessarily carry over.
Barman and Murthy [2017] presented a better approxima-
tion algorithm. Caragiannis et al. [2012] studied the e�ciency
loss in order to achieve several fair allocations in the con-
text of both good and chore divisions. Allocation of a mix-
ture of goods and chores has received recent attention in
the context for divisible items [Bogomolnaia et al., 2019;
2017]. Here, we focus on indivisible items.
Full version. The full version of the paper is available on
arXiv [Aziz et al., 2018].

2 Our Model and Fairness Concepts
We now define a fair division problem of indivisible items
where agents may have both positive and negative utilities.
For a natural number s 2 N, we write [s] = {1, 2, . . . , s}. An
instance is a triple I = (N,O,U) where

• N = [n] is a set of agents,

• O = {o1, o2, . . . , om} is a set of indivisible items, and

• U is an n-tuple of utility functions ui : O! R.

We note that under this model, an item can be a good for
one agent (i.e., ui(o) > 0) but a chore for another agent (i.e.,
u j(o) < 0). For X ✓ O, we write ui(X) :=

P
o2X ui(o); we

assume that the utilities in this paper are additive unless spec-
ified otherwise. Each subset X ✓ O is referred to as a bundle
of items. An allocation ⇡ is a function ⇡ : N ! 2O assign-
ing each agent a di↵erent bundle of items, i.e., for every pair
of distinct agents i, j 2 N, ⇡(i) \ ⇡( j) = ;; it is said to be
complete if

S
i2N ⇡(i) = O.

We first observe that the definitions of standard fairness
concepts can be naturally extended to this general model.
The most classical fairness principle is envy-freeness, requir-
ing that agents do not envy each other. Specifically, given
an allocation ⇡, we say that i envies j if ui(⇡(i)) < ui(⇡( j)).
An allocation ⇡ is envy-free (EF) if no agent envies the other
agents. Another appealing notion of fairness is proportional-
ity which guarantees each agent an 1/n fraction of her utility
for the whole items. Formally, an allocation ⇡ is proportional
(PROP) if each agent i 2 N receives a bundle ⇡(i) of value at
least her proportional fair share ui(O)/n. The following im-
plication, which is well-known for the case of goods, holds in
our setting as well.

Proposition 1 An envy-free complete allocation satisfies pro-
portionality.

A simple example of one good with two agents already
suggests the impossibility in achieving envy-freeness and
proportionality. The recent literature on indivisible allocation
has, thereby, focused on approximation of these fairness con-
cepts. A prominent relaxation of envy-freeness, introduced by
Budish [2011], is envy-freeness up to one good (EF1), which
requires that an agent’s envy towards another bundle can be
eliminated by removing some good from the envied bundle.
We will present a generalized definition for EF1 that have
only been considered in the context of good allocation: the
envy can diminish by removing either one “good” from the
other’s bundle or one “chore” from their own bundle.

Definition 1 (EF1) An allocation ⇡ is envy-free up to one
item (EF1) if for all i, j 2 N, either i does not envy j, or there
is an item o 2 ⇡(i)[⇡( j) such that ui(⇡(i)\{o}) � ui(⇡( j)\{o}).

Obviously, envy-freeness implies EF1. Conitzer, Freeman,
and Shah [2017] introduced a novel relaxation of proportion-
ality, which they called PROP1. In the context of good al-
location, this fairness relaxation is a weakening of both EF1
and proportionality, requiring that each agent gets her pro-
portional fair share if she obtains one additional good from
the others’ bundles. Now we will extend this definition to our
setting: under our definition, each agent receives her propor-
tional fair share by obtaining an additional good or removing
some chore from her bundle.

Definition 2 (PROP1) An allocation ⇡ satisfies proportion-
ality up to one item (PROP1) if for each agent i 2 N,
• ui(⇡(i)) � ui(O)/n; or
• ui(⇡(i)) + ui(o) � ui(O)/n for some o 2 O \ ⇡(i); or
• ui(⇡(i)) � ui(o) � ui(O)/n for some o 2 ⇡(i).
It can be easily verified that EF1 implies PROP1. See the

online appendix for an illustration of relations between fair-
ness concepts introduced above.

Proposition 2 An EF1 complete allocation satisfies PROP1.
Besides fairness, we will also consider an e�ciency crite-

rion. The most commonly used e�ciency concept is Pareto-
optimality. Given an allocation ⇡, another allocation ⇡0 is a
Pareto-improvement of ⇡ if ui(⇡0(i)) � ui(⇡(i)) for all i 2 N
and u j(⇡0( j)) > u j(⇡( j)) for some j 2 N. We say that an allo-
cation ⇡ is Pareto-optimal (PO) if there is no allocation that
is a Pareto-improvement of ⇡.

3 Finding EF1 Allocation
In this section, we focus on EF1, a very permissive fairness
concept that admits a polynomial-time algorithm in the case
of good allocation. We will present two algorithms which ap-
propriately generalize the known algorithms for finding an
EF1 allocation of goods, the round robin rule and the envy-
graph algorithm [Lipton et al., 2004], to our setting.
Double Round Robin Algorithm Consider a round robin
rule in which agents take turns, and choose their most pre-
ferred unallocated item. The round robin rule finds an EF1



allocation if all the items are goods (see e.g., Caragiannis et
al. [2016]). By a very similar argument, it can be shown that
the algorithm also finds an EF1 allocation if all the items are
chores. However, we will show that the round robin rule al-
ready fails to find an EF1 allocation if we have some items
that are goods and others that are chores.

Proposition 3 The round robin rule does not satisfy EF1.

Proof: Suppose there are two agents and four items with
identical utilities described below.

1 2 3 4

Alice, Bob: 2 -3 -3 -3

Consider the order, in which Alice chooses the only good and
then the remaining chores of equal value are allocated ac-
cordingly. In that case, Alice gets one a high value good and
one chore, whereas Bob gets two chores. So even if one item
is removed from the bundles of Alice or Bob, Bob will still
remain envious. ⇤

Nevertheless, a careful adaptation of the round robin
method to our setting, which we call the double round robin
algorithm, constructs an EF1 allocation. In essence, the algo-
rithm will apply the round robin method twice: clockwise and
anticlockwise. In the first phase, the round-robin algorithm al-
locates to agents chores, i.e., the items for which each agent
has non-positive utility, while in the second phase, the re-
versed round-robin algorithm allocates to agents the remain-
ing goods, in the opposite order starting with the agent who is
worst o↵ in the first phase. Intuitively, each agent i may envy
agent j who comes earlier than her at the end of one phase,
but i does not envy j with respect to the items allocated in the
other round; hence the envy of i towards j can be bounded up
to one item. We formalize the idea in Algorithm 1; see Figure
1 for an illustration.

Algorithm 1 Double Round Robin Algorithm
Input: An instance I = (N,O,U)
Output: An allocation ⇡

1 Partition O into O+ = {o 2 O | 9i 2 N s.t. ui(o) > 0},
O� = {o 2 O | 8i 2 N, ui(o)  0}. Suppose |O�| = an � k
for some integer a and k 2 {0, , . . . , n � 1}.

2 Create k dummy chores for which each agent has utility
0, and add them to O�. (Hence |O�| = an.)

3 Let the agents come in a round robin sequence
(1, 2, . . . , n)⇤ and pick their most preferred item in O� un-
til all items in O� are allocated.

4 Let the agents come in a round robin sequence (n, n �
1, . . . , 1)⇤ and pick their most preferred item in O+ un-
til all items in O+ are allocated. If an agent has no avail-
able item which gives her strictly positive utility, she does
not get a real item but pretends to pick a dummy one for
which she has utility 0.

5 Remove the dummy items from the current allocation ⇡
and return the resulting allocation ⇡⇤.

In the following, for an allocation ⇡ and a bundle X, we say
that i envies j with respect to X if ui(⇡(i) \ X) < ui(⇡( j) \ X).

1
2

3

k

n

Figure 1: Illustration of Double Round Robin Algorithm. The
dotted line corresponds to the picking order when allocating
chores. The thick line corresponds to the picking order when
allocating goods. The solid black circle indicates the agent
who starts with the picking. For the dotted (chores) round,
agent 1 is the first agent to pick. For the solid (goods) round,
agent n is the first agent to pick.

Theorem 1 The double round robin algorithm (Algorithm 1)
returns an EF1 complete allocation in O(max{m2,mn}) time.

Proof: We note that the algorithm ensures that all agents re-
ceive the same number of chores, by introducing k virtual
chores. Now let ⇡ be the output of Algorithm 1. To see that ⇡
satisfies EF1, consider any pair of two agents i and j where
i < j. We will show that by removing one item, these agents
do not envy each other.

First, consider i’s envy for j. We first observe that for the
k-th item in O� allocated to i is weakly preferred by i than the
k-th item in O� allocated to j. Hence, agent i does not envy j
with respect to O�. As for the goods allocation, agent i may
envy agent j with respect to O+, which implies that j picks at
least one more item from O+. But if the first item o⇤ picked
by j from O+ is removed from j’s bundle, then the envy will
diminish, i.e., i does not envy j with respect to O+ \ {o⇤}. The
reason is that for each item in O+ \ {o⇤} picked by j there is a
corresponding item picked by i before j’s turn that is at least
as preferred by i. Thus ui(⇡(i)) � ui(⇡( j) \ {o⇤}).

Second, consider j’s envy for i. Similarly, agent j does not
envy agent i with respect to O+ because he takes the first pick
among i and j; that is, for every item in o 2 O+\⇡(i) such that
u j(o) > 0, agent j picks a corresponding item before i that she
weakly prefers. As for the items in O�, let o⇤ be the last item
from O� chosen by j. Then, for each item o 2 O�\{o⇤} picked
by i, there is a corresponding item picked by j before i that
j weakly prefers to o, which implies j does not envy i with
respect to O� \ {o⇤}. Thus u j(⇡( j) \ {o⇤}) � u j(⇡(i)).

In either case, agents do not envy each other up to one item.
We conclude that ⇡ is EF1 and so does the final allocation ⇡⇤
as removing dummy items does not a↵ect the utilities of each
agent. It remains to analyze the running time of Algorithm 1.
Line 1 requires O(mn) time as each item needs to be examined
by all agents. Lines 3 and 4 require O(m2) time as there are at
most m iterations, and for each iteration, each agent consid-
ers at most m candidates. Thus, the total running time can be
bounded by O(max{m2,mn}), which completes the proof. ⇤

Generalized Envy Graph Algorithm Algorithm 1 is de-
signed for additive utilities. We construct another algorithm



(Algorithm 2) that finds an EF1 allocation for arbitrary util-
ity functions ui : 2O ! R (not necessarily additive). The
algorithm is based on a generalization of an algorithm pre-
sented by Lipton et al. [2004] for finding an EF1 allocation
for goods. For an allocation ⇡, the envy-graph G(⇡) is a di-
rected graph where the vertices is given by the set of agents
N, and there is an arc from i to j if and only if i envies j. For
each directed cycle C = {i1, i2, . . . , ik} of the envy graph G(⇡)
where i j envies i j+1 for each j 2 [k] and ik+1 = i1, we may im-
plement an exchange over the cycle, and define the resulting
allocation ⇡C as follows:

⇡C(i) =
(
⇡(i) if i < C,
⇡(i j+1) if i = i j 2 C.

A source of a directed graph is a vertex with no incoming
arcs, whereas a sink is a vertex with no outgoing arcs. Given
an allocation ⇡, the marginal utility of an item o 2 O \ ⇡(i) to
an agent i 2 N is defined as �i(⇡, o) := ui(⇡(i)[ {o})�ui(⇡(i)).

Theorem 2 Suppose that we are given an oracle access to
the utility functions ui : 2O ! R of all agents i 2 N. Then
the generalized envy-graph algorithm (Algorithm 2) finds an
EF1 complete allocation in O(mn3).

Proof: We will prove by induction that each time a new item
is allocated and a while loop of Algorithm 2 is executed, the
envy-graph G(⇡) is acyclic and the allocation ⇡ is EF1. The
base case clearly holds since the initial allocation corresponds
to the null allocation. Suppose that k�1 items have been allo-
cated and we want to allocate the k-th item o. If N+ , ;, then
let G+ be the envy graph induced by N+. Since by the induc-
tion hypothesis, the envy-graph is acyclic, which means that
G+ is acyclic as well. Hence, at least one agent i⇤ has no in-
coming arc towards i⇤ in G+ and the algorithm can give i⇤ item
o. Since no agent envied agent i⇤ before, even if some agent
now envies agent i⇤, the allocation ⇡ satisfies EF1. If N+ = ;,
then we know that all the agents have negative marginal util-
ity for item o. Since by the induction hypothesis, the envy
graph G(⇡) is acyclic, and thus at least one agent i⇤ has no
out-degree, which follows that we can give i⇤ item o. Since i⇤
envied no one before, even if i⇤ envies other agents now, the
allocation ⇡ satisfies EF1.

We now focus on the while loop in the algorithm whereby
envy cycles are removed by exchanging allocations along the
cycle. After exchanging bundles over cycle C, we observe
that the agents in the cycle improve their utility and the envy
towards each agent in C is still bounded up to one good as
the set of bundles does not change. Hence, the resulting allo-
cation ⇡C still satisfies EF1. Further, by removing one cycle,
we note that each agent in the cycle has her out-degree de-
creased by one. Furthermore no agent outside the cycle has
her outdegree changed. Hence, after a linear number of cy-
cles removed, the graph has no more envy-cycle and hence is
acyclic. Similarly to [Lipton et al., 2004], the running time of
the algorithm can be bounded by O(mn3). ⇤

4 Finding EF1 and PO allocation
We move on the the next question as to whether fairness is
achievable together with e�ciency. In the context of goods

Algorithm 2 Generalized Envy Graph Algorithm
Input: An instance I = (N,O,U)
Output: An allocation ⇡

1 Initialize allocation ⇡(i) = ; for all i 2 N
2 for o 2 O do
3 Let N+ be the set of agents i who have a non-

negative marginal utility �i(⇡, o) � 0.
4 if N+ , ; then
5 Choose a source i⇤ 2 N+ in the graph G(⇡) in-

duced by N+.
6 else
7 Choose a sink i⇤ 2 N in G(⇡).
8 Update ⇡(i⇤) ⇡(i⇤) [ {o}.
9 while G(⇡) contains a directed cycle C do

10 Update ⇡ ⇡C .

allocation where agents have non-negative additive utilities,
Caragiannis et al. [2016] proved that an outcome that maxi-
mizes the Nash welfare (i.e., the product of utilities) satisfies
EF1 and Pareto-optimality simultaneously. The question re-
garding whether a Pareto-optimal and EF1 allocation exists
for chores is unresolved. If one starts from an EF1 allocation
and finds Pareto improvements, one runs into two challenges:
first, Pareto improvements may not necessarily preserve EF1;
second, finding Pareto improvements is NP-hard [Aziz et al.,
2016; de Keijzer et al., 2009]. Even if we ignore the second
challenge, the question regarding the existence of a Pareto-
optimal and EF1 allocation for chores is open.
Generalized Adjusted Winner Next we show that the prob-
lem of finding an EF1 and Pareto-optimal allocation is com-
pletely resolved for the restricted but important case of two
agents. Our algorithm can be viewed as a discrete version
of the well-known Adjusted Winner (AW) rule [Brams and
Taylor, 1996a; 1996b]. Just like AW, our algorithm is Pareto-
optimal and EF1. In contrast to AW that is designed for goods,
our algorithm can handle both goods and chores.

Theorem 3 For two agents, a Pareto-optimal and EF1 com-
plete allocation always exists and can be computed in poly-
nomial time.

Proof: The algorithm begins by giving each subjective item
to the agent who considers it as a good; that is, for each item
o 2 O allocate o to agent i if ui(o) � 0 and u j(o) < 0 where
j 2 N \ {i}. So, in the following, let us assume that there is
no item for which each agent has utility 0. Also we assume
that we have objective items only, i.e., for each item o 2 O,
either o is a good (ui(o) > 0 for each i 2 N); or o is a chore
(ui(o) < 0 for each i 2 N). Now we call one of the two agents
winner (denoted by w) and another loser (denoted by `).

(i) Initially, all goods are allocated to the winner and all
chores to the loser.

(ii) We sort the items in terms of |u`(o)|/|uw(o)| (monotone
non-increasing order), and consider reallocation of the
items according to the ordering (from the left-most to
the right-most item).



(iii) When considering a good, we move it from the winner
to the loser. When considering a chore, we move it from
the loser to the winner. We stop when we find an EF1
allocation from the point of view of the loser. Note that
the loser is envious up to one item of the winner.

We will first prove that at any point of the algorithm, the
allocation ⇡ is Pareto-optimal, and so is the final allocation
⇡⇤. Assume towards a contradiction that the allocation ⇡ is
Pareto-dominated by the allocation ⇡0. For each i, j 2 {w, `}
with i , j, we write
• Gii is the set of goods in ⇡(i) \ ⇡0(i);
• Cii is the set of chores in ⇡(i) \ ⇡0(i);
• Gi j is the set of goods in ⇡(i) \ ⇡0( j);
• Ci j is the set of chores in ⇡(i) \ ⇡0( j).
Without loss of generality, we assume that, in ⇡, the winner

has utility which is at least as high as in ⇡0, while the loser
is strictly better o↵. Taking into account that the bundles of
goods Gww and G`` and the bundles of chores Cww and C``
are allocated to the same agent in both allocations, this means

uw(G`w) + uw(C`w) � uw(Gw`) � uw(Cw`) � 0; and (1)
u`(Gw`) + u`(Cw`) � u`(G`w) � u`(C`w) > 0 (2)

The crucial observation now is that the algorithm consid-
ered all items in G`w and Cw` before the items in Gw` and C`w
in the ordering (this is why the allocation of the items in the
first two bundles changes while the allocation of the items in
the last two bundles does not). Let ↵ be such that

max
o2Gw`[C`w

|u`(o)|
|uw(o)|  ↵  min

o2G`w[Cw`

|u`(o)|
|uw(o)| .

This definition implies the inequalities,

u`(Gw`)  ↵uw(Gw`); u`(G`w) � ↵uw(G`w);
�u`(Cw`) � �↵uw(Cw`);�u`(C`w)  �↵uw(C`w),

which, together with inequality (2), yields

0 < u`(Gw`) + u`(Cw`) � u`(G`w) � u`(C`w)
 �↵(uw(G`w) + uw(C`w) � uw(Gw`) � uw(Cw`))  0,

a contradiction. The last inequality follows by (1) and by the
fact that ↵ is non-negative.

Now observe that at the final allocation ⇡⇤, at most one
agent envies the other: if the loser still envies the winner and
the winner also envies the loser, then exchanging the bundles
would result in a Pareto improvement, a contradiction. Thus,
⇡⇤ is EF1 when the loser envies the winner at ⇡⇤. Consider
when at ⇡⇤ the loser does not envy the winner but the winner
envies the loser. Let ⇡0 be the previous allocation just before
the final transfer, and X = ⇡0(w)\⇡⇤(w) and Y = ⇡0(`)\⇡⇤(`).
By construction, the loser envies the winner more than one
item at ⇡0, which implies u`(Y) < u`(X). Suppose towards a
contradiction that the winner envies the loser more than one
item at ⇡⇤, which implies uw(X) < uw(Y). If g is the last good
that has been moved from the winner to the loser, then allo-
cating X to ` and Y[ {g} to w would be a Pareto-improvement

of ⇡0, a contradiction. Similarly, if c is the last chore that
has been moved from the loser to the winner, then allocat-
ing X [ {c} to ` and Y to w would be a Pareto-improvement
of ⇡0, a contradiction. Hence, the winner envies the loser up
to one item; we conclude that ⇡⇤ is EF1. ⇤

The following example illustrates the generalized AW.

Example 4 (Example of Generalized AW) Consider two
agents, Alice and Bob, and five items with the following
additive utilities where the grey circles correspond to goods
and the white circles correspond to chores.

1 2 3 4 5 6 7

Alice (winner) : 1 -1 2 1 -2 -4 -6
Bob (loser) : 4 -3 6 2 -2 -2 -2
|u`(o)|/|uw(o)| : 4 3 3 2 1 1/2 1/3

The generalized AW initially allocates the goods to Alice and
the chores to Bob. Then, it transfers the first good from Alice
to Bob and moves the second chore from Bob to Alice. After
moving the third good from Alice to Bob, Bob stops being
envious up to one item. Hence the final allocation gives the
items 2 and 4 to Alice and the rest to Bob.

A natural question is whether PO and EF1 allocation exists
for three agents with general additive utilities; we leave this as
an interesting open question. We note that Pareto-optimality
by itself is easy to achieve, by taking a permutation of agents
and applying a variant of ‘serial dictatorship’.

Proposition 4 A Pareto-optimal allocation can be computed
in linear time.

5 Finding Contiguous PROP1 Allocation
We saw that an EF1 allocation always exists for subjective
goods/chores. If we weaken EF1 to PROP1, one can achieve
another requirement besides fairness, that is, connectivity.
Specifically, we will consider a situation when the items are
placed on a path, and each agent gets a connected bundle of
the path. Finding a connected set of items is relevant in many
scenarios, in particular when the items have a spatial or tem-
poral structure. For example, the items can be a set of rooms
in a corridor and agents will often value being allocated a
contiguous chunk of rooms (see e.g., [Bouveret et al., 2017]).

We will show that a connected PROP1 allocation exists and
can be found e�ciently. Biló et al. [2018] recently consider
related questions regarding EF1 allocations of goods. With-
out loss of generality, we assume that the path is given by
a sequence of items (o1, o2, . . . , om). We first prove a result
for the case of cake cutting that is of independent interest. In
the following, a mixed cake is the interval [0,m]. Each agent
i 2 N has a value density function ûi, which maps a subin-
terval of the cake to a real value, where i has uniform utility
ui(o j) for the interval [ j � 1, j] for each j 2 [m]. An alloca-
tion of a mixed cake assigns each agent a disjoint sub-interval
of the cake where the union of the intervals equals the entire
cake [0,m]; it satisfies proportionality if each agent i gets an
interval of value at least the proportional fair share ui(O)/n.



Theorem 5 A contiguous proportional allocation of a mixed
cake exists and can be computed in polynomial time.

Proof sketch: Let N+ be the set of agents with strictly pos-
itive total value for O. We combine the moving-knife algo-
rithms for goods and chores. First, if there is an agent who
has positive proportional fair share, i.e., N+ , ;, we apply
the moving-knife algorithm only to the agents in N+. Our al-
gorithm moves a knife from left to right, and agents shout
whenever the left part of the cake has a value of exactly the
proportional fair share. The first agent j who shouts is allo-
cated to the left bundle [0, x j], and the algorithm recurs on the
remaining instance. Second, if no agent has positive propor-
tional fair share, our algorithm moves a knife from right to
left, and agents shout whenever the left part of the cake has
value exactly proportional fair share. Again, the first agent j
who shouts is allocated to the left bundle [0, x j], and the al-
gorithm recurs on the remaining instance.

We will prove by induction on |N | that the allocation of a
mixed cake produced by the algorithm satisfies the following:
• if N+ , ;, then each agent in N+ receives an interval of

value at least proportional fair share and each agent not
in N+ receives an empty piece; and
• if N+ = ;, then each agent receives an interval of value

at least proportional fair share.
The claim is clearly true when |N| = 1. Suppose that A re-
turns a proportional allocation of a mixed cake with desired
properties when |N| = k � 1; we will prove it for |N | = k.

Suppose that some agent has positive proportional fair
share, i.e., N+ , ;. If |N+| = 1, the claim is trivial; thus
assume otherwise. Clearly, a shouter j receives an interval
of value at least the proportional fair share. Further, all other
agents in N+ have value at most the proportional fair share
for the left piece [0, x j]. Indeed, if some agent i 2 N+ values
the left piece greater than the proportional fair share, then i
would have shouted when the knife reaches before x j by the
continuity of ûi, and ûi([0, x j]) > ûi([0, 0]), contradicting the
minimality of x j. Thus, the remaining agents in N+ have at
least (n � 1) · ûi([0,m])/n value for [x j,m]. By the induction
hypothesis, each agent in N+ gets an interval of value at least
proportional fair share, and the rest gets an empty piece.

Suppose that no agent has positive proportional fair share.
Again, if some agent i values [0, x j] greater than the propor-
tional fair share, then i would have shouted when the knife
reaches before x j by the continuity of ûi and ûi([0, x j]) >
ûi([0,m]), contradicting the maximality of x j. Thus all the re-
maining agents have have at least (n � 1) · ûi([0,m])/n value
for [x j,m], and hence by the induction hypothesis each agent
gets an interval of value at least proportional fair share. ⇤

The theorem stated above also applies to a general cake-
cutting model in which information about agent’s utility func-
tion over an interval can be inferred by a series of queries. We
note that a contiguous envy-free allocation of a mixed cake is
known to exist only when the number of agents is four or
a prime number [Segal-Halevi, 2018; Meunier and Zerbib,
2018]. A fractional proportional allocation can be then used
to achieve a contiguous PROP1 division of indivisible items.

Theorem 6 A connected PROP1 allocation of a path always
exists and can be computed in polynomial time.

We note that our PROP1 existence result extends to any trace-
able graph that admits a Hamiltonian path: we can run our al-
gorithm on the Hamiltonian path and the resulting output can
be easily seen to satisfy both contiguity and PROP1.

6 Discussion
In this paper, we formally studied fair allocation when the
items are a combination of subjective goods and chores. Our
work paves the way for detailed examination of allocation of
goods/chores, and opens up an interesting line of research,
with many problems left open to explore. In particular, there
are further fairness concepts that could be studied from both
existence and complexity issues, most notably envy-freeness
up to the least valued item (EFX) [Caragiannis et al., 2016].
In our setting, one can define an allocation ⇡ to be EFX if for
any pair of agents i, j, the following two hold:

(i) 8o 2 ⇡(i) s.t. ui(o) < 0: ui(⇡(i) \ {o}) � ui(⇡( j)); and
(ii) 8o 2 ⇡( j) s.t. ui(o) > 0: ui(⇡(i)) � ui(⇡( j) \ {o}).

That is, i’s envy towards j can be eliminated by either remov-
ing i’s least valuable good from j’s bundle or removing i’s
favorite chore from i’s bundle. Caragiannis et al. [2016] men-
tioned the following ‘enigmatic’ problem: does an EFX allo-
cation exist for goods? It would be intriguing to investigate
the same question for subjective or objective goods/chores.

We also note that while the relationship between Pareto-
optimality and most of fairness notions is still unclear,
Conitzer, Freeman, and Shah [2017] proposed a fairness con-
cept called Round Robin Share that can be achieved together
with Pareto-optimality. In our context, RRS can be formal-
ized as follows. Given an instance I = (N,O,U), consider
the round robin sequence in which all agents have the same
utilities as agent i. In that case, the minimum utility achieved
by any of the agents is RRSi(I). Formally for each agent i,
we order the items in a non-increasing order of her utilities,
i.e., ui(o(1)) � ui(o(2)) � · · · ui(o(m)); the round robin share
for i is given by RRSi(I) = min j2[n]

Pp�1
k=0 ui(o( j+k·n)) where

p = bm/nc. An allocation satisfies RRS if each agent i gets
utility at least RRSi(I). It would be then very natural to ask
what is the computational complexity of finding an allocation
satisfying both properties.

Finally, recent works of Bouveret et al. [2017] and Biló et
al. [2018] showed that a connected allocation satisfying sev-
eral fairness notions, such as MMS and EF1, is guaranteed to
exist for some restricted domains. Although these existence
results crucially rely on the fact that the agents have mono-
tonic valuations, it remains open whether similar results can
be obtained in fair division of indivisible goods and chores.
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