
Manipulating the Probabilistic Serial Rule

Haris Aziz Serge Gaspers Simon Mackenzie Nicholas Mattei
NICTA and UNSW
Sydney, Australia

{haris.aziz, serge.gaspers, simon.mackenzie, nicholas.mattei}@nicta.com.au
Nina Narodytska

Carnegie Mellon University
Pittsburgh, USA

ninan@cs.cmu.edu

Toby Walsh
NICTA and UNSW
Sydney, Australia

toby.walsh@nicta.com.au

ABSTRACT
The probabilistic serial (PS) rule is one of the most promi-
nent randomized rules for the assignment problem. It is
well-known for its desirable fairness and welfare properties.
However, PS is not immune to manipulative behaviour by
the agents. We initiate the study of the computational com-
plexity of an agent manipulating the PS rule. We show that
computing an expected utility better response is NP-hard.
On the other hand, we present a polynomial-time algorithm
to compute a lexicographic best response. For the case of
two agents, we show that even an expected utility best re-
sponse can be computed in polynomial time. Our result for
the case of two agents relies on an interesting connection
with sequential allocation of discrete objects.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; I.2.11 [Distributed Artificial
Intelligence]: Multiagent Systems; J.4 [Computer Ap-
plications]: Social and Behavioral Sciences - Economics

General Terms
Economics, Theory and Algorithms

Keywords
Assignment problem; probabilistic serial rule; fair allocation

1. INTRODUCTION
The assignment problem is one of the most fundamen-

tal and important problems in economics and computer sci-
ence (see e.g., [3, 4, 6, 12, 13]). In the setting, agents express
preferences over objects and, based on these preferences, the
objects are allocated to the agents. The model is applicable
to many resource allocation or fair division settings where
the objects may be public houses, school seats, course enroll-
ments, kidneys for transplant, car park spaces, chores, joint
assets, or time slots in schedules. A randomized or frac-
tional assignment rule takes the preferences of the agents

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

into account in order to allocate each agent a fraction of
the object. If the objects are indivisible but allocated in
a randomized way, the fraction can also be interpreted as
the probability of receiving the object. Randomization is
widespread in resource allocation as it is one of the most
natural ways to ensure procedural fairness [8]. Random-
ized assignments have been used to assign public land, radio
spectra to broadcasting companies, and US permanent visas
to applicants (Footnote 1, [8]).

Among the various randomized/fractional assignment
rules, the probabilistic serial (PS) rule is one of the most
prominent rules [1, 5, 6, 8, 14, 16, 18, 17, 20]. PS works as
follows. Each agent expresses a linear order over the set of
houses (we use the term house throughout the paper though
we stress any object could be allocated with these mecha-
nisms). Each house is considered to have a divisible proba-
bility weight of one, and agents simultaneously and with the
same speed eat the probability weight of their most preferred
house. Once a house has been eaten by a subset of agents,
each of these agents eats his next most preferred house that
has not been completely eaten. The procedure terminates
after all the houses have been eaten. The random alloca-
tion of an agent by PS is the amount of each object he has
eaten (see e.g., [6, 16]).

The PS rule fares better than any other random assign-
ment rule in terms of fairness and welfare [5, 6, 8, 16, 20].
In particular, it satisfies strong envy-freeness and efficiency
with respect to both stochastic dominance (SD) and down-
ward lexicographic (DL) relations [6, 19, 16]. SD is one of the
most fundamental relations between fractional allocations
because one allocation is SD-preferred over another if for ev-
ery utility function consistent with the ordinal preferences,
the former yields at least as much expected utility as the
latter. DL is a refinement of SD and based on lexicographic
comparisons between fractional allocations. Generalizations
of the PS rule have been proposed in many settings (see
e.g., [8]). The PS rule also satisfies some desirable incentive
properties. If the number of objects is at most the number
of agents, then PS is weak SD-strategyproof [6]. Another
well-established rule random serial dictator (RSD) is not
envy-free, not as efficient as PS [6] and the fractional alloca-
tions under RSD are #P-complete to compute [2]. However,
unlike RSD, PS is not strategyproof.

In this paper, we examine the following natural question
for the first time: what is the computational complexity of
an agent computing a different preference to report so as

to get a better PS outcome? This problem of computing
the optimal manipulation has already been studied in great
depth for voting rules (see e.g., [11]). Ekici and Kesten [10]
showed that when agents are not truthful, the outcome of
PS may not satisfy desirable properties related to efficiency
and envy-freeness. Hence even though agents can manipu-
late the PS rule to achieve more utility, it is important to
understand the complexity of computing a beneficial misre-
port of their preferences. The complexity of manipulation
of the PS rule is also related to the study of Nash dynamics
and better responses. Efficient algorithms to compute best
responses can be used to understand Nash dynamics under
the mechanism.

In order to compare random allocations, an agent needs
to consider relations between them. We consider three well-
known relations between random allocations (see e.g., [6, 19,
18, 9]): (i) expected utility (EU), (ii) stochastic dominance
(SD), and (iii) downward lexicographic (DL). For EU, an
agent seeks a different allocation that yields more expected
utility. For DL, an agent seeks an allocation that gives a
higher probability to the most preferred alternative that has
different probabilities in the two allocations. Throughout
the paper, we assume that agents express strict preferences,
i.e., they are not indifferent between any two houses.

Contributions. We initiate the study of computing best
responses for the PS mechanism — one of the most estab-
lished randomized rules for the assignment problem. The
study is additionally motivated by complementing experi-
mental work where we observe that as the number of houses
relative to the number of agents grows, the percentage of
manipulable profiles (for which at least one agent has incen-
tive to manipulate) increases, maximizing at around 99%.
We present a polynomial-time algorithm to compute the DL
best response for multiple agents and houses. For the case
of two agents, we present a polynomial-time algorithm to
compute an EU best response for any utilities consistent
with the ordinal preferences. The two-agent case is also of
special importance since many disputes arise between two
parties. The result for the EU best response relies on an in-
teresting connection between the PS rule and sequential and
deterministic allocation of indivisible objects [15]. We show
that computing an EU best response is NP-hard in general.
The result contrasts sharply with the recent result of Bou-
veret and Lang [7] that a best response can be computed in
polynomial time for sequential allocation.

2. PRELIMINARIES
An assignment problem (N,H,�) consists of a set of

agents N = {1, . . . , n}, a set of houses H = {h1, . . . , hm}
and a preference profile �= (�1, . . . ,�n) in which �i
denotes a complete, transitive, and strict ordering on H
representing the preferences of agent i over the houses
in H. A fractional assignment is an (n × m) matrix
[p(i)(hj)]1≤i≤n,1≤j≤m such that for all i ∈ N , and hj ∈
H, 0 ≤ p(i)(hj) ≤ 1; and for all j ∈ {1, . . . ,m},∑
i∈N p(i)(hj) = 1. The value p(i)(hj) is the frac-

tion of house hj that agent i gets. Each row p(i) =
(p(i)(h1), . . . , p(i)(hm)) represents the allocation of agent i.
A fractional assignment can also be interpreted as a ran-
dom assignment where p(i)(hj) is the probability of agent i
getting house hj .

A standard method to compare random allocations is to
use the SD (stochastic dominance) relation. Given two ran-

dom assignments p and q, p(i) �SDi q(i) i.e., a player i
SD prefers allocation p(i) to q(i) if

∀h ∈ H :
∑
hj∈{hk:hk�ih} p(i)(hj) ≥

∑
hj∈{hk:hk�ih} q(i)(hj)

and

∃h ∈ H :
∑
hj∈{hk:hk�ih} p(i)(hj) >

∑
hj∈{hk:hk�ih} q(i)(hj).

Given two random assignments p and q, p(i) �DLi q(i) i.e.,
a player i DL (downward lexicographic) prefers allocation
p(i) to q(i) if p(i) 6= q(i) and for the most preferred house h
such that p(i)(h) 6= q(i)(h), we have that p(i)(h) > q(i)(h).

When agents are considered to have cardinal utilities for
the objects, we denote by ui(h) the utility that agent i gets
from house h. We will assume that the total utility of an
agent equals the sum of the utilities that he gets from each
of the houses. Given two random assignments p and q,
p(i) �EUi q(i) i.e., a player i EU (expected utility) prefers
allocation p(i) to q(i) if∑

h∈H ui(h) · p(i)(h) >
∑
h∈H ui(h) · q(i)(h).

Since for all i ∈ N , agent i compares assignment p with
assignment q only with respect to his allocations p(i) and
q(i), we will sometimes abuse the notation and use p �SDi q
for p(i) �SDi q(i). A random assignment rule takes as input
an assignment problem (N,H,�) and returns a random as-
signment which specifies what fraction or probability of each
house is allocated to each agent.

3. MANIPULABILITY OF THE PS RULE
The Probabilistic Serial (PS) rule is a random assignment

algorithm in which we consider each house as infinitely divis-
ible [6, 16]. At each point in time, each agent is eating (con-
suming the probability mass of) his most preferred house
that has not been completely eaten. All agents eat at the
same unit speed, hence all the houses are eaten at time m/n
and each agent receives a total of m/n units of houses. The
probability of house hj being allocated to i is the fraction of
house hj that i has eaten. The following example adapted
from (Section 7, [6]) shows how PS works.

Example 1 (PS rule). Consider an assignment prob-
lem with the following preference profile.

�1: h1, h2, h3 �2: h2, h1, h3 �3: h2, h3, h1

Agents 2 and 3 start eating h2 simultaneously whereas agent
1 eats h1. When 2 and 3 finish h2, agent 1 has only eaten
half of h1. The timing of the eating can be seen below.

0 1
2

Time
13

4

Agent 1

Agent 2

Agent 3

h1

h2

h2

h1

h1

h3

h3

h3

h3

The final allocation computed by PS is

PS(�1,�2,�3) =

3/4 0 1/4
1/4 1/2 1/4
0 1/2 1/2

 .

Consider the assignment problem in Example 1. If agent
1 misreports his preferences as follows: �′1: h2, h1, h3, then

PS(�′1,�2,�3) =

1/2 1/3 1/6
1/2 1/3 1/6
0 1/3 2/3

 .

Then, if u1(h1) = 7, u1(h2) = 6, and u1(h3) = 0, then agent
1 gets more expected utility when he reports �′1. In the
example, although truth-telling is a DL best response, it is
not necessarily an EU best response for agent 1.

Examples 1 and 2 of Kojima [16] show that manipulating
the PS mechanism can lead to an SD improvement when
each agent can be allocated more than one house. In light
of the fact that the PS rule can be manipulated, we examine
the complexity of a single agent computing a manipulation,
in other words, the best response for the PS rule.1 For a
preference profile �, we denote by (�−i,�′i) the preference
profile obtained from � by replacing agent i’s preference by
�′i. We can now define our central computational problem
E-Best Response for E ∈ {SD,EU,DL}.

E-Best Response (E-BR)

Input: A set of agents N = {1, . . . , n}, a set of
houses H = {h1, . . . , hm} and a prefer-
ence profile �= (�1, . . . ,�n).

Output: A preference �′1 for agent 1 such that
there exists no preference �′′1 such that
PS(N,H, (�′′1 ,�−1)) �E

1 PS(N,H, (�′1
,�−1)).

For a constant m, the problem E-BR can be solved by
brute force by trying out each of the m! preferences. Hence
we will not assume that m is a constant. We establish some
more notation and terminology for the rest of the paper.
We will often refer to the PS outcomes for partial lists of
houses and preferences. We will denote by PS(�Li ,�−i)(i),
the allocation that agent i receives when his preference is
according to ordered list L. Note that preferences and or-
dered lists are interchangeable, except that a list need not
contain all houses in H. When an agent runs out of houses
in his preference list, he stops eating. The length of a list L
is denoted |L|, and we refer to the kth house in L as L(k).
In the PS rule, the eating start time of a house is the time
point at which the house starts to be eaten by some agent.
In Example 1, the eating start times of h1, h2 and h3 are 0, 0
and 0.5, respectively.

4. LEXICOGRAPHIC BEST RESPONSE
In this section, we present a polynomial-time algorithm

for DL-BR. Lexicographic preferences are well-established
in the assignment literature (see e.g., [18, 19, 9]). Let
(N,H,�) be an assignment problem where N = {1, . . . , n}
and H = {h1, . . . , hm}. We will show how to compute a
DL best response for agent 1 ∈ N . It has been shown that
when m ≤ n, then truth-telling is the DL best response but
if m > n, then this need not be the case [18, 19, 16].

Our algorithm will iteratively construct a partial prefer-
ence list for the i most preferred houses of agent 1. Without
loss of generality, denote �1: h1, h2, . . . , hm.

1Note that if an agent is risk-averse and does not have infor-
mation about the other agent’s preferences, then his max-
imin strategy is to be truthful.

For any i, 1 ≤ i ≤ m, denote Hi = {h1, . . . , hi}. A prefer-
ence of agent 1 restricted to Hi is a preference over a subset
of Hi. For the preference of agent 1 restricted to Hi, the PS
rule computes an allocation where the preference of agent
1 is replaced with this preference and the preferences of all
other agents remain unchanged. The notions of DL best
response and DL preferred fractional assignments with re-
spect to a subset of houses Hi are defined accordingly for
restricted preferences of agent 1.

Algorithm 1 DL best response for n agents

Input: (N,H,�)
Output: DL Best response of agent 1

L1 ← h1 // Best response for agent 1 w.r.t. H1 = {h1}
for i = 2 to n do // Compute a best response w.r.t. H2, . . . , Hn

p← 0
if ∃q ∈ {1, . . . , i − 1} such that 0 < PS1(Li−1, Li−1(q)) < 1
then

p← max{q ∈ {1, . . . , i− 1} : 0 < PS1(Li−1, Li−1(q)) < 1}
end if
for q ← p + 1 to |Li|+ 1 do // New house hi inserted after
position p

Lq
i ← Li−1(1)⊕ · · · ⊕ Li−1(q − 1)⊕ hi

while |Lq
i | ≤ |Li−1| do // Complete the list according to

the stingy ordering
est← EST(N,H, (Lq

i ,�2, . . . ,�n))
S ← {h ∈ Li−1 \ Lq

i : est(h) is minimum}
hs ← first house among S in �1

Lq
i ← Lq

i ⊕ hs

end while
if PS1(Lq

i , hi) = 0 then
Lq

i ← Li−1

end if
end for
q ← p // Determine which Lq

i is stingy
worse[p− 1]← true
finished← false
while finished = false do

if ∃h ∈ Hi−1 such that PS1(Lq
i , h) 6= PS1(Li−1, h) then

worse[q]← true
q ← q + 1

else
worse[q]← false
if PS1(Lq

i , h1) > 0 and PS1(Lq
i , h1) < 1 then

if worse[q − 1] = false then
q ← q − 1

end if
finished← true

else if PS1(Lq
i , h1) = 1 then

est← EST(N,H, (Lq
i (1)⊕· · ·⊕Lq

i (q−1),�2, . . . ,�n))

if ∃h ∈ {Lq
i (q + 1), . . . , Lq

i (|Lq
i |)} such that est(h) ≤

est(hi) then
q ← q + 1

else
finished = true

end if
end if

end if
end while
Li ← Lq

i
end for
return Ln

For a house h ∈ H, let PS1(L, h) = (PS(�L1 ,�−1)(1))(h)
denote the fraction of house h that the PS rule assigns to
agent 1 when he reports the (partial) preference L. We start
with a simple lemma showing that a DL best response for
agent 1 for the whole set H can be no better and no worse
on Hi than a DL best response for Hi.

Lemma 1. Let i ∈ {1, . . . ,m}. A DL best response for
agent 1 on H gives the same fractional assignment to the
houses in Hi as a DL best response for agent 1 on Hi.

Our algorithm will compute a list Li such that Li ⊆ Hi.
2

The list Li will be a DL best response for agent 1 with re-
spect to Hi. Suppose the algorithm has computed Li−1.
Then, when considering Hi = Hi−1 ∪ {hi}, it needs to
make sure that the new fractional allocation restricted to
the houses in Hi−1 remains the same (due to Lemma 1).
For the preference to be optimal with respect to Hi, the al-
gorithm needs to maximize the fractional allocation of hi to
agent 1 under the previous constraint.

Our algorithm will compute a canonical DL best response
that has several additional properties. A preference Li for
Hi is no-0 if Li contains no house h with PS1(Li, h) = 0.
Any DL best response for agent 1 for Hi can be converted
into a no-0 DL best response by removing the houses for
which agent 1 obtains a fraction of 0. For a no-0 preference
Li for Hi, the stingy ordering for a position j is determined
by running the PS rule with the preference Li(1) ⊕ · · · ⊕
Li(j − 1) for agent 1, where ⊕ denotes concatenation. It

orders the houses from
⋃|Li|
k=j Li(k) by increasing eating start

times, and when two houses h, h′ have the same eating start
time, we order h before h′ iff h �1 h

′. Intuitively, houses
occurring early in this ordering are the most threatened by
the other agents at the time point when agent 1 comes to
position j. The following definition takes into account that
the eating start times of later houses may change depending
on agent 1’s ordering of earlier houses.

A preference Li for Hi is stingy if it is a no-0 DL best
response for agent 1 onHi, and for every j ∈ {1, . . . , i}, Li(j)
is the first house in the stingy ordering for this position such
that there exists a DL best response starting with Li(1) ⊕
· · ·⊕Li(j). We note that, due to Lemma 1, there is a unique
stingy preference for each Hi.

Example 2. Consider the following assignment problem.

�1: h1, h2, h3, h4, h5, h6 �2: h3, h6, h4, h5, h1, h2

The preferences h3, h1, h4, h2 and h3, h2, h4, h1 are both no-0
DL best responses for agent 1 with respect to H4, allocating
p(1)(h1) = 1, p(1)(h2) = 1, p(1)(h3) = 1/2, p(1)(h4) = 1/2
to agent 1. When running the PS rule with h3 as the
preference list, h4’s eating start time comes first among
{h1, h2, h4}. However, there is no DL best response for H4

starting with h3, h4. The next house in the stingy ordering
is h1. The preference h3, h1, h4, h2 is the stingy preference
for H4.

Lemma 2 shows that when agent 1 receives a house partially
(a fraction different from 0 and 1) in a DL best response,
a stingy preference would not order a less preferred house
before that house.

Lemma 2. Let Li be a stingy preference for Hi. Suppose
there is a hj ∈ Hi such that 0 < PS1(Li, hj) < 1. Then,
P ⊆ Hj, where Li = P ⊕ hj ⊕ S.

Lemma 3 shows how the houses allocated completely to
agent 1 are ordered in a stingy preference.

Lemma 3. Let Li be a stingy preference for Hi. If
hj , hk ∈ Hi are two houses such that PS1(Li, hj) =
PS1(Li, hk) = 1, with Li = P ⊕ hj ⊕ M ⊕ hk ⊕ S, then

2When we treat a list as a set we refer to the set of all
elements occurring in the list.

either the eating start time of hj is smaller than hk’s eating
start time when agent 1 reports P , or it is the same and
hj �1 hk.

Proof. Suppose not. But then, Li is not stingy since
swapping hj and hk in Li gives the same fractional allocation
to agent 1.

We now show that when iterating from a set of houses Hi−1

to Hi, the previous solution can be reused up to the last
house that agent 1 receives partially.

Lemma 4. Let Li−1 and Li be stingy preferences for Hi−1

and Hi, respectively. Suppose there is a h ∈ Hi−1 such that
0 < PS1(Li−1, h) < 1. Then the prefixes of Li−1 and Li
coincide up to h.

We are now ready to describe how to obtain Li from
Li−1. See Algorithm 1 for the pseudocode. The subrou-
tine EST(N,H,�) executes the PS rule for (N,H,�) and
for each item, records the first time point where some agent
starts eating it. It returns the eating start times est(h) for
each house h ∈ H.

Let p be the last position in Li−1 such that the house
Li−1(p) is partially allocated to agent 1. In case agent
1 receives no house partially, set p := 0 and interpret
Li−1(p) as an imaginary house before the first house of
Li−1. By Lemma 4, we have that Li−1(s) = Li(s) for
all s ≤ p. By Lemma 1, we have that the fractional as-
signment resulting from Li must wholly allocate all houses
Li−1(p+1), . . . , Li−1(|Li−1|) to agent 1, and allocate a share
of 0 to all houses in Hi−1 \ Li−1.

It remains to find the right ordering for {Li−1(s) : p+1 ≤
s ≤ |Li−1|} ∪ {hi}. By Lemmas 2 and 3, the prefixes of
Li−1 and Li coincide up to h. We will describe in the next
paragraph how to determine the position q where hi should
be inserted. Having determined this position one may then
need to re-order the subsequent houses. This is because in-
serting hi in the list may change the eating start times of the
subsequent houses. This leads us to the following insertion
procedure. The list Lqi obtained from Li−1 by inserting hi
at position q, with p < q ≤ |Li|+1, is determined as follows.
Start with Lqi := Li−1(1) ⊕ · · · ⊕ Li−1(q − 1) ⊕ hi. While
|Lqi | ≤ |Li−1|, we append to the end of Lqi the first house
among Li−1 \Lqi in the stingy ordering for this position. Af-
ter the while-loop terminates, run the PS rule for the result-
ing list Lqi . In case we obtain that PS1(Lqi , hi) = 0, we re-
move hi again from this list (and actually obtain Lqi = Li−1).

The position q where hi is inserted is determined as fol-
lows. Start with q := p. We have an array worse keeping
track of whether the lists Lpi , . . . , L

i
i produce a worse out-

come for agent 1 than the list Li−1. Set worse[p−1] := true.
As long as the list Li has not been determined, proceed as
follows. Obtain Lqi from Li−1 by inserting hi at position q, as
described earlier. Consider the allocation of agent 1 when he
reports Lqi . If this allocation is not the same for the houses
in Hi−1 as when reporting Li−1, then set worse[q] := true,
otherwise set worse[q] := false. If worse[q], then increment
q. This is because, by Lemma 1, this preference would not
be a DL best response with respect to Hi. Otherwise, if
0 < PS1(Lqi , hi) < 1, then we can determine hi’s position.

If worse[q − 1], then set Li := Lqi , otherwise set Li := Lq−1
i .

This position for hi is optimal since moving hi later in the
list would decrease its share to agent 1. Otherwise, we have

that worse[q] = false and PS1(Lqi , hi) ∈ {0, 1}. This will be
the share agent 1 receives of hi. If PS1(Lqi , hi) = 0, then set
Li := Li−1. Otherwise (PS1(Lqi , hi) = 1), it still remains
to check whether the current position for hi gives a stingy
preference. For this, run the PS rule with the preference
Lqi (1)⊕ · · · ⊕Lqi (q − 1) for agent 1. If hi’s eating start time
is smaller than the eating start time of each house Lqi (r)
with r > q, then set Li := Lqi , otherwise increment q.

Thus, given Li−1, the preference Li can be computed by
executing the PS rule O(m) times. The DL best response
computed by the algorithm is Lm. Since the PS rule can be
implemented to run in linear time O(nm), the running time
of this DL best response algorithm is O(nm3).

Theorem 1. DL-BR can be solved in O(nm3) time.

Example 3. Consider the following instance.

�1: h1, h2, h3, h4, h5, h6, h7, h8, h9, h10

�2: h8, h3, h5, h2, h10, h1, h6, h7, h4, h9

�3: h9, h4, h7, h1, h2, h6, h5, h3, h8, h10

After having computed L2 = h1, h2, the algorithm consid-
ers H3. Since PS1(L2, h1) = PS1(L2, h2) = 1, the algo-
rithm first considers L1

3 = h3, h2, h1. Note that h1 and h2

have been swapped with respect to L2 since agent 2 starts
eating h2 before agent 3 starts eating h1 when agent 1 re-
ports the preference list consisting of only h3. It turns out
that PS1(L1

3, h1) = PS1(L1
3, h2) = PS1(L1

3, h3) = 1. Thus,
worse[1] = false. Since h3 does not come first in the stingy
ordering, the algorithm needs to verify whether moving h3

later will still give a DL best response with respect to H3.
It then considers L2

3 = h1, h3, h2. However, this allocates
only half of h3 to agent 1, implying worse[2] = true. Since
worse[1] = false, the algorithm sets L3 = L1

3. The DL best
response computed by the algorithm is L10 = h3, h2, h1, h6.

We note that a DL best response is also an SD best response.
One may wonder whether an algorithm to compute the DL
best response also provides us with an algorithm to compute
an EU best response. However, a DL best response may not
be an EU best response for three or more agents. Con-
sider the preference profile in Example 1. Since the number
of houses is equal to the number of agents, reporting the
truthful preference is a DL best response [19]. However, we
have shown a different preference for agent 1 where he may
obtain higher utility.

5. EXPECTED UTILITY BEST RESPONSE
In this section, we consider the problem of expected utility

best response.

5.1 The Two Agent Case
We first show that for the case of two agents, an EU best

response can be computed in linear time. The result hinges
on a close connection that we identify between PS and the
discrete allocation of objects to agents via sequential alloca-
tion. In the sequential allocation setting (N,O,�′, π), there
is an agent set N , an object set O = {o1, . . . om′}, a pref-
erence profile �′ that specifies for each agent i ∈ N his
preferences �′i over O, and a policy π : {1, . . . ,m′} → N .
The sequential allocation rule works as follows. Starting
from j = 1 to m′, agent π(j) gets his most preferred ob-
ject that is not yet allocated. If no unallocated object is on

the preference list of the agent, then the agent does not get
any object when his turn comes. The assignment as a result
of sequential allocation is denoted by SA(N,O,�′, π). We
will restrict ourselves to the case where N = {1, 2} and will
only consider the alternating policy π∗ = 1212 . . . in which
agent 1 starts first and then the agents keep alternating.
The sequential allocation setting was introduced formally by
Kohler and Chandrasekaran [15] where they showed that the
best response can be computed in linear time when |N | = 2
and the policy is the alternating sequence. Recently, Bou-
veret and Lang [7] generalized this result to the case of any
number of agents, any policy, and where the manipulator
may be indifferent between objects.

We highlight a close connection between sequential allo-
cation and PS and thereby between allocation mechanisms
for indivisible and divisible houses. For the random assign-
ment setting ({1, 2}, H,�), the half-house reduction gives
us the sequential allocation setting ({1, 2}, O,�′, π∗). In
the reduction, each house hj ∈ H is cloned so that we
have two half-houses h1

j and h2
j for each house hj : O =

{h1
j , h

2
j : j = 1, . . . ,m}. Both agents have preferences over

half-houses that are consistent with their preferences over
houses and for each house, each agent prefers the first half-
house slightly more than the second half-house: if hj �i hk,
then h1

j �′i h2
j �′i h1

k �′i h2
k. We show that for n = 2,

the assignment under PS is ‘essentially’ the same as the as-
signment obtained by applying sequential allocation to the
setting resulting from the half-house reduction:

Remark 1. The assignment PS({1, 2}, H,�) and the
assignment SA({1, 2}, O,�′, π∗) are related as follows:
PS({1, 2}, H,�)(i)(hj) = 1

2
· (SA({1, 2}, O,�′, π∗)(i)(h1

j) +

SA({1, 2}, O,�′, π∗)(i)(h2
j)).

We note that in the half-house reduction, each preference
list �′i satisfies the consecutivity property : half-houses cor-
responding to the same house are placed consecutively in
the preference list. We will use the consecutivity property
in our argument.

Theorem 2. For the case of two agents, EU-BR can be
computed in linear time.

Proof. We consider the EU best response problem for
PS where the manipulator, agent 1, has preferences �1:
h1, . . . , hm. The main idea is to reduce the EU best response
problem ({1, 2}, H,�) for PS to the EU best response prob-
lem ({1, 2}, O,%′, π∗) for sequential allocation. The reduc-
tion is a slight modification of the half-house reduction with
the difference that agent 1 is indifferent between two half-
houses corresponding to the same house. The object set is
O = {h1

j , h
2
j : j = 1, . . . ,m}. In %′, both agents have prefer-

ences over half-houses that are consistent with their prefer-
ences over houses. We will assume without loss of generality
that agent 2 prefers the first half-house slightly more than
the second half-house. Agent 1 is indifferent between any
two half-houses corresponding to the same house: h1

j ∼′1 h2
j

for all j ∈ {1, . . . ,m} but will be required to report strict
preferences. When we consider sequential allocation, we will
view it in rounds so that in each round, agent 1 first picks
a most preferred available house and then agent 2 picks a
most preferred available house.

When agents have strict preferences, the algorithm by
Bouveret and Lang [7] first checks whether the manipula-
tor (agent 1) can get different ‘target sets’ of objects. In

the algorithm, only a linear number of target sets need to
be considered. Given target set Tk, which is restricted to
objects from o1, . . . , ok, we can compute target set Tk+1

as follows: check whether target set Tk ∪ {ok+1} can be
achieved or not. Tk+1 = Tk ∪ {ok+1} if Tk ∪ {ok+1} can be
achieved and Tk+1 = Tk otherwise. Tm is then the most
preferred allocation that agent 1 achieves and the allocation
is unique. When the manipulator is indifferent among ob-
jects, Bouveret and Lang [7] showed that their algorithm
can be modified as follows: agent 1 considers a linear order
instead of his actual weak order where the linear order is
achieved by breaking ties between the indifferent objects in
the same order as the preference of agent 2. Based on this
insight, observe that both agents will pick h1

j before h2
j for

any j ∈ {1, . . . ,m} if they report truthfully.
We first show that there exists a best response of agent 1

in the sequential allocation setting (N,O,%′, π∗) that satis-
fies the consecutivity property. If agent 1 either gets both
half-houses corresponding to a house or none of them, then
his optimal preference report for sequential allocation satis-
fies the consecutivity property. If this is not the case, then
let us consider the most preferred house hj for which agent 1
gets one of the corresponding half-houses but not the other.
If agent 1 only gets h1

j but not h2
j , this means that in his

best response for houses restricted to {h1
1, . . . , h

2
j}, h2

j was
already taken by agent 2 in a round in which agent 1 picked
some other object. Then agent 1 can eventually insert h2

j

immediately after h1
j in his best response preference know-

ing well that he will not get h2
j . Thus, the best response for

sequential allocation can be modified so that it satisfies the
consecutivity property and yields the same optimal alloca-
tion. Now consider the case where agent 2 gets h1

j but agent

1 gets h2
j . Then this means that agent 1 cannot get h1

j in
his best response when his preference is restricted only to
houses from the set {h1

1, h
2
1, . . . , h

1
j−1, h

2
j−1, h

1
j}. Therefore,

agent 1 can still insert h1
j just before h2

j in his best response,
thus satisfying the consecutivity property, and maintaining
the allocation even though agent 1 does not get h1

j in his
best response.

We now show that the best response of agent 1 in the
sequential allocation setting (N,O,%′, π∗) can be used to
compute the best response of agent 1 in (N,H,�) under
PS. Let U be the expected utility for agent 1 under his best
response �∗1 in the PS setting. The best response �∗1 cor-
responds to �∗1 ′ over the set of half-houses. By Remark 1,
agent 1 achieves essentially the same allocation and hence
the same utility U in the sequential allocation setting if he
submits preference �∗1 ′. Conversely, if agent 1 achieves util-
ity U in the sequential allocation setting via a preference
report, then he achieves at least as much utility by report-
ing his optimal preference �∗1 ′ constructed via the algorithm
of Bouveret and Lang [7]. Hence, the preference �∗1 ′ can be
modified as shown above so that it satisfies the consecutivity
property. In this case, there exists a preference �∗1 over H
which is consistent with the preferences �∗1 ′ over O. If agent
1 reports �∗1, then he gets essentially the same allocation as
SA({1, 2}, O, (�∗1 ′,�′2)(1) and thus gets utility U .

The best response algorithm of Bouveret and Lang [7]
returns the same optimal preference report for all cardinal
utilities consistent with the ordinal preference of the manip-
ulator. Next, we point out that for the case of two agents
and the PS rule, a DL best response and an EU best response

are equivalent.

Proposition 1. For the case of two agents and the PS
rule, a DL best response is an EU best response and an EU
best response is a DL best response.

Proof. For two agents, PS assigns probabilities from the
set {0, 1/2, 1}. Hence DL preferences can be represented
by EU preferences where the utilities are exponential: the
utility of a more preferred house is twice the utility of the
next most preferred house. Hence a response is a DL best
response iff it is an EU best response for exponential utilities.
On the other hand we have shown that for two agents and
the PS rule, an EU best response is the same for any utilities
compatible with the preferences.

5.2 The General Case
We show that EU-BR is NP-hard which contrasts with

the fact that DL-BR is polynomial-time solvable (Th. 1).

Theorem 3. EU-BR is NP-hard.

Proof. To show hardness, we prove that the following
problem is NP-complete: given an assignment setting and
a utility function u : H → N specifying the utility of each
house for the manipulator (agent 1) and a target utility T ,
can the manipulator specify preferences such that the utility
for his allocation under the PS rule is at least T? We reduce
from a restricted NP-hard version of 3SAT where each literal
appears exactly twice in the formula. Given such a 3SAT
instance F = (X,C) where X = {x1, . . . , xn} is the set of
variables and C the set of clauses, we build an instance of
EU-BR where the manipulator can obtain utility ≥ T if
and only if the formula is satisfiable. At a high level, we will
create an instance of the assignment problem which can be
conceptualized as 18 (mostly) disjoint parts that we index
by D ∈ {1, . . . , 18}. We will describe the main (first) part
in detail and explain how it is duplicated to create the other
17 parts. Each of the 18 parts is divided up into n choice
rounds which we index from 1 to n. For each part there is an
additional clause round. The 18 parts are linked by a special
set of houses which allow us to synchronize the timing of the
manipulator with respect to all the other agents. The set of
agents is N = {1} ∪

⋃18
D=2{a

D
dummy} ∪

⋃18
D=1A

D
literals where

the manipulator is agent 1, 17 ‘dummy’ manipulators for the
17 copies of the main part, and two agents for each positive
and negative literal in the formula for each of the 18 parts,
ADliterals = {a1,Dxi , a2,Dxi , a1,D¬xi , a

2,D
¬xi : xi ∈ X}.

The set of houses is H = Hslow ∪
⋃18
D=1H

D
rounds ∪⋃18

D=1H
D
clause ∪

⋃18
D=2{h

D
CP } ∪ {hprize} where Hslow = {hrs :

r ∈ {1, . . . , n − 1}} is the set of slowdown houses that will
be used to control the timing of the manipulator’s deci-
sions. Note that there is only one slowdown house per
round and these houses are shared between all 18 parts.
HD

rounds = {hr,Dxi , h
r,D
¬xi : r ∈ {1, . . . , n}, i ∈ {1, . . . , n}} is a

set of houses consisting of one house for each positive and
negative literal in the formula for each of the n rounds;
Hclause = {h1,D

c , h2,D
c , h3,D

c : c ∈ {1, . . . , C}} is a triplet
of houses for each clause in the formula; hprize is the prize
house for the manipulator; and

⋃18
D=2{h

D
CP } is the set of

consolation prize houses for the dummy manipulators. We
will describe how to construct the preferences for the main
part which contains the manipulator, agent 1, and then ex-
plain the small differences necessary to create the 17 other

duplicate instances. Example 4 gives an illustration of the
main part of a small instance and may be helpful for refer-
ence during the discussion.

Main Part: We will describe the rounds by declaring
which houses are eaten in them and show how the preference
lists of the agents are constructed. Each agent’s preference
list can be described as having a head and a tail. To ease
the description, we will omit the round index D = 1 in the
variable names. Intuitively, the head consists of the houses
that the agent will consume during the running of the PS
algorithm while the tail consists of houses that will not be
eaten. When we describe how we add houses to an agent’s
preference list, we will say append the house(s) to the head
to mean add this set of houses to the end of the head of the
preference list, behind those that have been placed before.
We say append the house(s) to the tail of the preferences to
mean place them last amongst all houses which have been
placed in the preferences so far.

In each choice round r, houses hrxi and hr¬xi for each i ∈
{1, . . . , n} will be eaten. Append those houses to the head
of the preferences of the agents corresponding to the same
literal and append them to the tail of the preferences of
agents associated to a different literal. Append houses hrxr
and hr¬xr to the head of the manipulator’s preferences (the
order in which we add them in is not important). Houses
hrxi and hr¬xi where i 6= r are appended to the tail of the
manipulator’s preferences. In each choice round except the
last one, slowdown house hrs will be eaten. We append it to
the tail of the preferences of the literal agents, and to the
head of the preferences of the manipulator agent (after the
literal houses we added for this round).

Finally we describe the clause round. For each clause, we
have the 3 houses h1

c , h
2
c , h

3
c . We append these 3 houses to

the head of the preferences of exactly 1 agent corresponding
to the negation of each of the clause c’s literals. If an agent
has already had houses added to his preferences in the clause
round, we add them to the other agent corresponding to the
same literal (since a literal appears only twice in the for-
mula, this ensures each agent has only one triplet of houses
appended to the head of their preferences). The prize house
hprize is appended to the head of both the manipulator’s
and the literal agents’ preferences (after the clause houses
we just added to the literal agents).

Duplicate Parts: For each of the duplicate parts, D ∈
{2, . . . , 18}, we will describe the necessary modifications.
For clarity we call the copy of the prize house in the du-
plicated parts of the instance consolation prize houses de-
noted hDCP for each D ∈ {2, . . . , 18}. Recall that the set of
slowdown houses Hslow is shared between all the parts; thus
all the parallel constructions ‘merge’ at the set of slowdown
houses. We are left with the fact that houses from a given
duplicate part D of the instance have not been added to the
preferences of agents from all other parts of the instance. We
can append all these houses to the tail of the preferences of
the agents outside this part in any order.

The Manipulator’s Utilities: We will give the manip-
ulator’s utility in terms of a number α to be fixed later.
The prize house has utility 1. The literal houses that
are appended to the head of the manipulator’s preferences
during round i (hixi and hi¬xi) have utility (2α)2(n−i) and

(2α)2(n−i) + ε where ε is O(1
2n

). The slowdown houses have

utility (2α)2(n−i−1)+1. All other houses have negligible util-
ity. By negligible we mean that adding up all their combined

utilities will yield less than 1
α

utility. This can be done since
we have a polynomial number of houses and we can make
the utilities exponentially small.

Based on these utilities we can now derive a target value
for T and analyse the behaviour that the manipulator must
have to reach that target. The manipulator may only start
eating a new house once the house he is currently eating is no
longer available. This means that if he starts eating a house,
he is ‘stuck’ eating said house for a certain amount of time.
We now constrain the manipulator’s possibilities by showing
that by diverging from the literal and slowdown houses he
should be eating according to his preferences, he will commit
to a house for which he has exponentially less utility for
an amount of time which is at least some constant. By
setting α to be large enough, we can ensure that this loss in
utility is irrecuperable. We say the manipulator behaves as
prescribed if he declares preferences which correspond to his
true preferences up to permutations of the literals associated
with one same variable.

Let t1 > 0 be the smallest amount of time the manipula-
tor will eat a new house if he has behaved as prescribed in
all his previous choices. The next lemma shows that t1 is
independent of the instance size.

Lemma 5. t1 ∈ O(1).

Proof. As the algorithm progresses, we may group the
agents in a constant number of groups based on the ex-
tent they have eaten their current house when the manipu-
lator finishes consuming one of his houses and the number
of agents eating that house. Each group is associated with
a value, which corresponds to the amount of time the ma-
nipulator would have to spend if he decided to eat a house
currently being eaten by members of that group. By showing
that the number of these groups is constant, and therefore
so is the number of values, we show that t1 is a constant.
The groups can be characterized by the type of house that
the members are eating. At any point in the algorithm we
say that a literal has been chosen by the manipulator if the
round r is greater than the index i of that literal, r > i. We
say that a literal is untouched by the manipulator for i > r.
The groups are defined as follows: (1) Agents eating houses
being eaten by an agent corresponding to a literal which has
been chosen by the manipulator. (2) Agents eating houses
being eaten by an agent corresponding to a literal which is
the negation of one chosen by the manipulator. (3) Agents
eating houses corresponding to literals untouched by the ma-
nipulator. (4) Agents eating houses being eaten by dummy
manipulators.

At the start of any round i, eating a house from group j
would take gj1 time. The manipulator then finishes eating
the first literal and eating a house from group j would take
gj2 time. After eating the second literal, eating a house from

group j would take gj3 time. Finally the manipulator eats

the slowdown houses and we have corresponding value gj4.

We will now show that the values for gjl are the same for
all rounds. To show this we simply need to make sure that
all the agents stay ‘synchronised’. It takes the manipulator
1
2

units of time to finish the current round (1
3

on the first

literal, 1
9

on the second, and 1
18

on the slowdown house).

Let us now show that it also takes 1
2

units of time for every
other group to get to the same point in the next round. The
exception are the agents eating a house that is also being

eaten by the manipulator or some dummy in that round,
which fall out of sync with their previous group (group 3
or 4) and transit either to group 1 or 2. For groups 1-3,
all these agents pair up and have 1 house per round. It
therefore takes them each 1

2
time to eat it. For group 4, the

dummy manipulators eat a first literal (1
3
) then a second

(1
9
) and finally all 18 manipulators join together and eat the

slowdown houses in the round, which takes them time 1
18

.

This adds up to 9
18

= 1
2
.

Corollary 1. There is value for α ∈ O(1) such that the
manipulator behaves as prescribed.

Lemma 6. In the clause round all agents corresponding
to literals chosen by the manipulator start the round at the
same time as the manipulator, whilst agents corresponding
to negation of the choice of the manipulator are in advance
and start the round 1

9
units of time before the manipulator.

Proof. In Lemma 5 we argued that the agents took the
same amount of time to finish a round. The exception to
this is the last round where the manipulator does not eat
any slowdown houses and therefore finishes the round at the
same time as group 1. Group 2 finishes the round 1

9
before

group 1 since the manipulator spent 1
3

time eating a house

with them whereas he spent 1
9

time eating a house with

agents from group 2. This results in a 4
9
− 3

9
= 1

9
delay

between the two.

The manipulator’s choice corresponds to an assignment
of the variables in the SAT formula. If the manipulator
chose to eat house hrxr before hr¬xr then this corresponds
to setting xr to true (and vice versa). Thus, in each round
the manipulator choses an assignment for a variable in the
formula. The target utility T is the sum of 4

9
of the utility

of hrxr and 1
18

of the utility of the slowdown house hrs (except

in the last round) for each round r and an extra 25
27

.

Lemma 7. In the clause round, the manipulator must eat
the prize house before any other agent to reach the target
utility T .

Lemma 8. F is satisfiable iff the manipulator can reach
the target utility T .

Proof. (⇒) We have set T so that if the manipulator
declared a prescribed preference profile, he will require an
extra 25

27
− ε ·n utility to reach T . If all clauses are satisfied,

at most 2 of the agents eating the houses corresponding to a
clause will be in advance and the manipulator will have 25

27
units of time to eat the prize house alone. The manipulator
will always have 8

9
units of time to eat the prize house alone

while the other literal agents are eating the corresponding
clause houses. In the worst case, 2 agents are in advance for
any clause by 1

9
, units of time, which means that they, along

with the third agent in the clause, will finish their triplet of
clause houses after 8

9
+ 1

27
units of time, at which time all

three agents will begin eating the prize house. This leaves
the manipulator to eat alone for 1

27
extra time thus ensuring

him extra utility ≥ 25
27

.
(⇐) If the truth assignment causes a clause to be unsatis-

fied, the agents corresponding to the negation of the literal
in the clause (and therefore eating the clause houses corre-
sponding to the clause) will all be in advance and will finish

eating the clause houses before the manipulator has eaten
25
27

of the prize house. If all 3 agents are in advance, they will

finish eating the clause houses 24
27

units of time after the ma-
nipulator has started eating the prize house. Therefore for
3
27

of the prize house there are at least 3 extra agents eating

the prize house. Since this makes at least 4 agents eating 3
27

of the prize house, the manipulator will get at most 1
36

in-

stead of the required 1
27

of the prize house after he has eaten

a share of 24
27

. Since the prize house is the only remaining
house with non-negligible utility, and we have made α large
enough, he cannot compensate this loss of utility by getting
more of some other house.

The reduction can be used to show that even checking
whether there exists any report that yields more utility than
the truthful report is NP-hard.

Example 4. We illustrate the reduction in the proof of
Theorem 3. For the following SAT formula, the table below
illustrates the preference profile for the agents in the main
part. Houses not shown in the preferences are never eaten
by the agents and come later in the preference lists.

(x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
c1

(¬x1 ∨ ¬x2 ∨ ¬x3)︸ ︷︷ ︸
c2

(x1 ∨ ¬x2 ∨ x3)︸ ︷︷ ︸
c3

(¬x1 ∨ x2 ∨ ¬x3)︸ ︷︷ ︸
c4

choice round 1 choice round 2 choice round 3 clause round
1 h1

x1 , h
1
¬x1 h1

s h2
x2 , h

2
¬x2 h2

s h3
x3 , h

3
¬x3 hprize

a1x1 h1
x1 h2

x1 h3
x1 h1

c2 , h
2
c2 , h

3
c2 hprize

a2x1 h1
x1 h2

x1 h3
x1 h1

c4 , h
2
c4 , h

3
c4 hprize

a1¬x1 h1
¬x1 h2

¬x1 h3
¬x1 h1

c1 , h
2
c1 , h

3
c1 hprize

a2¬x1 h1
¬x1 h2

¬x1 h3
¬x1 h1

c3 , h
2
c3 , h

3
c3 hprize

a1x2 h1
x2 h2

x2 h3
x2 h1

c2 , h
2
c2 , h

3
c2 hprize

a2x2 h1
x2 h2

x2 h3
x2 h1

c3 , h
2
c3 , h

3
c3 hprize

a1¬x2 h1
¬x2 h2

¬x2 h3
¬x2 h1

c1 , h
2
c1 , h

3
c1 hprize

a2¬x2 h1
¬x2 h2

¬x2 h3
¬x2 h1

c4 , h
2
c4 , h

3
c4 hprize

a1x3 h1
x3 h2

x3 h3
x3 h1

c2 , h
2
c2 , h

3
c2 hprize

a2x3 h1
x3 h2

x3 h3
x3 h1

c4 , h
2
c4 , h

3
c4 hprize

a1¬x3 h1
¬x3 h2

¬x3 h3
¬x3 h1

c1 , h
2
c1 , h

3
c1 hprize

a2¬x3 h1
¬x3 h2

¬x3 h3
¬x3 h1

c3 , h
2
c3 , h

3
c3 hprize

6. CONCLUSIONS
We conducted a detailed computational analysis of strate-

gic aspects of the PS rule. Since PS performs better than
RSD in terms of efficiency and envy-freeness, the only draw-
back it has in comparison with RSD is its manipulability.
We have shown that although PS is manipulable, finding an
optimal manipulation is a complex task for an agent even if
he has complete knowledge about the preferences of other
agents. There is scope to conduct detailed experiments on
the pecentage of instances that are manipulable and the ef-
fects of manipulation. Initial experiments show that ma-
nipulation is often possible and more often decreases social
welfare than increases it, though the overall effect is small.
As the number of houses relative to the number of agents
grows, the opportunities to manipulate increase, maximiz-
ing around 99%. It will be interesting to expand our results
to the extension of PS for indifferences [14]. Finally, study-
ing coalitional manipulations and a deeper analysis of Nash
dynamics are other interesting directions.

Acknowledgments
NICTA is funded by the Australian Government through
the Department of Communications and the Australian Re-
search Council through the ICT Centre of Excellence Pro-
gram. Serge Gaspers is the recipient of an Australian Re-
search Council Discovery Early Career Researcher Award
(project number DE120101761).

REFERENCES
[1] H. Aziz and P. Stursberg. A generalization of proba-

bilistic serial to randomized social choice. In Proceed-
ings of the 28th AAAI Conference on Artificial Intelli-
gence (AAAI), pages 559–565. AAAI Press, 2014.

[2] H. Aziz, F. Brandt, and M. Brill. The computational
complexity of random serial dictatorship. Economics
Letters, 121(3):341–345, 2013.

[3] H. Aziz, F. Brandt, and P. Stursberg. On popular
random assignments. In Proceedings of the 6th In-
ternational Symposium on Algorithmic Game Theory
(SAGT), volume 8146 of Lecture Notes in Computer
Science (LNCS), pages 183–194. Springer-Verlag, 2013.

[4] H. Aziz, S. Gaspers, S. Mackenzie, and T. Walsh. Fair
assignment of indivisible objects under ordinal prefer-
ences. In Proceedings of the 13th International Confer-
ence on Autonomous Agents and Multi-Agent Systems
(AAMAS), pages 1305–1312, 2014.

[5] A. Bogomolnaia and E. J. Heo. Probabilistic assign-
ment of objects: Characterizing the serial rule. Journal
of Economic Theory, 147:2072–2082, 2012.

[6] A. Bogomolnaia and H. Moulin. A new solution to the
random assignment problem. Journal of Economic The-
ory, 100(2):295–328, 2001.

[7] S. Bouveret and J. Lang. Manipulating picking se-
quences. In Proceedings of the 5th International Work-
shop on Computational Social Choice (COMSOC),
2014.

[8] E. Budish, Y.-K. Che, F. Kojima, and P. Milgrom.
Designing random allocation mechanisms: Theory and
applications. American Economic Review, 103(2):585–
623, 2013.

[9] W. J. Cho. Probabilistic assignment: A two-fold ax-
iomatic approach. Mimeo, 2012.

[10] O. Ekici and O. Kesten. An equilibrium analysis of
the probabilistic serial mechanism. Technical report,
Özyeğin University, Istanbul, May 2012.

[11] P. Faliszewski, E. Hemaspaandra, and L. Hemaspaan-
dra. Using complexity to protect elections. Communi-
cations of the ACM, 53(11):74–82, 2010.

[12] P. Gärdenfors. Assignment problem based on ordinal
preferences. Management Science, 20:331–340, 1973.

[13] A. Hylland and R. Zeckhauser. The efficient allocation
of individuals to positions. The Journal of Political
Economy, 87(2):293–314, 1979.

[14] A.-K. Katta and J. Sethuraman. A solution to the ran-
dom assignment problem on the full preference domain.
Journal of Economic Theory, 131(1):231–250, 2006.

[15] D. A. Kohler and R. Chandrasekaran. A class of se-
quential games. Operations Research, 19(2):270–277,
1971.

[16] F. Kojima. Random assignment of multiple indivisible
objects. Mathematical Social Sciences, 57(1):134—142,
2009.

[17] T. Mennle, S. Seuken, M. Weiss, and B. Philipp. The
power of local manipulation strategies in assignment
mechanisms. 2014.

[18] D. Saban and J. Sethuraman. A note on object alloca-
tion under lexicographic preferences. Journal of Math-
ematical Economics, 50:283–289, 2014.

[19] L. J. Schulman and V. V. Vazirani. Allocation of divis-
ible goods under lexicographic preferences. Technical
Report arXiv:1206.4366, arXiv.org, 2012.

[20] O. Yilmaz. The probabilistic serial mechanism with
private endowments. Games and Economic Behavior,
69(2):475–491, 2010.

	Introduction
	Preliminaries
	Manipulability of the PS Rule
	Lexicographic best response
	Expected utility best response
	The Two Agent Case
	The General Case

	Conclusions

