
TRANSIT Routing on Video Game Maps

Leonid Antsfeld
NICTA and UNSW

first.last@nicta.com.au

Daniel Harabor
NICTA and ANU

first.last@nicta.com.au

Philip Kilby
NICTA and ANU

first.last@nicta.com.au

Toby Walsh
NICTA and UNSW

first.last@nicta.com.au

Abstract

TRANSIT (Bast, Funke, and Matijevic 2006) is a fast and
optimal technique for computing shortest path costs in road
networks. It is attractive for its usually modest memory re-
quirements and impressive running times. In this paper we
give a first analysis of TRANSIT routing on a set of pop-
ular grid-based video-game benchmarks taken from the AI
pathfinding literature. We show that in the presence of path
symmetries, which are inherent to most grids but normally
not road networks, TRANSIT is strongly and negatively im-
pacted, both in terms of performance and memory require-
ments. We address this problem by developing a new general
symmetry breaking technique which adds small random ε-
values to edges in the search graph, reducing the size of the
TRANSIT network by up to 4 times while preserving opti-
mality. Using our enhancements TRANSIT achieves up to
four orders of magnitude speed improvement vs. A* search
and uses in many cases only a small (≤ 10MB) or modest
(≤ 50MB) amount of memory. We also compare TRANSIT
with CPDs, a recent and very fast database-driven pathfind-
ing approach. We find the algorithms have complementary
strengths but also identify a class of problems for which
TRANSIT is up to two orders of magnitude faster than CPDs
using a comparable amount of memory.

Introduction
The AI and Game Development communities have devoted
much attention to the study of both exact and approximate
techniques that speed up forward state-space search algo-
rithms such as Dijkstra and A*. These efforts range from: (i)
abstraction-based near-optimal techniques such as (Botea,
Müller, and Schaeffer 2004; Sturtevant 2007) (ii) precom-
putation algorithms for improving heuristic estimates; for
example (Sturtevant et al. 2009; Goldenberg et al. 2010) (iii)
online and offline pruning and symmetry breaking methods
such as (Björnsson and Halldórsson 2006; Pochter, Zohar,
and Rosenschein 2009; Harabor and Grastien 2011) and (iv)
compressing the entire set of All-Pairs data as in (Botea
2011). Almost all involve a speed vs. memory tradeoff and
typically deliver improvements in the range of one or (as in
the case of (Botea 2011)) two orders of magnitude.

In addition to computing shortest paths it is sometimes de-
sirable to efficiently calculate the distance between two units

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

on a map or the distance to an object of interest. Support for
such distance queries is found in popular game libraries, in-
cluding Umbra 3 1, where they are used for optimizing game
logic and driving scripted events. Distance queries may also
be useful for higher level AI; e.g. as described in (Cham-
pandard 2009).

TRANSIT (Bast, Funke, and Matijevic 2006) is a well
known and influential technique that supports both shortest
path and distance queries. Developed in the Algorithmics
community for the purpose of routing on road networks,
TRANSIT can be described as an optimality preserving ab-
straction technique whose primary advantages are typically
modest memory requirements and the ability to eliminate al-
most entirely the need for state-space search. For example,
on the 24 million node US road network, TRANSIT requires
less than 500MB of storage and answers 99% of all distance
queries without any state-space search in just 12 µs 2.

TRANSIT’s performance is due to a natual property of
most road networks: low highway dimension (Abraham et
al. 2010). Intuitively, a graph has low highway dimension
if, for all nodes inside an area of radius r, there are a small
set of vertices that cover all shortest paths of length longer
than k · r, for some value k. It is unclear to what extent this
characteristic applies to grid maps. Previous work (Gold-
berg, Kaplan, and Werneck 2006) has indicated that, for
randomly-weighted grids at least, this property is unlikely
to hold. However a recent study (Sturtevant 2012) suggests
that for certain popular grid benchmarks, particularly those
drawn from video games, the opposite may be true.

Our contribution is as follows: We give a first detailed
evaluation of TRANSIT on popular grid domains from the
AI literature. We find in the first instance that TRANSIT is
strongly and negatively impacted, in terms of running time
but also memory, by uniform-cost path symmetries that are
inherent to many grid-based domains but not road networks.
We address this with a new general technique for break-
ing symmetries using small additive ε-costs to perturb the
weights of edges in the search graph. Our enhancements re-
duce the number of nodes in the TRANSIT network by up
to 4 times and yield running times up to 4 orders of mag-
nitude faster than A* search. We also compare TRANSIT

1http://www.umbrasoftware.com/
2The remaining 1% are short local queries solved using state-

space search that is reported to take 5 milliseconds on average.

Figure 1: Example of the TRANSIT grid; also cells and in-
ner and outer squares.

with CPDs (Botea 2011): a recent and very fast database-
driven pathfinding approach. Our results indicate the two
algorithms have complementary strengths and we suggest
an approach by which they could be combined. However,
we also identify a class of problems to which TRANSIT ap-
pears uniquely well suited. In these cases we report up to
two orders speed improvement vs CPDs using a comparable
amount of memory.

TRANSIT Routing
The TRANSIT algorithm is based on a very simple intuition
inspired from real-life navigation: when traveling between
two locations that are “far away” one must inevitably use
some small set of edges that are common to a great many
shortest paths (highways are a natural example). The end-
points of such edges constitute a set of so-called “transit
nodes” for which the algorithm is named. TRANSIT pro-
ceeds in two phases: (i) an offline precomputation phase and
(ii) an online query phase.

Precomputation
There are two steps to TRANSIT’s precomputation phase.
The first step identifies transit nodes and the second step
builds a database of exact costs. We will describe each step
in turn.

Identifying Transit Nodes TRANSIT begins by dividing
an input map into a grid of equal-sized cells 3. To achieve
this TRANSIT computes a bounding box for the entire map
and divides this box into g×g equal-size cells. LetC denote
such a cell. Further, let I (Inner) and O (Outer) be squares
having C in the center, as depicted in Fig. 1. The size of the
squares C, I and O can be arbitrary without compromising
correctness. Their exact values however will directly impact
factors such as TRANSIT’s preprocessing time, storage re-
quirements and online query times. In our experiments we
report results from different combinations of square sizes.
We also propose some simple heuristics for comparing be-
tween different values for these parameters.

3This grid is distinct from the one representing the input map.

In what follows we will compute shortest paths between
nodes in C and O and look for transit nodes among the end-
points of edges that cross the border of I . Let VC be set of
nodes as follows: for every link that has one of its endpoints
inside C and the other outside C, VC will contain the end-
point inside C. Similarly, define VI and VO by considering
links that cross I and O accordingly. Now, the set of transit
nodes for the cell C is the set of nodes v ∈ VI with the prop-
erty that there exists a shortest path from some node in VC
to some node in VO which passes through v. We associate
every node inside C with the set of transit nodes of C. Next,
we iterate over all cells and similarly identify transit nodes
for every other cell.

Computation and Storage of Distances Once we have
identified all transit nodes we store, for every node on the
map, the shortest distance from this node to all its associ-
ated transit nodes. Recall from the previous section that ev-
ery such node v ∈ V is associated with the set of transit
nodes that were found for its cell. In addition we also com-
pute and store the shortest distance from each transit node to
every other transit node. In an undirected map it is enough
to compute and store costs in only one direction.

Local Search Radius
TRANSIT distinguishes between two types of queries: lo-
cal and global. Two nodes for which horizontal or vertical
distance (as measured in cells) is greater than some local
search radius are considered to be ”far away” and the query
between them is global. We define local search radius to be
equal to the size of the inner square I plus the distance from
I to the outer square O. This definition guarantees that for
each global query two important conditions are satisfied: (i)
the start node src and destination node dst are not inside
the outer squares of each other (ii) their corresponding in-
ner squares do not overlap. Both conditions are necessary to
ensure the TRANSIT algorithm is correct and optimal.

Online Query Phase
For every global query from src to dst we fetch the tran-
sit nodes associated with cells containing src and dst and
choose those two that will give us a minimal cost of the
combined three subpaths: src Tsrc, Tsrc Tdst,
Tdst dst. For all local queries we apply any efficient
search algorithm; A* for example.

Shortest Path Extraction
By performing a series of repeated distance queries TRAN-
SIT is able to efficiently extract actual shortest paths for any
given input map. However, as path extraction is tangential to
the current work, we omit the details of this procedure. The
interested reader is instead encouraged to refer to the origi-
nal work which contains a full description (Bast, Funke, and
Matijevic 2006) of this method.

Symmetry Breaking Using Additive ε-costs
The TRANSIT algorithm does not appear to have been
tested previously on grid-based maps of the type commonly
found in video games. Upon a first attempt we observed

Figure 2: (a) Example of many symmetric shortest paths be-
tween src and v in 4-connected grid network. (b) Example
of shortest paths from src to dst1, dst2 and dst3 that share
many common shortest subpaths from src to v.

the algorithm often has prohibitively large memory require-
ments and relatively long query times. This behavior can be
traced to a property commonly found in grid maps but rarely
in road networks: uniform-cost path symmetries (Harabor
and Grastien 2011). To overcome this difficulty we propose
a novel symmetry breaking technique which we apply dur-
ing preprocessing and which involves the addition of small
positive “noise” to all edge weights. This idea has been
previously suggested in the context of symmetry breaking
for Integer Linear Programming (Margot 2009) but the au-
thors note that such perturbation “does not help much and
can even be counter-productive”. In our case, perturbation
of edge weights significantly reduces the number of transit
nodes and leads to faster preprocessing times, lower mem-
ory requirements and significantly better query times. To
the best of our knowledge, we are the first to successfully
apply such a technique to symmetry breaking in pathfinding
search. Our idea is generally applicable to any kind of search
graph; we exemplify it on the 4-connected grid in Figure 2.

Assume that during TRANSIT’s preprocessing phase we
are calculating shortest paths from the node src to each of
dst1, dst2 and dst3 – which all reside on the border of the
Outer squareO. Notice that each shortest path shares a com-
mon symmetric subpaths src v and crosses the Inner
square I in three different locations. Therefore we identify
T1, T2 and T3 as transit nodes (starred locations in Figure 2).
Our intuition is as follows: if we will add a “small” random
ε-cost to each edge in the grid, there will be (with high prob-
ability)4 only one shortest path to node v, e.g. through T3.
We assume here that src v will appear as a common sub-
path for two or more of dst1, dst2, dst3; although theoreti-
cally this is not guaranteed it occurs very often in practice.

We will now show that choosing ε sufficiently small will

4In practice computer representation of real numbers is finite
and commonly default to 64 bits. Assuming b1 bits are required to
represent the edges costs, and b2 bits required to encode length of
the longest shortest path inG, there are c = 64−b1−b2 bits avail-
able to represent ε-costs in order to preserve optimality. Therefore,
probability of remaining with two different paths of length l with
the same perturbed weight is equivalent to the probability that we
draw 2 sets of size l of random numbers from 2c numbers that sums
up to the same.

preserve optimality of all shortest paths.

Definition 1. Let G = (V,E) be a weighted graph with
integer costs (if they’re not integer, we just scale them up by
a suitable factor so that they are) and let L be the length
(number of links) of the longest shortest path in G. Then we
define ε = 1

L .

Note for all practical purposes there is no need to actually
calculate the length of the longest shortest path L, but we
can use |V | as an upper bound.

Definition 2. LetG(ε) to be an exact copy ofGwith the only
difference that for every edge e in G(ε) we add a random
number from the interval (0, ε).

Lemma 1. For every optimal path πε in G(ε) there exists a
corresponding shortest path π in G that traverses through
exactly the same nodes as πε.

Proof. By contradiction. Let πε in G(ε) be an optimal path
between two nodes src and dst. Let π be a path in G which
travels through the same nodes as πε but is not optimal. This
means there exists another path π′ between src and dst in
G which is strictly shorter than π. Let π′ε be a non-optimal
path in Gε which travels through the same nodes as π′. Now
we notice that the smallest difference between costs of any
two paths in G can be at least 1. From Definition 1 this can
only happen if π′ε is longer than L, which is impossible.

A natural value for L in a 4-connected grid map is ε = 1
L ;

for 8-connected grids we define ε = 2−
√
2

L .

Corollary 1. Number of transit nodes identified in G(ε) is
no greater than in G

Proof. The proof is similar to Lemma 1. We omit it for
brevity.

A direct conclusion from the latest discussion is that dur-
ing the identification of transit nodes stage, we can safely
substituteG withG(ε) and in practice eliminate all symmet-
ric path segments. This will reduce number of transit nodes,
precomputation time and storage space as well as final query
time.

Notice that perturbation of the graph weights in the man-
ner described above is not specific to grid maps or indeed
to any implementation of the TRANSIT algorithm. It is a
general technique for reducing symmetries in pathfinding
search and could be used in other settings: e.g. Dijkstra’s
algorithm.

Efficiently Approximating Network Size
TRANSIT’s performance strongly depends on a set of pre-
processing parameters: (i) the size of each grid cell C and
(ii) sizes of the Inner square I and Outer square O. It is not
clear apriori how to choose those parameters.

In this section we propose a very simple heuristic that we
found useful for choosing those parameters and quickly es-
timating the size of the final preprocessing data as well as
percentage of global vs. local queries. For a given overlay
grid of size m×m, we count the number of edges crossing
each horizontal and vertical line of the grid. This number

Benchmark Map Size States

BG AR0602SR 299× 308 23,314
AR0700SR 320× 320 51,586

DAO orz100d 395× 412 99,626
orz900d 656× 1491 96,603

Mazes-1 maze512-1-0 512× 512 131,071
Random-10 random512-10-0 512× 512 235,900
Rooms-32 32room 000 256× 256 240,671

Table 1: Grid maps used during evaluation. We generate
10K valid problem instances for each map.

gives us an upper bound of the number of transit nodes and
allows us to tune the grid size to match available computing
resources and application requirements. Having selected a
grid size S and sizes of I and O, for every query it is very
easy to verify whether it is global or local: we just need to
check if the two nodes at hand are within local radius of
each other. Using simple random sampling we can build a
good estimate of the percentage of global vs.local queries
and we can adjust our parameter values until we achieve the
desired result. In our experience larger values for S, I and
O normally yield a smaller number of transit nodes and re-
quire less memory overall but also cover a smaller number
of global queries.

Experimental Setup
We evaluate TRANSIT on a subset (Table 1) of Sturtevant’s
popular and freely available 5 grid map benchmarks (Sturte-
vant 2012). These problem sets have appeared extensively
in the literature; for example in (Botea, Müller, and Schaef-
fer 2004; Björnsson and Halldórsson 2006; Sturtevant 2007;
Felner and Sturtevant 2009; Pochter, Zohar, and Rosen-
schein 2009; Goldenberg et al. 2010; Harabor and Grastien
2011). Some, such as BG and DAO, are taken from real
video games. The others, comprising Rooms-32 and Mazes-
1, are synthetic. We selected from each benchmark set maps
we considered to be challenging; either due to the presence
of extensive uniform-cost path symmetries (as discussed in
the preceding section) or due to topographic features which
are likely to induce significant error for standard heuristics
such as Manhattan Distance and Octile Distance (e.g. nar-
row corridors, dead-ends etc).

For each map we generate 10K valid problems from
across all possible problem lengths. Our implementation is
written entirely in Java. We perform all experiments on an
Intel Core2Duo with 8GB RAM. For comparative purposes
we include results for a similar set of instances using Com-
pressed Path Databases (CPD). This algorithm is originally
described in (Botea 2011); its source code was kindly made
available to us by the original author.

Results
We evaluate TRANSIT on each of our input maps and mea-
sure its performance in terms of: number of transit nodes

5http://movingai.com/benchmarks

Map
(* = no diag.) (S, I, O) G Gε

TN QT TN QT
32room 000 (32, 5, 9) 2482 14 1922 8
32room 000* (32, 5, 9) 8858 183 1837 8
AR0602SR (45, 5, 9) 4251 61 3618 38
AR0602SR* (45, 5, 9) 4273 89 2173 14
AR0700SR (40, 5, 9) 10173 205 9035 122
AR0700SR* (40, 5, 9) 8769 268 4724 38
maze512-1-0 (38, 5, 9) 1707 2 1707 2
maze512-1-0* (38, 5, 9) 1707 2 1707 2
orz100d (43, 5, 9) 18852 643 16934 419
orz100d* (43, 5, 9) 16189 844 10192 141
orz900d (57, 5, 9) 4886 105 3732 74
orz900d* (57, 5, 9) 2303 74 1177 29

Table 2: Effect of adding random ε-costs to edge weights. G
is the original graph andGε is the graph with perturbed edge
weights. TN = total transit nodes. QT = global query time
(µs), S = grid size, I = VI cell size, O = VO cell size. Note
that there are two versions of each map: one which allows
diagonal transitions and the other which does not.

per cell (T), database size (DB) and global query time. To
provide a common point of reference we report the latter in
terms of speedup which we define as relative improvement
vs. standard A* search. The exception is Table 2 where we
report times in µs. Database size is always in MB.

Symmetry Reduction
In Table 2 we give results for our ε-based symmetry breaking
approach. We run TRANSIT on two variants of each input
map: one where diagonal transitions are allowed and the
other where they are not. Both are common in games and
often studied in the literature.

In the case where diagonal transitions are disallowed the
addition of random ε-costs to edge-weights has a dramatic
effect, reducing the number of identified transit nodes by
a factor of between 2-4 and reducing global query times by
anywhere between 2.5 times to over one order of magnitude.
When diagonal transitions are allowed (which is always the
case in the remainder of this section) the improvement is
less dramatic but remains strongly positive: we reduce the
number of transit nodes by between 10-25% and improve
global query times by up to a factor of 2.

Comparative Performance
We compare TRANSIT with Compressed Path Databases
(Botea 2011) on each map in our test set 6. CPDs are a
new and highly effective procedure for compressing all-pairs
data. As is often the case with TRANSIT, CPDs can solve
distance queries optimally with no state-space search. Only
a linear number of lookups into a compact database are re-
quired (the number is equal to the individual steps on the
path). By comparison TRANSIT performs a single lookup
operation which compares a up to a quadractic number of

6NB: diagonals are always allowed here.

0 1000 2000 3000 4000

0
1

2
3

4
5

Performance: maze512−1−0

Path Length (# steps)

S
pe

ed
up

 v
s

A
*

(lo
g1

0)

CPD (DB=51M)
TRANSIT 90% GQ (DB=32M T=3 S=38 I=5 O=9)

50 100 150 200 250 300 350

0
1

2
3

4
5

Performance: 32room_000

Path Length (# steps)

S
pe

ed
up

 v
s

A
*

(lo
g1

0)

CPD (DB=5MB)
TRANSIT 96% GQ (DB=10M T=3 S=16 I=1 O=3)

0 100 200 300 400

0
1

2
3

4
5

Performance: AR0700SR

Path Length (# steps)

S
pe

ed
up

 v
s

A
*

(lo
g1

0)

CPD (DB=40M)
TRANSIT 90% GQ (DB=750M T=35 S=40 I=5 O=9)
TRANSIT 60% GQ (DB=46M T=19 S=19 I=5 O=9)
TRANSIT 30% GQ (DB=12M T=13 S=12 I=5 O=9)

0 100 200 300 400

0
1

2
3

4
5

Performance: AR0602SR

Path Length (# steps)

S
pe

ed
up

 v
s

A
*

(lo
g1

0)

CPD (DB=6M)
TRANSIT 90% GQ (DB=123M T=15 S=15 I=5 O=9)
TRANSIT 60% GQ (DB=3M T=4 S=19 I=5 O=9)
TRANSIT 30% GQ (DB=1M T=3 S=13 I=5 O=9)

0 100 200 300 400 500 600

0
1

2
3

4
5

Performance: orz100d

Path Length (# steps)

S
pe

ed
up

 v
s

A
*

(lo
g1

0)

CPD (DB=132M)
TRANSIT 90% GQ (DB=3275M T=50 S=43 I=5 O=9)
TRANSIT 60% GQ (DB=143M T=30 S=22 I=5 O=9)
TRANSIT 30% GQ (DB=30M T=17 S=12 I=5 O=9)

0 100 200 300 400 500

0
1

2
3

4
5

Performance: orz900d

Path Length (# steps)

S
pe

ed
up

 v
s

A
*

(lo
g1

0)

CPD (DB=25M)
TRANSIT 90% GQ (DB=150M T=21 S=57 I=5 O=9)
TRANSIT 60% GQ (DB=17M T=9 S=24 I=5 O=9)
TRANSIT 30% GQ (DB=7M T=5 S=16 I=5 O=9)

Figure 3: Search time speedup (i.e. relative improvement) of TRANSIT and CPDs vs. A*. Note the log10 scale on the y-axis.

local transit nodes. Figure 3 summarises our findings. Note
that values along the y-axis are log10.

We plot in most cases three curves for TRANSIT; each
one represents a different set of preprocessing parameters in-
cluding different abstract grid size (S) and different sizes for
the Inner square I and Outer square O (we measure both of
these in terms of cells in the abstract grid). We also give the
average number of transit nodes (T) for each cell in the ab-
stract graph and the percentage of queries which are global
(GQ) and do not require any state-space search. Remain-
ing local queries are omitted (these paths are usually short
and can be solved using any available search algorithm; for
example Jump Point Search (Harabor and Grastien 2011)).

We observe that on domains containing no symmetries
(Mazes) or only short symmetric path segments (Rooms)
TRANSIT outperforms CPDs by between one and two or-
ders of magnitude (and up to 4 orders improvement over
A* search). TRANSIT requires a moderate amount of stor-
age (32MB and 10MB respectively) and covers 90% of all
queries without search (the remaining 10% are local). CPDs
require 51MB and 5MB respectively and cover all queries.
Notice that we store only a very small number of transit
nodes per cell. We experimented with different preprocess-
ing parameters beyond those given in Figure 3 but were un-
able to reduce this number further for additional speed gains.

The remaining domains, particularly orz100d and
AR0700SR, are characterised by large open areas and long
symmetric path segments that often span several cells in the
abstract grid. These symmeries are not pruned effectively by
TRANSIT using ε-costs. As a consequence, for 90% cover-
age, its performance is dominated by CPDs; both in terms
of time and database size. We ran additional experiments
on these problems using two smaller values for global query
coverage: 60% and 30%. We used a coarser abstract grid
in these cases, having larger (absolute) values for I and O.
60% global query coverage omits all paths of lengths be-
tween 50-125 (depending on the domain). 30% coverage
can omit in some cases all paths up to length 175. In return
for this tradeoff, we see a dramatic reduction in the average
number of access nodes per cell (T) and a corresponding im-
provement in performance: TRANSIT is shown to be up to
an order of magnitude faster than CPDs using 30% global
query coverage and requires substantially less memory; in
some cases just a few MB. For 60% global query coverage,
TRANSIT is comparable with CPDs, both in terms of pefor-
mance and database size.

Discussion
We show in the preceeding section that TRANSIT is able
to compete with and even outperform CPDs for a certain

class of distance query: those where the start and goal are
not in close proximity. Such problems are usually consid-
ered difficult for state-space search algorithms but also for
CPDs because more lookups are required and each lookup
has an associated, and often linear-time, cost. On one hand,
CPDs are attractive because they perform well in practice
and offer complete coverage of all queries without resorting
to any localized state-space search (as is usually the case for
TRANSIT), as well naturally produce an actual path. On the
other hand, CPDs preprocessing time is longer and in case
of any change in the network the precomputation has to be
made again from scratch. By comparison, recent variants of
TRANSIT can incrementally update the precomputed costs
database (Antsfeld and Walsh 2012).

We find that the two methods have quite different
strengths and characteristics and believe them to be orthog-
onal and easily combined. For example: compute a small
TRANSIT database covering queries longer than some min-
imum length. To cover all remaining queries compute a CPD
that contains only paths of lengths less than this minimum:
i.e. during the all-pairs shortest path computation, do not
generate any successors beyond the predefined limit. This
is a much smaller subset of nodes than CPDs usually con-
sider and we expect it will require proportionally less space
to store and potentially less time to perform lookups. Once
preprocessing is complete any given distance query is ei-
ther global for TRANSIT, and we can extract it very fast,
or we invoke TRANSIT’s local query algorithm and extract
the length from our local CPD. Using a similar procedure
we can also very quickly extract the actual shortest path for
any given distance query.

Conclusion
We report the first known results of TRANSIT (Bast, Funke,
and Matijevic 2006) route-finding to grid-based benchmarks
from video games. We find that on such domains the basic
algorithm is impacted, in a strongly negative way, by the
presence of uniform-cost path symmetries. To address this,
we give a new general symmetry breaking technique involv-
ing the random perturbation of edges in the input graph with
small ε-costs. We prove this technique is optimality preserv-
ing and show that it can reduce TRANSIT’s memory over-
head by several factors and improve performance by up to
two orders. We undertake an extensive empirical analysis
of TRANSIT on a range of popular grid-based pathfinding
benchmarks taken from video games and give a first com-
parison of TRANSIT with CPDs (Botea 2011). We find the
two have complementary strengths and identify a class of
problems to which TRANSIT appears better suited: distance
queries involving start and goal locations that are not in close
proximity.

An obvious direction for future work appears to be com-
bining TRANSIT and CPDs. Another possibility is to re-
duce the number of nodes in the TRANSIT network; for
example through the application of recent graph partition-
ing schemes (Delling et al. 2010) or the application of sys-
tematic symmetry breaking in the manner of Jump Point
Search (Harabor and Grastien 2011). Finally we believe it
may be possible to use a subset of the TRANSIT network as

an accurate memory heuristic for A* search.

References
Abraham, I.; Fiat, A.; Goldberg, A. V.; and Werneck, R. F.
2010. Highway dimension, shortest paths, and provably effi-
cient algorithms. In Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’10,
782–793. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics.
Antsfeld, L., and Walsh, T. 2012. Incremental updating
of the transit algorithm. In Vehicle Routing and Logistics
Optimization (VeRoLog).
Bast, H.; Funke, S.; and Matijevic, D. 2006. Transit ultrafast
shortest-path queries with linear-time preprocessing. In In
9th DIMACS Implementation Challenge.
Björnsson, Y., and Halldórsson, K. 2006. Improved heuris-
tics for optimal path-finding on game maps. In AIIDE, 9–14.
Botea, A.; Müller, M.; and Schaeffer, J. 2004. Near optimal
hierarchical path-finding. J. Game Dev. 1(1):7–28.
Botea, A. 2011. Ultra-fast optimal pathfinding without run-
time search. In AIIDE.
Champandard, A. 2009. Modern pathfinding techniques. In
AIGameDev.com.
Delling, D.; Goldberg, A. V.; Razenshteyn, I.; ; and Wer-
neck, R. F. 2010. Graph partitioning with natural cuts. Tech-
nical report, Microsoft.
Felner, A., and Sturtevant, N. R. 2009. Abstraction-based
heuristics with true distance computations. In SARA.
Goldberg, A.; Kaplan, H.; and Werneck, R. F. 2006. Reach
for a*: Efficient point-to-point shortest path algorithms. In
ALENEX.
Goldenberg, M.; Felner, A.; Sturtevant, N.; and Schaeffer, J.
2010. Portal-based true-distance heuristics for path finding.
In SoCS.
Harabor, D., and Grastien, Al. 2011. Online graph pruning
for pathfinding on grid maps. In 25th Conference on Artifi-
cial Intelligence (AAAI-11).
Margot, F. 2009. Symmetry in integer linear programming.
In Jümnger, M.; Liebling, T.; Naddef, D.; Nemhauser, G.;
Pulleyblank, W.; Reinelt, G.; Rinaldi, G.; and Wolsey, L.,
eds., 50 Years of Integer Programming. Springer. 647–681.
Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2009. Using
swamps to improve optimal pathfinding. In AAMAS, 1163–
1164.
Sturtevant, N. R.; Felner, A.; Barrer, M.; Schaeffer, J.; and
Burch, N. 2009. Memory-based heuristics for explicit state
spaces. In IJCAI, 609–614.
Sturtevant, N. R. 2007. Memory-efficient abstractions for
pathfinding. In AIIDE, 31–36.
Sturtevant, N. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games.

