
Artificial Intelligence 57 (1992) 323-389 323
Elsevier

A theory of abstraction

Fausto Giunehiglia
Mechanized Reasoning Group, IRST, 38050 Povo, Trento, Italy;
and DIST, University of Genoa, 16143 Genoa, Italy

Toby Walsh
Department of Artificial Intelligence, University of Edinburgh, 80 South Bridge,
Edinburgh EHI 1HN, Scotland, UK

Received February 1990
Revised April 1992

Abstract

Giunchiglia, F. and T. Walsh, A theory of abstraction, Artificial Intelligence 57 (1992)
323-389.

Informally, abstraction can be described as the process of mapping a representation of a
problem onto a new representation. The aim of this paper is to propose the ~ n i n g s
of a theory of reasoning with abstraction which captures and generalizes most previous
work in the area. The theory allows us to study the properties of abstraction mappings
and provides the foundations for the mechanization of abstraction inside an abstract
proof checker.

Notational conventions

~(x)

p (x) , q (x) , . . .
T , .I_

a , b , . . .
x , y , . . .

t he e m p t y set,

a n e q u i v a l e n c e r e l a t i on ,

t he e q u i v a l e n c e class o f x w i th r e spe c t to ,~,

w e l l - f o r m e d f o r m u l a s (wffs) ,

p r e d i c a t e s ,

t rue a n d false,

cons t an t s ,

v a r i a b l e s ,

Correspondence to: F. Giunchiglia, Mechanized Reasoning Group, IRST, 38050 Povo, Trento,
Italy. E-mail: fausto@irst.it.

0004-3702/92/$ 05.00 t~ 1992 - - Elsevier Science Publishers B.V. All rights reserved

324 k\ Giunchiglia, 72 Walsh

{ a / x }

A , A I

~2 , I21

A , A I , . . .

X , X1

H , H 1

T H (X)
N T H (X)

f : ~'1 ::~ £2

f l
0

C

substitution of a for x,
languages (set of wffs),
axioms (set of wffs), "(-21 ~ AI,
deductive machineries (inference rules),
formal systems, XI = (A l, $21, AI),
proof trees,
the theorems of X,
the nontheorems of X,
an abstraction from X~ to 222,
the mapping function used to abstract wffs,
inverse of the abstraction, f ,
abstraction composition,
preorders on abstractions,
equivalence of abstractions,
containment (of a language within another, of a formal
system within another, . . .) .

1. Motivations and goals

Roughly speaking one can think of abstraction as the process which allows
people to consider what is re levant and to forget a lot of i rre levant details
which would get in the way of what they are trying to do.

The main motivation underlying the development of the work described
in this paper is our belief that

the process of abstraction is used pervasively in common sense
reasoning.

Thus, for instance, while so lv ing the p r o b l e m of how to stack all your clothes
in a suitcase, you will stack the shirts all together as if they were a single
object, and not one by one. While p l a n n i n g to go from Trento to Edinburgh
you will plan the flight Milan-London-Edinburgh and not consider, at least
in the first instance, how to go to Milan airport. If someone is trying to give
you an e x p l a n a t i o n of how to get to Milan airport, he will give you only the
main directions and not tell you of all the little streets you will cross on the
way. While driving your car on the way to the Milan airport you will try to
survive the Italian traffic by behaving ana logous ly to how Italians do. For
instance, even if you are English, you will stay on the right-hand side of the
road. Also you will drive slighly faster than you would do in Edinburgh. If,
after arriving at the Milan airport, you are trying to remember, i.e. to learn,

how you got there, you will remember a very rough outline of the things to
do.

A theory of abstraction 325

The pervasiveness of abstraction-based processes in human reasoning has
been proposed, more or less explicitly, by many researchers in cognitive
science. See for instance the introduction of "The nature of explanation"
of [34, Section 1], and also [33,36,56].

The second motivation at the basis of this work is the fact that

reasoning by abstraction has been used in many subfields of
artificial intelligence,

often radically different both in the goals and in the methodology. His-
torically, the earliest and most common use of abstraction was in problem
solving (see for instance Example 8.3 below and also [41,43,67,75]) and the-
orem proving (see for instance Examples 8.5, 8.8, 8.10, 8.14, 8.27 and 8.29
and also [81]). On the other hand, processes which can be formalized as
abstraction (independently of whether the authors called them so) have
been effectively used in many other areas of artificial intelligence and logic;
for example in the definition of decision procedures (see for instance Exam-
ple 8.12 and also [14,18,47]), in planning (see for instance Examples 8.1,
8.14, and 8.16), learning (see for instance [15,17,38,40,42,52,55]), expla-
nation (see for instance [13]), common sense reasoning (see for instance
Example 8.20), qualitative and model-based reasoning (see for instance
[35,53,78,80]), approximate reasoning (see for instance Examples 8.23
and 8.24), analogy (see for instance [3,5,77]), software and hardware ver-
ification and synthesis (see for instance [1,12,49,50]).

The first main goal of the work described here is to provide the foun-
dations of a theory of abstraction which can be used for modeling and
representing reasoning with abstraction as performed in common sense rea-
soning and by AI computer programs. One of our main interests is therefore
in representation theory. We claim that the theory of abstraction presented
here is not only metaphysically adequate but, also and more important,
epistemologically adequate [48]. In other words, this theory can be used
practically to represent and perform reasoning by abstraction. Among other
things, this allows us to use the proposed framework to explain, analyze, and
compare previous work on abstraction from various subfields of artificial
intelligence.

Our second main goal is to use the theory as the basis for the development
of a general environment for the use of abstraction in automated deduction
(both for proving theorems in various branches of mathematics and logic
and for formalizing common sense reasoning). The most common use of
abstraction in theorem proving (but also in problem solving and planning,
see later) has been to abstract the goal, to prove its abstracted version, and
then to use the structure of the resulting proof to help construct the proof of
the original goal. This relies upon the assumption that the structure of the
abstract proof is "similar" to the structure of the proof of the goal. From now

326 l', Giunchiglia, it, Walsh

on, we will write " a b s t r a c t i o n " to mean this intuitive idea of abstraction,
and to distinguish this notion from the various formal and informal notions
of abstraction used elsewhere in this paper. The abstractions described in
Examples 8.5, 8.8, 8.10, 8.14, 8.27 and 8.29 below, are examples of uses
of a b s t r a c t i o n in theorem proving. However, Wos et al. [81] describe
a mapping which can be formalized as an abstraction which is not an
abs t rac t ion . The work done at the University of Texas at Austin by Woody
Bledsoe and his group [3,5,77] on reasoning by analogy deserves special
mention. In this work, the proof of an example is used as a proof plan to
guide the proof of "analogous" theorems; the information extracted from
the example is very similar to that extracted, in abs t r ac t ions , from the
proof of the abstraction of the goal.

Most of our work on the use of abstraction in theorem proving (but not
all) concentrates on a b s t r a c t i o n and on providing foundations to its use.
Three important observations are in order.

The first is that the most comprehensive and theoretical work on abstrac-
tion done in the past focused on a b s t r a c t i o n and on its use in resolution-
based systems [60,61] (but see also [39,44]).

The second is about the effectiveness of a b s t r a c t i o n in theorem proving.
Abs t rac t ion was originally proposed as a very powerful and general purpose
heuristic for constraining search in automated reasoning and, thus, for
building more efficient theorem provers. We feel that gaining efficiency is
only part of the story. There are other advantages, for instance the ability
to provide high-level explanations, to learn abstract plans and to reason by
analogy. Nevertheless, the issue of the efficiency of a b s t r a c t i o n s is very
important and deserves a deeper analysis. Various papers in the area of
problem solving and planning give experimental and theoretical results that
show that the use of a b s t r a c t i o n s gives savings in efficiency [41,43,54,76].
None of them, on the other hand, shows convincingly or exhaustively enough
that this is always the case. Which it is not. We have done some theoretical
and experimental work in this area. This work is partially described in [25]
and will be the topic of a forthcoming paper. Our experiments have shown
savings in many but not all cases; the theoretical model shows that there are
situations where a b s t r a c t i o n saves time but also situations where it results
in less efficiency. Describing his work on abstraction, Plaisted also notes

that

.. . Although some reductions in search time [using abs t r ac t i on]
were obtained, usually the performance was disappointing
[63, p. 309]

That abstraction is not always going to save us time is a consequence of
many factors. For instance, in order to use any kind of abstraction, one
has to invest time in the construction of the abstract space(s) (that is, in

A theory of abstraction 327

forgetting the details). Moreover, a correct choice of the abstract spaces is
vital [7,8].

All the work done so far is based on the idea of using abstraction (and
in particular abstract ion) automatically; on the other hand we believe that
abstraction provides a much more useful tool if used in guided search. In this
radically new use, abstract ion guides a proof checking system. The idea is
that, since the abstract space ignores irrelevant details, we can interactively
build an abstract proof which is an outline of the original proof. The details
are then integrated back into the outline, again interactively with the help of
the proof checker, in a provably correct way. We call a proof checker which
supports this kind of reasoning, an abstract proof checker. The description
of the details of the implementation of the abstract proof checker is beyond
the goals of this paper; in [26] a preliminary and high-level description of
it are given. Here it is worthwhile noticing that in this way we partially
avoid the problem of inefficiency (the user is in charge of control) and that
this kind of reasoning is used all the time by human mathematicians: they
first build an outline of the proof and then refine this outline by adding
details which have been abstracted away. For instance, Polya [65] proposes
a four-part strategy for solving mathematical problems: understanding the
problem, devising a plan, carrying out this plan, and finally examining the
solution.

As third and last observation, even if we use logic and formal deduction
and our main interests lie in the automation of deduction in logical systems,
the results and the ideas described here are entirely general and can be used
in the study of reasoning with abstraction independently of the particular
formalism used.

2. Structure of the paper

According to the motivations and goals defined in the previous section,

(1) we define a theory of abstraction;

and use it to:

(2) understand the meaning of abstraction;
(3) classify the different types of abstraction;
(4) analyze and classify past work;
(5) investigate the formal properties and the operations which can be

defined on abstractions;
(6) define ways of building abstractions; and
(7) study at a preliminary level how the proof in the abstract space can

be used to help find a proof of the goal.

328 F. Giunchiglia, T. Walsh

The paper can be divided into three parts. In the first part, the basic ideas
are given and the various forms of abstraction are introduced. Section 3
gives an informal characterization of abstraction. Section 4 gives the basic
definitions of the different types of abstractions, Section 5 then explores
how these abstractions can be used in automated reasoning. In Section 6, we
consider the complications that arise from using abstraction with refutation
systems. Finally, further classifications of abstractions are introduced in
Section 7. This covers points (1), (2), (3) and (7) in the above list.

In the second part, consisting of just Section 8, some previous work in
abstraction is presented and discussed. We view this section as one of the
most important contributions of the paper. First, it should convince the
reader that our proposed framework is very powerful and can capture most
previous work in abstraction. Second, it allows us to give a unified view
of work from many different areas carried out with many different aims.
Finally, concentrating on the work in theorem proving, the topic of the final
part of the paper, it allows us to point out the strengths and the weaknesses
of various proposed abstractions. This covers point (4) of the above list.

To finish, the last part of the paper describes the main body of the theory
of abstraction under development. In Section 9, we explore how abstractions
affect consistency and discuss the problem of inconsistent abstract spaces
when a consistent space maps onto an inconsistent abstract space. This
problem cannot be avoided; once we commit ourselves to certain very
common and useful types of abstraction, it is always possible to find a set of
axioms such that the abstract space is inconsistent even though the original
space is consistent. Section 10 defines the basic operations which can be
performed on abstractions. In Section 11 we show how to order abstractions;
in Section 12 we consider the use of hierarchies of abstractions and suggest
a way that an ordered hierarchy of abstractions can be used to tackle the
problem of inconsistent abstract spaces. Finally, in Section 13 we suggest
a general methodology for building abstractions, and end with a section
devoted to some concluding remarks and hints about possible extensions of
the theory. This covers points (5) and (6) in the list above.

3. What is an abstraction?

Some of the synonyms of the word "abstract" are "brief", "synopsis" and
"sketch", some of the synonyms of the verb "to abstract" are "to detach" and,
also, "to separate". The intuition which comes out of this list of synonyms
is that the process of abstraction is related to the process of separating,
extracting from a representation an "abstract" representation which consists
of a brief sketch of the original representation.

A theory of abstraction 329

The work described in this paper concentrates on the use of abstraction
in reasoning. Reasoning is about solving problems. We therefore informally
define abstraction as:

(1) The process o f mapping a representation o f a problem, called (follow-
ing historical convention [69]) the "ground" representation, onto a
new representation, called the "abstract" representation, which:

(2) helps deal with the problem in the original search space by preserving
certain desirable properties and

(3) is simpler to handle as it is constructed from the ground representa-
tion by "throwing away details".

The following sections of the first part of this paper will be devoted to
the formalization of the informal definition given above. Notice that we
do not formally study the requirement for simplicity (property (3)) or any
more global requirement for increased efficiency (see the description of the
structure of the paper in the previous section). This would require some
complexity arguments which will be discussed in subsequent papers. Some
work in this direction can be found in [25,45].

4. Abstractions...

. . . as mappings . . .

Informally, we have described abstraction as a mapping between repre-
sentations of a problem. Thus, in giving a theory of abstraction, we begin
with a very general method for describing representations of a problem; as
is common in AI, we shall use formal systems for this purpose. Following
Kleene [37], a formal system is a formal description of a theory. A formal
system 27 can be (minimally) described as a set of formulas O (which rep-
resent the statements of the theory) written in a language A (which provides
the basic tools for writing formulas); in other words 27 = (A, O). Usually
the language A is defined by the alphabet, the set of well-formed terms, and
the set of weU-formed formulas (wffs from now on). To simplify matters we
will forget about the alphabet and well-formed terms and just say that the
language is the set of wffs. The alphabet and well-formed terms are given
implicitly by providing the set of wffs. Thus O c A. An abstraction is then
simply a mapping between formal systems.

Definition 4.1 (Abstraction). An abstraction, written f : 271 =~ 272, is a pair
of formal systems (2"1,272) with languages AI and A 2 respectively and an
effective total function fa : AI --* A2.

330 k: Giunchiglia, 7~ Walsh

We call ~v 1 the ground space and X2 the abstract space. Analogously
we use the words "ground" and "abstract" to label objects of the ground
and abstract spaces (we talk of e.g. ground and abstract formulas, ground
and abstract terms, ground and abstract goals), fA is called the mapping
function; where there is no ambiguity, we write f for .f.~. Occasionally we
will also extend the mapping function in the obvious way to a mapping
on sets of wffs. We write f : Xl ~ Z2 to mean that (XI, 222) plus ./i~ is an
abstraction. " ~ " is not to be read as a "function"; an abstraction is simply
a pair of formal systems, each being a representation of a problem (and
not the problem itself), and a mapping f l between them. This captures
property (1) of the intuitive definition of abstraction.

We require that the mapping function be total since we want to be able
computationally to "translate" any wff in X~ into 222- We require it to be
computable since, from an implementational point of view this is the only
interesting case and, from a epistemological point of view, we are interested
only in those aspects of reasoning which can be actually mechanized.

. . . preserving certain properties . . .

The next step is to try to capture property (2) of our informal definition,
that of preserving certain desirable properties. For this task, since our main
interests are in automated reasoning, a more restrictive but useful notion of
formal system is that of axiomatic formal system.

Definition 4.2 (Axiomatic formal system). A formal system X is a triple
(A,A,£2), where A is the language, £2 is the set of axioms and A is the
deductive machinery of N.

Note that £2 c_ A. £2 can sometime be the empty set (e.g. in natural
deduction). We say that £2 = ~r~Logi c (J £2Theor, where £2Logic is the set of logical
axioms and ~"~Theor is the set of theoretic axioms. The deductive machinery is
a set of inference rules; this can also be an empty set (e.g., in nondeductive
databases). As with the axioms, we say that A = ALogic U ATheor, where Z~Logic
is the set of logical inference rules and ATheo r is the set of theoretic inference
rules. If XI = (A1, ~'~1, ZJl) and X2 = (A2, ~'-~2, Z~2) are two formal systems, we
write XI c_ X2 to indicate that Al C A2, £21 c_ £22, and AI c_ A2. Throughout
this paper we will use standard natural deduction (ND) conventions and
terminology [66]. Whenever the deductive machinery can be arbitrarily
chosen, proofs will be given assuming that A is (a subset of) the ND rules
described in [66] (not in the sequent form). From now on, when we speak
of formal systems we will mean axiomatic formal systems. In some places
(e.g. [51]) the deductive machinery is defined as the pair of axioms and
inference rules. Our definition of formal system as a triple better fits our

A theory of abstraction 331

interests in mechanizing logic. For the sake of simplicity, unless we explicitly
state to the contrary,

we restrict ourselves to logical languages and to first-order formal
systems.

That is, we will restrict ourselves to systems where ~I.ogic and ALogic are
complete for first-order logic, and among them to those where ~.x~gic =

(which implies /2 = /2Theor) and Z~Th¢o r = ~ (which implies A = JLo~c). We
sometimes lift the condition of completeness of the deductive machinery, for
instance to consider propositional logic or incomplete deductive machineries.
The restrictions on the axioms and on the deductive machinery is not very
important and it is easy to lift; it would cause complications only in few
places.

Briefly, some conventions and terminology. The set of theorems of 27,
written TH(27), is the minimal set of wits that contains the axioms and is
closed under the inference rules. 27 is syntactically incomplete if there is a
formula a such that a ~ TH(27) and -~a ~ TH(27). We call it syntactically
complete otherwise.

With axiomatic systems, especially in theorem proving, a central notion
is that of provability. We are therefore interested in how an abstraction
affects provability; that is, when O, the set of statements of the theory,
is TH(27). This notion will play an central role in the rest of the paper.
Preserving provability is actually only a very weak property to demand of an
abstraction. There are other desirable properties which must be captured; for
instance a b s t r a c t i o n s are used on the basis that the structure of the abstract
proof is "similar" to the structure of the ground proof. The important
point is that some very interesting results can be proved, even with such
weak assumptions as the preservation of provability. Our next step towards
capturing property (2), that of mappings preserving desirable properties, is
therefore a classification of abstractions by their effect on provability:

Definition 4.3 (T* abstractions). An abstraction f : "~1 ~ ~V'2 is said to be a
(1) TC abstraction iff, for any wff a, a E TH(271) iff fa (a) E TH(Z2);
(2) TD abstraction iff, for any wff a, if J~(a) E TH(272) then a E

TH(271);
(3) Tlabstraction iff, for any wffa , i r a E TH(271) then fa (a) E TH(272).

(Here "T" stands for "theorem", "C" for "constant", "D" for "decreasing",
and "I" for "increasing".) Note that, because of the totality of fa, fa (a) is
defined for any a. Note also that a TC abstraction is both a TD abstraction
and a TI abstraction. We write that an abstraction is a T* abstraction iff it
is a TC abstraction or a TD abstraction or a TI abstraction.

332 F. Giunchiglia, 7: Walsh

' AI

-i TH(ZI) ~ - - i TH (X 2)

Fig. 1. TC abstractions. This is a graphical representation of a TC abstraction. In this (and the
following figures) the two boxes represent the sets of wffs belonging to the two languages. The
dashed lines show the behaviour of the abstraction mapping. If no dashed lines are shown there
is no restriction on how a subset in the ground language, A 1, is mapped into the respective
subset in the abstract language, A 2. In this figure, for example, all those wffs which are theorems

of Xl map onto wffs which are theorems of X2.

We have characterized the statements of the theory, O, in terms of
theoremhood. A more general concept is that of deducibility. By deducibility
relation we mean here a set of ordered pairs; the first element of a pair is
a subset of the language while the second element is a wff which can be
deduced by assuming the members of the first element. Theoremhood is a
particular case of deducibility; a wff is a theorem iff it is deducible from
the empty set. Even if the paper deals with provability, most of the analysis
could have been given for deducibility. We shall write F ~-z a to mean that

is deducible (derivable) in X from the set of wffs F. Thus ~-z (~ is an
alternative notation for ~ E TH(X) . The following theorem makes precise
the conditions under which provability preserving abstractions also preserve
deducibility.

Theorem 4.4. I f f • X1 ~ X2 is a T* abstraction, such that ,f (a ~ fl) =
f(c~) ~ f (f l) , and the deduction theorem holds in both X1 and X2, then f
also preserves deducibility.

Proof. We only consider TI abstractions. The other proofs are entirely
analogous. If c~ l , . , . , a , F-z, fl, then, from the deduction theorem in Xt,
t - X I 0~1 ~ " ' " --+ (-~n ~ f t . Since f is TI, F-x2 . f (~l ~ ~,~ -~ fl). But f is
implication preserving. Thus F-z2 f (c~1) f ((~n) ~ f (fl). By modus

ponens, f ((~ l) f (c~,) F-z2 f (f l) . []

In the remainder of the paper we shall restrict ourselves to abstrac-
tions which preserve provability; this emphasis has historical motivations,
grounded in our interest in theorem proving. However, subject to the hy-
potheses of the above theorem, everything would also hold for deducibility.

We conclude this section with some more observations about provability
preserving abstractions.

AI

A theory of abstraction

A2

TH(!I) ~ i ~" ~ TH(~ 2)

333

Fig. 2. TD abstractions.

TC abstractions map all the members of TH(I1) onto members of
TH(I2) and these are the only mcmbcrs of TH(I2) . This is represented
graphically in Fig. 1. For instance Herbrand's theorem suggests a TC ab-
straction which maps a first-order theory onto a propositional theory [30]
(see Example 8.27). As another example, any mapping which maps into a
new theory where logically equivalent formulas arc collapsed onto a single
formula can bc described as a TC abstraction. TC abstractions are used in
decision theory under the name of reduction methods. The aim is to prove
the dccidability/undecidability of the validity problem for certain subclasses
of the first-order calculus. Having found a subclass of formula whose decid-
ability is known, we show that there is a proof in the original formal system
if and only if there is a proof in the new class. Many of these techniques
are based on Herbrand's theorem (e.g. [19]).

In TD abstractions, only a subset of the members of TH (I l) arc mapped
onto TH(I2) ; this subset generates all the members of TH(I2) . This is
represented graphically in Fig. 2. A trivial example of a TD abstraction is
the deletion of axioms and/or inference rules. TD abstractions have been
used to implement derived inference rules; this is discussed in Example 8.12.
An analogous approach was also taken by Wos et al. [81] (as described in
[6]).

In TI abstractions all the members of TH(I1) are mapped onto a subset
of TH(I2) . This is represented graphically in Fig. 3. In many ways, TI
abstractions are dual to TD abstractions. Trivial examples of TI abstraction
are adding some axioms or inference rules (such as induction), producing
a nonconservativc extension of a theory and so on.

... concerning abstractions

Most abstractions used in the past turn out to be TI (that is, TI ab-
stractions). Indeed, because of the requirement that the abstract proof be
"similar" to the ground proof, abs t rac t ions often satisfy much stronger
requirements than just the preservation of provability. However, some map-
pings previously used in abstract theorem proving are not TI abstractions.
In the attempt to capture the class of abstractions, why should we use

334 F. Giunchiglia, T. Walsh

Ai
[i]~'1 _! i

Fig. 3. TI abstractions.

TI abstractions and not TD or TC abstractions? Tenenberg, for instance,
proposes TD abstractions (and others with similar properties) as a way to
avoid the problem of inconsistent abstract spaces [73,74]. This is discussed
in more detail in Example 8.16.

We don't often use TC abstractions as they are, in general, too strong;
they do not give "simpler" proofs except in very special and limited cases.
Of course this does not mean that they are useless. They are very useful, for
instance, in changing the representation of a problem. However, they can
only reduce the complexity in a limited way. For instance, if f : X1 ~ 2;2 is
a TC abstraction with a recursive mapping function and 221 is undecidable
then, since the mapping function is computable, .~2 cannot be decidable.
(If we had allowed nonrecursive abstraction mappings, an example of a
nonrecursive TC abstraction with undecidable ground space and decidable
abstract space would be one where any theorem of X1 is mapped onto T
and anything else onto ±.)

We don't use TD abstractions which are not TC as completeness is lost--
there is at least one theorem of the ground space whose abstraction is not
a theorem of the abstract space. In applications where the abstract space is
used to help find a proof in the ground space, we consider completeness to
be a property you do not want to lose. We do not wish to take a great stand
on the issue of completeness versus efficiency. We simply mean that there is
no a priori reason for losing completeness, and even fewer reasons for losing
it in an uncontrolled fashion. Of course TD abstractions can be used in other
ways; for instance they can be used to implement derived inference rules but
in these cases, to retain completeness, the overall strategy of the theorem
prover should be different and not inside the abs t r ac t ion tradition. Thus
we claim that certain subclasses of

TI abstractions are the appropriate formalization for abs t r ac t i on

and that these subclasses are captured and formalized inside this framework.
There are a few abs t r ac t ions which do not preserve provability in any

direction. Two interesting examples are the abstraction used in "gazing"
[64], a heuristic which generalizes the peeking heuristic used in the UT
theorem prover [4], and the abstraction used in its further refinement,

A theory of abstraction 335

called "grazing" [70]. Gazing has proved to be reasonably successful in
driving the unfolding of definitions in set theory. The idea underlying both
gazing and grazing is that definitions should be unfolded in the ground spacc
exactly in the same order as they are unfolded in the abstract space(s).

One criticism that can be made is that having to preserve provability
may prevent us from capturing certain interesting applications. This may
be true, but not of abstractions. For instance in [23] we have hinted how
gazing could be modified to become complete, that is TI, without losing
the original intuition. Outside the abstractions tradition, an interesting
example of mapping in general not preserving provability in any direction is
"analogy". When reasoning by analogy, people require very loose connections
between the two theories, definitely nothing as strong as T* abstractions. It
is the authors' opinion that this kind of reasoning can still be captured and
formalized in our framework although no in-depth research has yet been
carried out. A natural development of the current theory is to generalize all
the concepts introduced in this section to range over parts of the formal
systems using syntactic conditions (on the language, on the axioms, on the
proof tree, etc.). For example, we might define an abstraction as being TI
with respect to some subset of the language.

5. Using abstractions

Most previous work on abstract ion has concentrated on just one way of
using the abstract space to help find a proof in the ground space; that is,
we build an abstract proof and then map it back onto a proof in the ground
space. However, there are many more ways we could use abstractions. In
this section, we shall not consider TC abstractions since, as we argued above,
they are too strong and do not give simpler theories.

The different uses of abstractions can be divided along two main dimen-
sions:

• In the first dimension we distinguish between deductive uses and ab-
ductive uses. With deductive uses the fact that a property of f (a)
holds in the abstract space (e.g. f (a) E TH(/72), f(c~) ~ TH(Z2)) is
a guarantee that the corresponding property of a holds in the ground
space (e.g. ~ E T H (/ I) , a ~ T H (/ I)) . With abductive uses the fact
that a property o f f (a) holds in the abstract space is only a suggestion,
not a guarantee, that the dual property of c~ holds in the ground space.

• In the second dimension, we have positive uses and negative uses.
With positive uses we have a suggestion or a guarantee (depending
on whether we are using abstraction deductively or abductively) that
a wff c~ is a theorem of the ground space, that is a E TH (/ t) . With

336 F. Giunchiglia, T. VCalsh

negative uses we have a suggestion or a guarantee that a wff is not a
theorem and, under the hypotheses of syntactic completeness, that its
negation is a theorem, that is ~c~ E TH(X~).

The deductive use of abstractions gives rise to "sound" theorem proving
strategies since all the suggestions such strategies make are guaranteed to
be true, while the abductive use of abstractions yields "complete" theorem
proving strategies since such strategies will eventually allow us to find all
theorems. It is only TC abstractions that will give us both sound and
complete theorem proving strategies.

The following table summarizes the different uses of the classes of ab-
stractions introduced so far.

deductive abductive

positive TD T1
negative TI TD

Let us start with the deductive use of TI abstractions to give negative
information. For TI abstractions, if f (~t) ~ TH(X2) then it follows that
ct ~ TH(271). That is, if we cannot prove the abstraction of a wff then it
definitely isn't a theorem in the ground space. This kind of information can
be used to prune unprovable (sub)goals from the search space. Gelernter
in his geometry theorem prover [16], and Reiter in an incomplete ND
theorem prover [68] used (semantic) abstractions in this way. When 275 is
syntactically complete (where ~ ~ TH(X5) implies ~c~ E TH(XI)), we can
also deduce positive information as f (~) ~ TH (272) implies -~t E TH (S~).
Additionally, if 271 contains the rule of double negation elimination we can
even deduce un-negated wffs since if f(-~ct) ~ TH(X2) then (t E TH(2;I).
Thus, to prove a wff ~, one interesting strategy is to attempt to prove that
~ f (-,c~)is a theorem in 272; theorem proving in X2 should be easier than in
25 so we can save effort. Unfortunately this strategy, though it will tell us if

is a theorem of Xs, will not directly give us a proof. Another disadvantage
is that such a strategy is not complete; it will not allow us to prove all
theorems of the ground space.

For TD abstractions, if f ((t) E TH(X2) then it follows that (~ ~ TH(X~).
That is, if we can prove the abstraction of a wff is a theorem in the
abstract space then it is definitely a theorem in the ground space. This is the
deductive use of TD abstractions to provide positive information. Often,
the proof that f : S1 =* 272 is a TD abstraction shows, given a proof in X2
of an arbitrary wff f (~) , how you can actually construct a proof of c~ in
~5. This strategy was used with success by Wos et al. [81] in an automatic
theorem prover for group theory. Their TD abstraction replaced functions

A theory of abstraction 337

by predicates; however, theorems that required the existence or uniqueness
properties of functions could not be proved by their theorem prover; this is
an example of the incompleteness of a theorem proving strategy based upon
a deductive use of abstraction.

Let us now consider the abductive use of TI abstractions to suggest positive
information. With TI abstractions which are not TC there will be some wffs
a for which f (a) 6 TH (272) but for which a ~ TH(271). However, provided
the abstraction does not throw away too much information the implication
that a 6 TH(271) implies f (a) E TH (272) will reverse in many cases. Thus,
if we can prove that f (a) e TH(272) then it is likely that a ~ TH(271). TI
abstractions can not only be used to suggest positive facts about 271; they can
also suggest proof steps. There is often a great similarity in shape between
a proof of a wff in 271 and a proof of the abstraction of the wff in 272. This
is especially true of abstractions which have the same deductive machinery
(or a subset of it) in the ground and abstract spaces. The steps of a proof
in 272 can thus be used to guide theorem proving in 271. The proof steps
provide "islands" to get to; we move between these islands by filling in the
details or applying the inference rules thrown away by the abstraction. This
strategy saves us effort as it "divides and conquers" the problem solving. It
is perhaps the most common use of abstraction and it is how abs t rac t ions
have been used in the past.

Lastly, we conclude with the abductive use of TD abstractions to suggest
negative information. With TD abstractions, if f (a) ~ TH(272) then it is
likely that a ~ TH(271). This information could be used, for example, to
suggest (sub)goals to prune from the search space. More weakly, it might
just suggest which subgoals to delay attempting to prove. For abstractions
in which 271 is syntactically complete, TD abstractions can also provide
positive information as f(-- ,a) ~ TH(272) suggests that ~ E TH(Z1). It is
not clear how useful this way of using TD abstractions can be. We have
found no references to applications which use TD abstractions in this way.

6. Refutation systems

In Definition 4.3, we classified abstractions by the relationship between
provability in the ground space and provability in the abstract space. This
is appropriate when the deductive machinery of both spaces is used to
generate theorems. However, there are formal systems whose deductive
machinery determines inconsistency, for instance resolution-based systems.
We call the systems of the first type, provability systems, those of the second
type, refutation systems. (We say that a formal system, 27, is absolutely
inconsistent iff, for any wff a, a 6 TH(27), and inconsistent iff there
exists a wff a such that a e TH(27) and -,a e TH(27). For an absolutely

338 F. Giunchiglia, T. l+alsh

inconsistent system, we do not require that negation be part of the language.
However, when negation is part of the language and we are in a classical first-
order logic, an absolutely inconsistent system is also inconsistent and vice
versa.) In the cases when the deductive machinery determines inconsistency,
abstractions can be better classified on how an (absolutely) inconsistent
formal system is mapped onto an (absolutely) inconsistent formal system.

As pointed out at the very beginning, a formal system may be thought of as
consisting of a language, A, and a subset of the language, O, which represents
the statements of the theory. Thus, another very important example of ~9
is when O = N T H (S) , where N T H (S) is the set of the wffs ~ which,
if added as an assumption to S, make the resulting system absolutely
inconsistent. Notice that assumptions are not axioms, the difference being in
the case of formulas which are open (if they are closed formulas, assumptions
behave like axioms). For instance, assumptions, differently from axioms,
in ND may prevent the application of "forall" introduction and "exists"
elimination [66] while in Hilbert calculi they are such that the deduction
theorem does not hold [51]. In resolution the distinction between axioms
and assumptions is irrelevant. As N T H (X) is used only when S is a
refutation system, we will simply say that a wff is added to the axioms
leaving implicit the distinction between axioms and assumptions. Given a
formal system 27, we call the elements of NTH(27) the nontheorems of
27. TH(27) and N T H (X) are obviously related. For instance in classical
first-order logics, c~ c N T H (X) iff ~ E TH(X) ; X is inconsistent iff
TH(27) = NTH(27) = As, or iff T H (S) N N T H (S) ~ ~; outside T H (S)
and N T H (S) but inside the language are all those formulas ~ such that
neither c~ nor -~c~ belongs to TH (S) , if a theory is syntactically complete no
formulas are outside the union of TH(27) and NTH(27).

We will now classify abstractions on the relationship between NTH(S1)
in the ground space and NTH(X2) in the abstract space. Entirely dual to
Definition 4.3, we give a definition of the following inconsistency preserving

abstractions:

Definition 6.1 (NT* abstractions). An abstraction f : Xl ~ S2 is said to be

an
(1) NTC abstraction iff, for any wff c~, c~ 6 NTH(XI) iff f~(c~)

NTH(Z2) ;
(2) NTD abstraction iff, for any wff c~, if fA(~) E NTH(X2) then ~

NTH (S~);
(3) NTI abstraction iff, for any wff c~, if c~ ~ NTH(XI) then fA(~)

NTH (•2).

(Here "N" stands for "non".) Dually to T* abstractions, any NTC abstrac-

A!

TH(X I) (~

NTH(~rl) ~ _

A theory of abstraction

TH(X 2)

NTH(X 2)

339

Fig. 4. NTC abstractions.

A 1

TH(XI) ()

NTH(XI) ((~) i

A2

@
©

TH(X 2)

NTH(~;2)

Fig. 5. NTD abstractions.

tion is both an NTD abstraction and an NTI abstraction.
Some more notational and naming conventions. An abstraction is said to

be an NT* abstraction iff it is an NTC abstraction or an NTD abstraction or
an NTI abstraction. It is said to be a TC* abstraction iff it is a TC abstraction
or an NTC abstraction, TD* abstraction iff it is a TD abstraction or an NTD
abstraction, TI* abstraction iff it is a TI abstraction or an NTI abstraction.
When an abstraction is known to fall in more than one of the above classes
we write all of them in the prefix. Thus for instance a TC/NTC abstraction
is an abstraction which is both a TC and an N T C . We also write TH* (Z)
to mean NTH (Z) or TH (Z). Statements made involving names containing
"*" (i.e. T* abstraction, TC* abstraction, etc.) can be read by substituting
in all the valid ways the same letter (i.e. "C", "D", or "I" in first case; "N"
or nothing in the second) uniformly inside the sentence.

We have introduced NT* abstractions with the goal of using them when
the deductive machinery works by refutation. In such cases, we claim that
they play the same role that T* abstractions play in provability systems. This
claim deserves greater attention. After all, even when we use a refutation
system we are still interested in provability; we should therefore expect to
be still interested in T* abstractions.

This apparent contradiction can be explained as follows. Everything de-
pends on how the user interacts with the theorem prover. The basic idea
underlying refutation systems is that a wff is a theorem if adding its negation
to the axioms gives an inconsistent formal system. In some (most?) cases,
the goal is input and the system itself automatically negates it before adding
it to the set of axioms. If this also happens in the abstract space, negation

3 4 0 F. Giunchiglia, T. Walsh

A 1

T H (X 1)

N T H (X 1)

t

I
FA 2

@
©

i
4

T H (S 2) !

I

N T H (X 2)

J

Fig. 6. N T I a b s t r a c t i o n s .

is not abstracted, the "inference engine" (resolution plus the negation of
the goal) works on provability, and T* abstractions are the appropriate
abstractions to use.

Before we can formalize this argument further, we need to define a very
useful notion, that of a formal system with negation. We will use this notion
to show under what assumptions a T* abstraction can be used in a refutation
system.

D e f i n i t i o n 6.2 (System with negation). X is a formal system with negation
iff there is the unary connective "-,", called negation, such that, for any
expression a,

(1) a is a wff iff -,a is a wff;
(2) a E T H (X) iff -~a E N T H (X) ;
(3) -~a E T H (X) i f f a E N T H (X) .

Three observations are worthwhile. First, condition (2) means (in Prawitz'
ND terms) that the system must contain the "reasoning by contradiction"
inference rule and

O~ -nOl

A_

A system with negation is thus inconsistent iff it is absolutely inconsistent.
As almost all the systems of interest are with negation and what is relevant in
this context is "absolute consistency/inconsistency", in the following we will
write "inconsistency/consistency" to mean "absolute inconsistency/absolute
consistency". Second, any system which has an introduction rule correspond-
ing to every elimination rule, as is usually the case, satisfies conditions (1)
and (2) and has classical negation. In this case condition (2) yields con-
dition (3) which holds intuitionistically. For many proofs in the paper
intuitionistic negation is sufficient. Third, all the most common first-order
systems, that is Hilbert systems, all the ND calculi, and resolution, are sys-
tems with negation. Notice that if we had defined N T H (X) as the set of
those wffs which, if added as axioms (instead of as assumptions), make X
inconsistent, we would have failed to capture at least Hilbert systems and

A theory of abstraction 341

ND (the trivial counterexample being a system 27 where p (a) is an axiom;
we would have in fact that -~p(x) ~ NTH(27) with p (x) ¢. TH(L')).

The notion of system of negation allows us to define a set of cases where
the different forms of abstractions coincide. The following theorem holds.

Theorem 6.3. I f f is an abstraction f : 271 ~ 272 and 271 and 272 are two
syntactically complete systems with negation, then f is a NTI abstraction
(TI abstraction) i f f it is a TD abstraction (NTD abstraction).

Proof. Let's consider NTI abstractions and TD abstractions and only one
direction. The other proofs are entirely dual.

(=~) In an NTI abstraction (see Lemma 6.5 below), i f -~f (p) f[TH(272)
then -~p ~ TH(271). But, from the completeness of 271, we have-,p ~ TH(271)
iff p e TH (271). Similarly, from the completeness of 272, we have - , f (p)
TH(272) iff f (p) 6 TH(272). Thus, f (p) E TH(272) implies p E TH(271).
But this is exactly the definition of TD abstraction. []

The intuition is that, as the abstract space is complete, for instance with
TD abstractions, decreasing the theorems corresponds to increasing the
nontheorems. An obvious corollary is that, if f : 271 =~ 272 is an abstraction
and 27t and 272 are syntactically complete then f is a TC abstraction iff it is a
NTC abstraction. Theorem 6.3 is not very relevant as almost all the theories
we consider are incomplete, that is they are such that a ¢ TH(27) does not
imply -,a 6 TH (27). Generalizing to incomplete theories causes Theorem 6.3
to fail. Various situations may happen in this case. For example, an NTI
abstraction with the abstract space, 272, complete and the ground space,
271, incomplete will map both the members of TH(271) and the formulas
which neither belong to TH(271) nor to NTH(271) onto TH(272) while a TD
abstraction will map into NTH(272) both the members of NTH(271) and
the formulas which neither belong to TH(271) nor to NTH(271).

The question then remains under which conditions T* abstractions can
be used in refutation systems. Let us consider the following lemma.

Lemma 6.4. I f Z1 and S2 are two formal systems with negation and i f
f:271 m272 i sa

• TC abstraction then, for any a, -~a 6 NTH (271) i f f -~f (a) ~ NTH (272);
• TD abstraction then, for any a, i f - ~ f (a) E NTH(272) then -~a E

NTH (271);
• TI abstraction then, for any a, i f ~a 6 NTH(271), then -~f(a) 6

NTH (272).

Thus, provided both the ground and abstract spaces are systems with
negation, we can use T* abstractions with refutation systems. For instance,

342 F, Giunchiglia, T. Walsh

with a TI abstraction if a is a theorem in the ground space then the negation
of its abstraction, -~f (a) , will make a refutation theorem prover stop with
success (that is, by generating ±).

T* abstractions can be used in refutation theorem proving as
long as the wff added to the axioms of the abstract space is the
negation of the abstraction of the wff whose negation is added to
the axioms of the ground space.

In formulas, instead of adding f (~a) to the axioms of the abstract space,
we must add -~f (a). However, when the system does not negate the goal,
the "inference engine" uses refutation, and f (~c~) is added to the axioms
of the abstract space, only NT* abstractions can be used.

So far we have discussed the use of T* abstractions in refutation-based
theorem proving. The dual question also arises, namely can NT* abstractions
be used with a provability system? Lemma 6.4 holds dually, that is:

1.emma 6.5. I f X1 and X2 are two formal systems with negation, then i f

f : Sl ~ X2 is a
• NTC abstraction then, Jot any a, ~a c TH(SI) i f f ~ f (a) E TH(S2);
• NTD abstraction then, jor any ~, i f - ~ f (,) E TH(S2) then -~c~ E

TH (Sl);
• NTI abstraction then, for any ~, i f ~ E TH(Xt) , then ~ f (a) 6

T H (272).

The interpretation of this lemma is entirely dual to that of Lemma 6.4.
NT* abstractions can be used in provability systems to prove -~a provided
we try to prove -~f (~) in the abstract space.

Finally, are there abstractions which can be used both with refutation
systems and with provability systems, irrespective of how the goal is negated?
To answer this question, we introduce the notion of negation preserving
abstractions. This notion is crucial for abstractions to be used in both
refutation and provability systems.

Definition 6.6 (Negation preserving abstractions). Let 27~ and 2?2 be two sys-
tems such that a is a wff iff - ~ is. An abstraction f : $1 =~ $2 is negation
preserving iff, for any a, f (- ~) = ~ f (a) .

Preserving negation is a powerful concept. If an abstraction preserves
negation then the notions of preserving provability and of preserving incon-
sistency collapse. In fact the following theorem holds.

A theory of abstraction 343

Theorem 6.7. I f XI and X2 are two formal systems with negation, then a
negation preserving abstraction f : Xl =~ X2 is a T* abstraction iff it is a
NT* abstraction.

Proof. Let us consider TI abstractions and only one direction. The other
proofs are analogous. Suppose that f is a TI abstraction. Since X~ is
a system with negation, if a ~ NTH(XI) then -~a ~ TH(X1). But f is
TI . Thus f(-~a) E TH(X2). As f is negation preserving, this implies
--,f(a) E TH(X2). From which it follows that f (a) E NTH(X2) and that
f is NTI. []

A consequence of this theorem is that a negation preserving abstraction
mapping can thus be used in both refutation and provabifity systems. Notice
moreover that we have made no hypotheses about the deductive machinery
used in the ground and abstract spaces. The choice of deductive machinery
is, in this perspective, irrelevant. All that matters is the deductive closure
it generates. This intuition can be exploited to show that if a negation
preserving abstraction f is T*/NT* then all the abstractions which differ
from f only in the choice of the deductive machineries are T*/NT* as long
as their deductive machineries compute the same set of theorems. This is
what the following theorem says.

Theorem 6.8. Let ~v" 1 "- (A I , ~ ' 2 1 , A 1) and X2 = (A2, f f22 , .42) be two systems
with negation, and f : Xl =~ X2, any negation preserving T* abstraction.
Let X~ = (A1,g21,A~) and X~ = (A 2 , ~ ' 2 2 , ~) be any two systems such that
TH(X/) = TH(Xi), i = 1,2. Then the abstraction f ' : X~ ~ X~, which uses
the same mapping function as f : X1 =~ X2 is a T*/NT* abstraction.

One significant consequence of Theorem 6.8 is that any abstraction on the
language and the axioms defined for a refutation-based system can be safely
applied with a provability system (and vice versa) as long as they generate
the same set of theorems. Thus for instance, an abstraction developed for
refutation systems (e.g. all those suggested by Plaisted) can be safely used
with any provability system complete for first-order logic, for instance ND
(modulo extending it to be defined over the richer syntax of ND, e.g. "~" ,
but this is a minor point).

As far as we know, most of the abstractions proposed in the past are
negation preserving. However, there are abstractions which are not (see
Table 1 at the end of Section 8). An interesting class of abstractions which
are not negation preserving and work between systems with negation is the
class of ground abstractions (see Example 8.27). In some cases, negation
may not be part of the language of the ground or abstract spaces, or negation
may only be partially preserved by the mapping. One such abstraction, used

344 F Giunchiglia, 71 Walsh

in GPS [57] and described in Example 8.3, is such that the abstract language
allows only sets of atomic formulas. The mapping deletes negation as well
as any other logical symbol. Not considering the logical symbols seems quite
a drastic step as a lot of the information is lost; on the other hand it allows
very fast formula manipulation. Intuitively, it seems that it might work well
with short proofs.

7. Some further classifications

The definitions of T* and NT* abstractions are not constraining enough;
they only partially capture "certain desirable" properties preserved by a
mapping (property (2)). Abstractions (and abs t r ac t ions as a particular
case) usually satisfy much stronger requirements than simply preserving
provability or inconsistency.

Most abstractions f (and all abstractLons) are such that for any element
el in the abstract space (e.g. a wff in its language, an axiom in its axiom set,
an inference rule in its deductive machinery), it is possible to find at least
one corresponding element el, in the ground space such that, loosely writing,
f (e l) = el. This is very important, for instance in abstractLons, in order
to use effectively the similarity between abstract and ground proof. (We
can exploit the similarity by substituting each wff/axiom/inference rule in
the abstract proof with one among the ground wffs/axioms/inference rules
mapped onto it.) The definition of abstraction given above can be refined
to capture this idea of correspondence simply by exploiting Definition 4.2
of a formal system. It is sufficient to describe how the the axioms and the
inference rules of the ground and abstract spaces are related via the use of
two extra mapping functions f~ and f~. Analogously to fA, the functions
f~ and f~ are requested to be total and computable. This definition of
abstraction with three mapping functions corresponds closely to the way
abstractions are often used. Given a ground space, we often construct the
abstract space using three functions: a function that maps the wffs in the
ground language onto the wffs in the abstract language, a second function
that maps the axioms of the ground space onto the axioms of the abstract
space, and a third function that maps the deductive machinery of the
ground space onto that of the abstract space. This three-part description of
an abstraction in terms of the mappings on the language, on the axioms,
and on the deductive machinery was introduced in [21] and it is especially
appropriate when the axioms of the ground space are not fixed. We often
define the function for mapping the axioms sufficiently generally so that it
will work with whatever axioms we happen to have in the ground space;
the abstract space is not fixed but depends on the particular axioms of
the ground space. In this paper we need not introduce the extra notation.

A theory of abstraction 345

However we will sometimes allude to this description of abstraction when
we talk about the mapping of the axioms, the mapping of the inference rules,
and the mapping of the ground space onto the abstract space.

A second important requirement, satisfied by most abstractions f (and by
all ab s t r ac t i ons) is that the abstract space --F2 is completely generated from
the ground space 271; in other words that the language, the axioms, and the
deductive machinery are constructed only on the basis of the corresponding
elements in the ground space. In this case we write that 272 = f (/1) , where
f is the abstraction, and say that f is surjective. This condition can be
formally captured by requiring that the mapping functions be surjective. As
in the notion of abstraction used here we do not consider the extra two
mappings, we need only request that fa be surjective.

In this paper we restrict ourselves to surjective abstractions.

Abstractions can be further classified depending on how they map axioms
and inference rules in the ground onto those of the abstract space. This
will be the topic of the remainder of this section. These definitions capture
concepts that are very relevant to the theory of mapping an abstract proof
back onto a ground proof [24]. In this paper they will be used extensively
in Section 8 to classify previous examples of abstraction.

The first definition captures the class of abstractions which map the
axioms the same way as the language. (If A is a set and f a function
defined over A, by f (A) we mean the set (f (a) : a E A}.)

Definition 7.1 (A/t2-invariant abstraction). Let 271 = (Al, 121,/11) and 272 =
(A2, Q2,/t2) be two formal systems. An abstraction, f : 271 =~ --rE is said to
be A/t2-invariant iff 122 = fa (t21), and A/O-variant otherwise.

A/Q-abstractions are used whenever we do not distinguish between wffs
and axioms. This is often true of abstractions which are not tuned to a
particular theory or when no special constraints are imposed on the abstract
space. Example 8.1 6 uses a A/Q-variant abstraction.

Our second definition is of an abstraction which keeps the same inference
rules in the abstract space as in the ground space.

Definition 7.2 (/1-invariant abstraction). Let 271 = /Al,121, /11) and 272 =
(A2,122,/12) be two formal systems. An abstraction f : 271 =~ 272 is called
A-invariant iff A 2 C_/11, A-variant otherwise.

In a d-invariant abstraction, a subset of the inference rules of '~1 is used
in 272. Most abatraet±ona are /1-invariant since the same inference engine
can be used for both the ground and the abstract spaces. This gives a
great economy of implementation. Moreover the problem of mapping back

346 f. Giunchiglia, T. ~alsh

is simplified since abstract and ground proof trees can be matched more
easily--the abstract proof looks essentially like a ground proof with gaps.
Notice that A2 _c Al may hold even if the alphabet of A1 is different from
that of A2. The variables used in defining the inference rules are meta-
variables and only commit us to a particular logical syntax for the object
language. The abstraction used in Example 8.3 is A-variant.

Our third definition is of an abstraction which maps the inference rules
the same as the language.

Definition 7.3 (A/A-invariant abstraction)• Let Xl = (Al,12~,Al) and S2 =
(A2,g22,32) be two formal systems• An abstraction f : S~ ~ $2 is called
A/A-invariant iff

A2 = { fA(ctl) ' ' ' ' ' fA(~n) c~l'''''~n }
• C A l .

fA (~ + l) O!n+l

It is called A/A-variant otherwise.

Note that fA (a j) must be read as applying)CA tO the wff substituted for aj
when applying the inference rule. A/A-invariant abstractions are also often
used as a b s t r a c t i o n s since they make the problem of mapping back easier•
For example, it is easier to establish a connection between the premises
of the application of an abstract inference rule and the premises of the
application of a ground inference rule. Notice also that the notions of A-
invariance and A/A-invariance are independent; A/A-invariance does not
imply A-invariance (or vice versa). A/A-invariant abstractions change the
input and outputs to the inference rules according to fA while A-invariant
abstractions keep the same inference engine. For example, the abstraction
in GPS (see Example 8.3) is A/A-invariant, but it is not A-invariant; the
inference rules used in the abstract theory are completely different to those
in the ground theory.

Our fourth definition is of an abstraction which maps both the axioms
and the inference rules the same as the language.

Definition 7.4 (X-invariant abstraction). An abstraction f is X-invariant iff
it is A/I2-invariant and A/A-invariant, S-variant otherwise.

In [70,71], veridicality, which is a notion very similar to (but slightly
weaker than) X-invariance, has been claimed to be fundamental for an
a b s t r a c t i o n to make any sense at all.

The four definitions so far have characterized various relationships be-
tween the mapping of the language and the mapping of the axioms and
inference rules. The final definition in this section, that of a theory ab-
straction, captures a large class of abstractions which map the theory and

A theory of abstraction 347

not the logic; that is, abstractions that leave the logical syntax of formulas
unchanged.

Definition 7.5 (Theory abstraction). If f : Z1 ~ 2"2 is an abstraction, then
f is called a theory abstraction iff for any wffs a and fl,

• fA (*fl) = *fA(fl) for all the logical unary connectives, ,;
• f A (a o fl) = f A (a) o fA (f l) for all the logical binary connectives, o;
• fA (ox .a) = ox. fA (a) for all the quantifiers, o.

Note that a theory abstraction can be used to drop variables (if fA (P)
does not mention x, then oX.fA (p) is equivalent to f,~ (p)) and to drop
conjuncts and disjuncts (for example, if fA (q) maps onto ±, then fa (p v q)
is equivalent to fA (P)). The idea underlying theory abstractions is that most
useful abstractions abstract the theory but preserve the logic. That is, they
map the atomic wits and not the logical structure of the wff. In general, the
logic is well-behaved and it is the theory that needs to be simplified. Indeed,
the authors would argue that you should only change the logical structure of
a wff with great care as the consistency of a logic is very finely balanced. As
they preserve the logical structure of formulas, theory abstractions are often
A-invariant with the same inference rules used in both the ground and the
abstract spaces.

8. Examples of abstractions

This section describes some case studies, some of which are very famous,
taken from various subfields of artificial intelligence. In most cases the
original description was quite informal. In order to fit these examples into
our framework we have performed a (hopefully faithful) reconstruction of
what was said in the original papers. For each example we first briefly
describe the work (this description is not meant to be self-contained) and
then we formalize the abstraction and analyze its properties.

This section has many goals. First, we hope it will convince the reader
that our framework is very powerful and can capture not only most previous
work in abstraction but also work which initially seems completely unrelated.
Second, it provides a unified view of work from many different areas
which was carried out with a great variety of goals. Third, it supports the
authors' belief that most work in automated reasoning should be formally
characterizable in terms of the provability relation. Fourth, it demonstrates
how this framework generalizes some important results. Fifth, if (as we
believe) this sample of abstractions is representative of abs t rac t ions as a
whole, it highlights the simple properties of most abs t rac t ions and thus
suggests what properties the abs t rac t ions we construct should possess. We

348 b: Giunchiglia, 7: Wa&h

view this section as one of the most important contributions of this paper.
Our understanding and definition of abstraction has been strongly influenced
by these examples.

The structure of this section is as follows. We begin by describing three
historically important examples of abs t rac t ion . We divide the remaining
examples into four classes: propositional abstractions (in which the abstract
space is propositional), predicate abstractions (in which predicate symbols
are mapped together), domain abstractions (in which constants are mapped
together) and metatheoretic mappings (which capture some major metathe-
oretic results like Herbrand's theorem). We conclude with a summary of
the properties of each of the examples, and a brief discussion of the general
properties of abs t r ac t ions .

8.1. Historical examples

Example 8.1 (Planning). ABSTRIPS [69] was one of the very first and
most famous uses of abstraction. ABSTRIPS built STRIPS plans in which
operators applied to states of the world, generating new states. The pre-
conditions to operators are atomic formulas abstracted according to their
criticality, computed semi-automatically by the system. Each precondition Pi
has its own criticality which is a natural number associated to the predicate
symbol occurring in it. Criticalities are therefore totally ordered. The idea is
to build a hierarchy of abstract spaces, each level in the hierarchy containing
all the preconditions above a given criticality. We write i ~ cri t (x) to mean
that the criticality of the precondition Pi is greater than K. (Therefore, if
~:1 < K2 then crit(x2) c crit(Kl).) To put this into a theorem proving con-
text and following Green [29], we adopt a situation calculus. ABSTRIPS
can then be formalized as a A/~-invariant abstraction, lAB : X~ ~ $2,
which maps between situation calculi, X~ and X2, with first-order languages,
frame, operator, and theoretic axioms, and natural deduction rules of infer-
ence. Operators are wffs of the form " Vs. (Al<.<i<~nPi(S) --* q (f (s))) ",
where Pi is a precondition, s is a state of the world, f is some action, and q
describes the new state of the world. Goals are wffs of the form "3s r (s) ' .
Axioms are mapped from X~ to 2:2 using the same mapping function as the

language.
The mapping of wffs (and axioms) is as follows:

• l A B (a) ---- a if ~* is an atomic formula;

• f~ ,B(-~a) = ~ f A B (a) ;
• fAB(a o fl) = fAn(a) o fAS(/~), where "o" is "A" or "V";
• fAs(~X.a) = ~x.fAB(a), where "~" is "3" or "V";
• fAs(a ~ fl) = lAB(a) --+ fAB(fl), provided "c~ --+ fl" is not an operator;
• f A B (A l ~ i < ~ n P i (S) --~ r) = A i 6 c r i t c x) p i (s) --~ f A s (r) , f o r any operator

(where i c cr i t (x) if the criticality of p; is greater than K).

A theory of abstraction 349

For example, the operator for climbing a (climbable) object,

a t (z , x , s) A climbable(y, z ,s) ~ a t (z ,x , climb(y, z ,s)),

might abstract to one in which we do not bother to check that the object is
climbable,

a t (z , x , s) ~ a t (z ,x , cl imb(y,z ,s))

This abstraction is TI.

Theorem 8.2. I f a ~ TH(271), then fAa(a) e TH(272).

Proof (Outline). By proving that given a deduction tree H1 of a, we can
build a deduction tree HE of fAB (a) discharging the abstraction of the same
assumptions. The proof proceeds by induction on the depth N of H I. For
proofs of length 1, fAB is applied to the single wff in the tree; this generates
a valid deduction in HE. Assume that we have shown it for trees up to size
N. We shall use fAB (H) to represent the tree in 272 constructed from a tree
H in 271 of size N or less. We show that it is true for deduction trees of
size N + 1 irrespective of the rule application used to construct the tree of
size N + 1 from tree(s) of size N (or less). Any rule application that is not
modus ponens involving an operator translates unmodified. For instance,
an or-introduction on (a in H1 becomes an or-introduction on fA~ (q~) in//2.
For an operator application, the following transformation is performed:

/7

q A Pi A Pi
l~i~n l~i~n

AB

==~

q
A

iEcrit(x)
A Pi ~ fAB(q)

iEcrit(x)

AB(q)

By the induction hypothesis and the fact that Aiccrit(x)Pi follows from
AI <i<n Pi by a (possibly empty) sequence of applications of and-elimination,
this is a valid abstract deduction tree which discharges the (abstraction of
the) same assumptions as the deduction tree in 271. []

Note that the proof in the abstract space is longer than the proof in
the ground space. The purpose of abstraction is not to find these longer
proofs; we hope that there are also going to be shorter proofs. These shorter
proofs are those that don't try to satisfy Pi for i ~ crit(x). However, there
is no guarantee that there will be a shorter proof than the one exhibited;
we will always be able to devise an obtuse theory in which to prove the

350 F. Giunchiglia, T. Walsh

Pi for i c critO¢) we have to prove all the other Pi for i f[crit(~:). This
problem would be eliminated if ABSTRIPS had abstracted both left- and
right-hand sides of operators. Under such circumstances, Pi for i f[crit(x)
would not even appear in the abstract language. Note also that since this
abstraction is TI there is no guarantee that given an abstract proof we
will be able to construct a ground proof which uses the same operators.
ABSTRIPS works because the operators are (largely) independent. Thus we
can solve the preconditions separately. Actually, ABSTRIPS is a little more
clever than this; the use of criticalities allows some operator dependence to
occur as it restricts the order in which the operator preconditions have to
be satisfied. For an abstraction like ABSTRIPS to be useful, the area of the
region TH(S2) - f (T H (Z I)) , that is those abstract theorems which don't
map back, needs to be small in comparison to f (T H (S I)), those abstract
theorems which do.

Example 8.3 (Problem solving). Abstraction has been a useful problem solv-
ing heuristic ever since the early days of AI research. Indeed, GPS used
abstraction in its planning method [57] for state space search. After the
objects and operators for a problem have been abstracted, the entire de-
ductive machinery of GPS is used to solve the abstracted problem; this
solution is then used to construct a plan to guide the solution of the original
problem. We will just consider one of the S-invariant abstractions suggested
for propositional logic problems in [57]. Let us call it fGPS : Xl ~ X2. S~ is
the propositional calculus of Principia Mathematica. $2 is a formal system
in which the wffs are (nested lists of) propositional sentence letters. To
construct the abstract space, the same mapping is applied to the wffs, the
axioms, and the premises and consequences of the inference rules of the
ground space. If ~ and fl are two formulas in the ground language then:

fGPS(~ V /~) = fGPS(~ A /~) = .fG~s(~ ~ /3) = (fGPs(~) , f¢ ;~S(3)) ;

fGPS(~(Y) = fGPs(O~);

fGPS (a) = c~ if a is a propositional sentence letter.

For example, p V (~q -~ p) maps to (p, (q ,p)) . This is a TI abstraction.

Theorem 8.4. I f a E TH(ZI), then fGps (c~) E TH(S2) .

The proof is by induction on the length of the proof. We just take a proof
tree/71 of O~ and apply fGvs to every wff in the tree. Note that the reverse of
Theorem 8.4 is not true. For example (p,p) E TH(S2) but pA-~p f[TH(2~2).
Not every abstract theorem maps back.

A theory of abstraction 351

Exmltple 8.5 (Theorem proving). Plaisted developed a theory of
a b s t r a c t i o n for resolution systems [60,61]. His work is the most com-
plete and well-developed work on the theory of abstraction developed in the
past. He defines three classes of abstract±on8 for refutation systems that
preserve inconsistency. His first two classes, ordinary abstractions and weak
abstractions map a set of clauses onto a simpler set of clauses. These abstrac-
tions are A/12-invariant abstractions; that is, the same mapping function is
used to abstract the wiTs and the axioms of the ground space onto those of
the abstract space.

For ordinary abstractions, the mapping function maps a clause in the
ground language onto a set of clauses in the abstract language subject to the
following conditions (notice that we interpret the empty clause as falsity):

(a) f (±) = {±};
(b) if a3 is a resolvent of OL 1 and Ot 2 in 271 and f13 E f (a 3) , then there

exist f12 e f(a2) and f l l e f (a l) such that a resolvent of fll and f12

subsumes fla in 2:2;
(c) i f a l subsumes Ot 2 in 271 and f12 E f (a 2) , then there exists fll E f (a l)

such that fll subsumes fiE in X2.

Weak abstractions are identically defined to ordinary abstractions except
condition (b) is weakened to the property that if a3 is a resolvent of al
and ~2 in 271 and f13 ~ f (a 3) , then there exist f12 e f (a 2) and fll e f (a l)
such that fll subsumes f13, or f12 subsumes fl~ or a resolvent of fll and fl 2
subsumes f13 in 2:2. All ordinary abstractions are (trivially) weak, but not
all weak abstractions are ordinary.

Theorem 8.6. Weak and ordinary abstractions are NTI.

This is a corollary to [60, Theorem 2.4, p. 268]. However, not all A/I2-
invariant NTI abstractions are weak or ordinary.

Theorem 8.7. There exist NTI abstractions between resolution systems that
are not weak or ordinary abstractions.

Proof. Indeed, we can find NTI abstractions that fail every one of the three
conditions in the definition of weak and ordinary abstractions.

Condit ion (a) is failed by the NTI abstraction for which f (~) = {~ V ±}.
The problem with condition (b) is that we may also need to resolve with

an axiom of the theory. Consider, for instance, the abstraction defined by
f (p V q) = {p V r} and f (q~) = {~} otherwise. I f 271 contains the axioms,
~q and ~r, then f is NTI. In particular, p v q resolves with -~p in 271
to give q. However, no clause in the abstraction of p V q or -~p (or their

352 F. Giunchiglia, T. Walsh

resolvent) subsumes the clause q found in the abstraction of q. We theretbre
fail condition (b).

For condition (c), consider the abstraction defined by f (p v q) = { r, p V q }
and f(q~) = q~ otherwise. Now f is NTI. However, f fails condition (c)
of the definition of weak and ordinary abstractions as p subsumes p v q but
no clause in the abstraction of p subsumes r which is in f (p v q). []

Note that the definition of weak and ordinary abstractions can be extended
to overcome the counter-examples given above in the proof of Theorem 8.7.
For instance, as far as the first counter-example is concerned, we could
replace condition (a) with the more general requirement that there must
exist ~0 • f (±) such that ~q~ • TH(,S2). In general there are many NTI
abstractions which are not weak or ordinary. But the right question is
whether there are any NTI abstractions which are not weak or ordinary and,
at the same time, are "interesting" a b s t r a c t i o n s between resolution systems.
(The examples in the above proof, for instance, are not very interesting.)
Weak and ordinary abstractions seem to capture most of the interesting
abs t r ac t ions . One exception is given by Plaisted's generalization functions
(see Example 8.8). NTI a b s t r a c t i o n s which are not weak or ordinary
can also be built for particular theories by allowing us to perform extra
resolutions, for instance, against a subset of the axioms or against some
derived theorems. ABSTRIPS, for instance, uses this idea and distinguishes
between operators and the other axioms (which for instance codify the state
of the world). This makes ABSTRIPS fail condition (c) above. (Notice
that the abstraction which deletes all literals containing a predicate symbol
p is a weak abstraction [60, p. 267]. This abstraction looks very similar
to ABSTRIPS. However ABSTRIPS a b s t r a c t i o n s do not delete all the
occurrences o f p but only those occurring in the preconditions to operators.)

The restriction of fAB to clausal form and resolution is an abstraction J~B
such that:

• f d B (~ p l V . . . V ~Pn V q) -= {~Pk, V - V ~Pk~ V q} in the case of oper-
ators, where {-~Pk, ~Pk,,} C_ {~Pl , - . . , ~Pn} is computed, as for JAB,
according to the criticality associated to preconditions;

• f~B(r) = {r} otherwise.

Weak and ordinary abstractions map onto sets of clauses. This mapping is
actually only onto sets with one member, so we can forget the set brackets
from now on. Let us concentrate on condition (c). It requires that if c~
subsumes a2 in Xl and f12 • f~a (a2) , then there exists fll • f~(B(C~I)
such that fll subsumes f12 in 2;2. Which is not the case. It is sufficient to
consider the case where f,~B(~p~ V ~P2 v q) = ~P2 v q (where -~p~ v -~P2 v q
is an operator) and f f , B(~pl v q) = ~Pl v q (where -~Pl v q is not an

A theory of abstraction 353

operator). -,p~ V q subsumes -,p~ v--,p2 v q but f~B (-~Pl V q) does not subsume
f, B v - p2 v q).

Ordinary and weak abstractions have the advantage over NTI abstrac-
tions of capturing a notion of mapping into simpler theories. The proof of
[60, Theorem 2.4] shows in fact how, given a proof of a theorem in the
ground space, we can construct a proof of the abstract theorem; this proof
of the abstract theorem, Plaisted notes, is no longer than the original ground
proof. Ordinary and weak abstractions are therefore guaranteed to satisfy
the simplicity property as there will be an abstract proof no longer than the
shortest ground proof.

We feel that our definitions of abstraction are "more natural" in the
sense that they better reflect and capture the properties for which they are
defined (mapping search spaces, preserving provability, preserving incon-
sistency, and so on). Also they capture a more general phenomenon than
weak or ordinary abstractions (which formalize abs t rac t ions in refuta-
tion systems). NTI abstractions on the other hand have the disadvantage
of not guaranteeing to map onto simpler theories. We have identified a
subclass of the NTI abstractions, called PI (and NPI) abstractions, which
have this simplicity property [24] (this topic will be covered in a following
paper).

Example 8.8 (Theorem proving). Plaisted's third class of abs t rac t ions use
generalization functions [62]. Ordinary and weak abstractions abstract the
language and axioms of a theory but keep the deductive machinery the
same (what we call J-invariant abstractions and what Plaisted called input
abstractions). Abstractions using generalization functions, on the other hand,
keep the language and axioms the same but abstract the resolution rule of
inference; after every resolution, a "generalization" operation is performed
on the resulting clause. For example, we might replace all terms of depth n
or greater by (new) variables. We thereby construct a proof which is "more
general" than one we could find in the ground theory. This general proof
is guaranteed to be no longer than one of the ground proofs and can be
used to aid the search for a ground proof as it has a similar structure. Note
that, though the abstract proof can be shorter than the ground proof, the
cost of inference in the abstract theory is more expensive than that in the
ground theory. In general we have to perform both full-blown resolution and
generalization.

An abstraction using a generalization function maps a first-order calculus
using resolution onto another first-order calculus with the same axioms but
with a "generalized resolution" rule of inference. The identity function is
used to map wffs between the two formal systems. Generalization functions
are therefore A/Q-abstractions with]~ the identity function. Generalized
resolution is resolution followed by application of a generalization function,

354 F. Giunchiglia, 7: Walsh

g, to the resolvent; this generalization function maps a wff, ~0, onto a set of
(more general) wffs that have ~ as instances. In other words:

g(q~) c_ {~: ~0 ~ s0}.

(When g(~o) = {}, we interpret {} as L.) If g(~0) = {~0}, the identity
generalization, then S~ will be identical to $2, and the abstraction will
trivially be TC/NTC. In general abstractions with generalization functions
are TI/NTI.

Theorem 8.9. / f f : 2;1 ~ X2 is a generalization abstraction jor which, Jor
any q~, g(q~) ~ {}, then f is TI/NTI.

The proof that f is NTI is a simple corollary to [62, Theorem 1, p. 368]
(using the notation of [62], when S = T and when all the deductions
considered are refutations). This assumes that g (Z) = L; this is true of
all generalization functions. Since f is negation preserving, it is also TI. It
is also guaranteed by [62, Theorem 1] that the abstract proof is no longer
than the ground proof.

Abstractions with generalization functions are not usually TD* as gen-
eralizing a theorem can produce a nontheorem. For example, if we have
the generalization function that replaces all terms by free variables and
the set of axioms, g21 = {p,~p v q(a),-~p v ~q(b)}, then ± E TH(X2) but
L ~ TH(S~) . We can come up with (extreme) examples that are TD*.
Consider, for instance, the formal system which contains p as an axiom and
for which

{±}, if~0 = -~p,
g (~o) = { ~0 }, otherwise.

This is TC/NTC as the generalization function merely replaces a wff that is
inconsistent with L itself.

8.2. Propositional abstractions

We call an abstraction propositional if the abstract theory is propositional.
Such abstractions are very important when the abstract space is decidable.
(Section 11 suggests one way to exploit the decidability of the abstract space
of propositional abstractions.

Example 8.10 (Theorem proving). Connection methods have been proposed
in various forms as an efficient way to perform theorem proving [10,11,46].
Common to these proposals is a connection graph which represents possi-
ble refutations between complementary literals; the approaches differ in

A theory of abstraction 355

how they search this graph. Most of these approaches can be treated as
propositional abstractions.

Let us consider, for example, Chang [10], who describes an approach
in which the connection graph is searched for a resolution plan, a list
of possible resolutions from which we can derive i ; this plan is then
executed, by finding a unifier that simultaneously makes all the appropriate
literals in the plan complementary. The (expensive) cost of unification is
thus delayed until we have a complete plan. This approach can eliminate
many redundancies of conventional resolution (e.g. simple reorderings of the
resolutions) and allows all the strategies developed for resolution (like linear,
set of support, . . .) to be used. Indeed, the fact that we can use conventional
resolution strategies is a trivial observation, once we have described this
example, as we note that the abstract theory in which we construct the
resolution plan merely uses a "restricted" form of propositional resolution.

We will formalize this example as a propositional A/12-invariant theory
abstraction, f : 271 , 272, which maps from a first-order calculus using
resolution to a propositional calculus using "restricted" propositional reso-
lution. The abstraction preserves the logical structure of the wffs, mapping
the atomic formulas as follows:

f (p(x , . . .)) = p.

All atomic formulas with the same predicate symbol map onto the same
propositional constant. The "restriction" on the propositional resolution in
the abstract theory is that f (a V p) and f (a ' v -~ f l ') are only allowed to
resolve together in 272 if p resolves with -,fl' in Xl (allowing for renaming of
any common variables); this prevents us from drawing up a plan in which
there is no hope of ever finding a suitable unification to make the literals
complementary (e.g. f (p (a)) and f(-~p(b)) are not allowed to unify in
the abstract theory even though they map to p and -,p). The resolution plan
may not be of any use as no consistent substitution for the variables need
exist. The links in a connection graph are just a means of pre-compiling the
allowed resolutions.

Consider, for example, the problem in [10] where we wish to show that
the clauses

{-~p (x) Vp(g(x)) ,p (a) , -~p(g(g(a)))}

are unsatisfiable. On the left, we give a proof in the abstract theory and
show how this resolution plan maps onto a proof (on the right) in the
ground theory by finding suitable unifications for every step suggested by
the abstract proof. Not all abstract proofs will be able to map back; however,
we can always find one that will.

356 1~: Giunchiglia, T. H'alsh

~pVp p ~ p (x) V p (g (x)) p(a)

p - ,pVp p(g(a)) - ~ p (y) V p (g (y))

p -~p p (g (g (a))) ~p(g(g(a)))

l A_

The proof in the abstract theory is not the shortest we can find; having
deduced p, there is a redundant step where we resolve with -~p v p to deduce
p again; this extra resolution is needed in the ground theory in order to
make the unifications work. Presumably if we were using this abstraction for
general purpose theorem proving, we would find the abstract proof without
the redundant step first; being unable to find a suitable unifier to map the
proof back into the ground theory, we would then backtrack and generate
the abstract proof with the necessary redundant step. As redundant steps can
be added without limit, this theorem proving strategy will not terminate,
which is not surprising as it is complete. We may also have to resolve with
the input clauses more than once, and to use multiple versions of them with
distinct variables. See [10] for a longer discussion of these issues.

The fact that the abstract proof is useful as a plan for the ground proof
follows from the proof that this abstraction is TI. More precisely, this proof
shows that there is an abstract proof which contains the same resolutions as
the ground proof. Thus, given an abstract proof, we generate the ground proof
by finding a unifier that makes all the appropriate literals complementary.

Theorem 8.11. fchang is TI/NTI.

The proof can be easily given by mapping a proof H~ of ~ in ~1 onto a proof
//2 of f (¢) in 2:2. We simply need to apply f to every wff in HI. Note
tha t / /2 is simpler than H1 even though it contains the same resolutions as
//~ since we do not perform any unification in X2.

A significant problem with all TI abstractions, this one included, is that
they can map a consistent system into an inconsistent system [22,27].
The restriction on resolution in X: overcomes many problems (e.g. ~2~ =
{p (a), ~p (b)} does not map into an inconsistent theory as f (p(a)) and
-~f (p (b)) are not allowed to resolve together); however, there still exist less
trivial sets of axioms which map a consistent theory into an inconsistent
theory (e.g. £2~ = {p(x) v q (x) , ~p(a) , ~q(b)}) .

Example 8.12 (Decision procedures). A propositional abstraction was used
in [19] to implement a decider for first-order logic; this decides whether
a (first-order) wff is derivable from a set of (first-order) wffs applying
only the propositional connective inference rules. We define it as a A/~2-
invariant abstraction, fGG : Xx ~ X2 between a first-order calculus with a

A theory of abstraction 357

complete deductive machinery and a propositional calculus with a complete
propositional decider. The mapping function used to abstract the wits (and
the axioms) is defined by:

(1) fGo (a) = Pk, where a is an atomic formula; occurrences of identical
atomic formulas are rewritten as occurrences of the same propo-
sitional constant, Pk; occurrences of different atomic formulas are
rewritten differently.

(2) fco(3x .a) = Pi; occurrences of identical existential formulas or of
existential formulas which differ only in the name of the bounded
variables are rewritten as occurrences of the same propositional con-
stant, Pi ;

(3) foo(Vy.a) = Pj; occurrences of identical universal formulas or of
universal formulas which differ only in the name of the bound vari-
ables are rewritten as occurrences of the same propositional constant
rj ;

(4) foo(a^/) = f o e (a) ^
(5) fGG(aVfl) = fGO(a) Vfoo(f l) ;
(6) f o o (- ' a) = - ' f o e (a) ;
(7) f o o (a #) = f o e (a) --, foo (#) ;
(8) foo(a ~ ,6) = fOG(a) ~ foa(f l) .

This is a T D / N T D abstraction.

Theorem 8.13. fGG is TD/NTD.

The theorem can be proved by noticing that, for any proof in 272, a proof
can be built in Z1 which performs the same sequence of applications of
inference rules. There is no problem with the different names of bound
variables as we can always prove the equivalence of formulas which differ
only in the names of the bound variables, The reverse of Theorem 8.1 3 is
clearly false. For example "Vx. (p (x) v-~p (x)) " is provable in Z1 but its
abstraction is not in 272.

8.3. Predicate abstractions

Predicate abstractions are abstractions, f : ,t~ 1 :=~ '~2, in which distinct
predicate symbols on 271 are mapped onto (possibly not distinct) predicate
symbols in 272.

Example 8.14 (Theorem proving, planning). Plaisted [61] and Tenenberg
[73] both consider the class of predicate abstractions which are A/O-

358 F. Giunchiglia, T. Walsh

invariant theory abstractions between first-order calculi using resolution.
Atomic formulas are mapped by a function fpred for which

f p r e d (P (X )) = q (x )

for all p belonging to a given class. Such predicate abstractions are TI and,
since they are negation preserving, NTI. Of course, any such mapping that
is 1-1 is trivially TC/NTC.

Theorem 8.15. fpred is TI/NTI.

The proof can be given by showing that given a resolution proof H~ of c~, we
can build a resolution proof of fpred (c~). The proof proceeds by induction on
the depth N of Ha. We just take the proof Hi and apply fpred to every wff in
it. Note that the reverse (that fpred is TD) is not in general true. For example,
if fpred (Pl) = fpred (P2) = P then p V -~p E TH(272) but Pl v -~P2 ~ TH(27~).
As with propositional abstractions, predicate abstractions can map consistent
theories into inconsistent theories. For example, if fpred (P~) = fpred (P2) = P
and ~ = {p~, ~P2} then 27! is consistent but 272 is inconsistent.

Example 8.16 (Theorem proving, planning). To overcome the problem of
inconsistent abstract spaces encountered in the last example, Tenenberg [73]
has suggested a restricted predicate mapping. This abstraction is guaranteed
to map a consistent theory, 27~, onto a consistent theory, 272. Unfortunately,
imposing the restriction involves an arbitrary amount of theorem proving in
generating 272 and loses the property of being TI; as a consequence it does
not seem a very satisfactory solution to the problem of having inconsistent
abstract spaces. As before any restricted predicate mapping that is 1-1 is
(trivially) TC/NTC.

A restricted predicate mapping is a theory abstraction between first-order
calculi using resolution. The same function, fpred, as the (unrestricted) pred-
icate mapping is used to map wffs in Z~ onto wffs in 272. The "restriction" is
that not every abstraction of the axioms of 271 is kept in 272; this restriction
ensures that we don't keep the axioms that introduce inconsistency. To this
end, the axioms of X2 are given by g (~ l) where:

g('Q1) = { fp red (~) : ~0 E ~1 and
(~0 is a positive clause or for every (such
that fpred(~) ----- fpred(~ O) we have ~1 ~-z~ C)}.

In other words g preserves all the axioms q~ which satisfy at least one of
two conditions. The first is that they are positive clauses; the second is
that g (~0), to be kept as an axiom, must be such that all the formulas
which abstract into g(~0) (that is, that have the same abstraction as ~p) are

A theory of abstraction 359

theorems of the ground space. Note that to determine which axioms from 271
we can include in 272 requires an arbitrary amount of theorem proving in Z'I
(deciding whether I21 ~-,rt (). The purpose of this inference is to guarantee
that consistency is preserved.

Theorem 8.17. I f f : ,~1 ~ ,~2 is a restricted predicate mapping and 271 is
consistent, then 272 is consistent.

In [73], Tenenberg demonstrates how, given a model of the axioms of
271, you can construct a model of the axioms of 272. Since a set of clauses is
consistent iff it is satisfiable this proves that if 271 is consistent then 272 is
as well. As a simple corollary to this theorem, for every clause derivable in
the abstract theory, some clause in the ground theory that abstracts to it is
also derivable.

Corollary 8.18. I f f is a restricted predicate mapping and ~2 E TH (272), then
there exists ~1 such that f(~Pl) = ¢2 and ~1E TH(~rl).

Note that the property described in Corollary 8.1 8 iS not the same as being
TD; all TD abstractions satisfy this property, but not all restricted predicate
mappings are TD. Consider, for instance, the restricted predicate mapping
fpred(Pl) ---- fpred(P2) ---- P and 121 = {Pl} then fpred(P2) E TH(Z2) but
P2 ~ TH (271). If, however, the definition of restricted predicate mappings is
strengthened slightly, then they can be made TD. Indeed, we merely have to
remove the condition in the definition of the g that allows positive clauses
into the abstract axiom set regardless. That is, the axioms of 272 are given
by the set g' (12z) where:

g'(I21) = {fpred(~): ~ E if21 and for every (such that
fpred(() = fpred((/)) we have •1]"Z! ~}.

We shall call such abstractions very restricted predicate mappings; unlike
restricted predicate mappings, they are TD.

Theorem 8.19. Very restricted predicate mappings are TD.

Proof. Given a proof tree/72 in 272 that ends in fp~d (¢) we show how you
can construct a proof tree /71 in 271 that ends in q~. Note that ~ is not
necessarily Z. The proof proceeds by induction on the depth (that is, the
length of the longest branch), N, of/72.

If N = l, then fpred(~0) is an axiom of 272. From the definition of the
axioms of 272, ~0 is either an axiom of 271 or ~ ~ TH (271).

Assume we have shown it for all proof trees up to depth M. Consider a
proof tree/72 of depth M + 1 that ends in fpred (~) and in which fpred (q~) is

360 k\ Giunchiglia, T. Wa&h

the resolvent of c v ql v .-. v qn and c' V -'ql V . V ~q'n- That is, JPred (~0) =
(CVC')O where 0 is a most general unifier and qiO - q;O for 1 ~< i (- n. Let
qi have a predicate symbol r. Then, as they are complementary literals, q;
must have the same predicate symbol. Construct the wffs p~ and Pl which
map to qi and q; and which both have the same predicate symbol s c R,..
Now, Pi and ~p; will resolve together with unifier 0 (fpred is transparent
to substitutions). Pick the wffs d and d' which map to c and c' such that
~o - (d v d ') O . By the induction hypothesis, we can prove dvp~ v . . . vp~ and
d' v -'P'1 v . - - v ~p~. Finally, note that d vpl v . . . vpn and d' v ~p'~ 'v' - • • v -lp~
will successfull resolve together with unifier 0 to give ~0. []

A major problem with (very) restricted predicate mappings, unlike their
unrestricted counterparts, is that (unless they are 1-1) they are not TI. We
therefore lose "completeness" as there is bound to be a wff, a, which is
provable in X~ but whose abstraction is not provable in X2.

The other major problem with restricted predicate mappings is that de-
termining which axioms to include in the abstract theory is, in general,
undecidable. This makes them not very interesting even for uses outside
the a b s t r a c t i o n tradition. One solution suggested in [73] is to weaken the
derivability condition in the definition of g (namely, g21 F-z, ~) to a con-
dition of derivability within certain resources. This conservative approach
would construct an abstract theory weaker than it theoretically needs to be
to preserve consistency (that is, an abstract theory with fewer theorems).
(See [74] for other similar solutions to this problem.)

8.4. Domain abstractions

Domain abstractions are abstractions which map the domain (that is, the
constants) of the ground theory onto a (smaller) domain in the abstract

theory.

Example 8.20 (C o m m o n sense reasoning). Hobbs has suggested [31] a the-
ory of granularity in which a complex theory is abstracted onto a simpler,
more "coarse-grained" theory with a smaller domain. For example, the real
world of continuous time and positions could be mapped onto a (mi-
cro)world of discrete time and positions. Granularity can be formalized as
a A/O-invariant theory abstraction (let us call it "fgran :~Y'I ~ ~v'2") between
first-order calculi. Different constants in Xl are mapped onto (not necessar-
ily different) constants in Zl according to an indistinguishability relation,

",-~" defined by the (second-order) axiom,

V x , y . x ~ y ~ Vp E R . p (x) ~ p (y) ,

A theory of abstraction 361

where R is the subset of the predicates of the theory determined to be relevant
to the situation at hand. As in [31], we define indistinguishability for unary
predicates; it can, however, be easily generalized to n-ary predicates. The
mapping function keeps the same logical structure of wffs (it is a theory
abstraction) but translates any constant into its equivalence class, namely

fgran(p(a)) = p(r.(a)),

where a is any constant symbol and x(a) is the constant in the abstract
language representing the equivalence class of the constant a with respect
to the indistinguishability relation; that is,

x(x) = { y : x ~ y } .

Such an abstraction is TI.

Theorem 8.21. f~an is TI/NTI.

In fact we can map a proof tree HI of ~ onto a proof t r ee / /2 of fgran ({0)
merely by applying fgran to every wff in the proof tree. Like any TI abstraction
that is not TC, f ~ n can map a consistent theory onto an inconsistent theory.
For example, if the constants a and b are "indistinguishable" and {a, b}
represents the equivalence class of a and b, then a consistent ground theory
with equality and the axiom -~(a = b) maps into an inconsistent abstract
theory with the axiom -~({a, b} = {a, b}). The consistency of the abstract
theory can be guaranteed if we define a suitable indistinguishability relation.

Theorem 8.22. fgran preserves consistency i f indistinguishability is defined over
all predicates.

Proof. By contradiction. Assume that a consistent theory, 271, maps onto an
inconsistent theory, 272. That is, we can find a proof t ree, / /2, of 3_. We can
then construct a proof tree, 171, of 3_ in 271, contradicting the assumption that
271 is consistent. For every equivalence class, x (a), we pick one member of
that class, b; to every wiT, ~0, i n / / 2 we apply the substitutions {x (a)/b}
This will generate a proof t ree, / /1, whose assumptions will either be axioms
of 271 or will be derivable from them using the indistinguishability relation
and substitution of equivalences. If indistinguishability is not defined over
all predicates, this last fact will not necessarily be true. []

This theorem might seem to contradict our claim that, for every TI
abstraction which is not TC, there exist a choice of axioms that map a
consistent theory into an inconsistent theory. The obvious solution is that,
if indistinguishability is defined over all predicates, then fvan is TC (a TC
abstraction can never map a consistent theory into an inconsistent one).

362 K Giunchiglia, T. Walsh

Finally, we note that fgran is just a special case of the example of Plaisted's
weak and ordinary abstractions described in [60,61] where function symbols
(constants are 0-ary function symbols) are renamed in a systematic (but
not necessarily 1-1) way.

Example 8.23 (Approximate reasoning). Abstraction has been proposed by
Imielinski [32] as a basis for "approximate" methods of reasoning with low
complexity. Though such methods can return answers that are not always
correct, their errors should be characterizable. As an example, Imielinski
considers two domain abstractions; the first is TI while the second is TD.
However, there is a subset of the language over which both abstractions
agree with the ground theory; that is, a subset of the language with respect
to which both abstractions are TC.

Like granularity, Imielinski's TI abstraction maps objects in the domain
onto their equivalence classes. In granularity, the equivalence classes con-
sist of objects that can be shown to be indistinguishable. Imielinski's TI
abstraction allows arbitrary equivalence relations. However, the language
of the ground theory is restricted to a subset of first-order predicate logic
sufficient to express queries to a database. We formalize Imielinski's TI
abstraction, fl : Z~ ~ Z2, as a A/~-invariant theory abstraction between
first-order database-like theories. The languages of these theories consist of
closed formulas containing only the 3 quantifier, and the A and v con-
nectives. The mapping function, fl , used to abstract the language and the
individual axioms of ZI is defined by

fl (P(a)) = pOe(a)) ,

where a is any constant symbol, tc (a) is the equivalence class of the constant
a with respect to an indistinguishability relation, ~, and

f~ (p(x)) = p (x) ,

where x is any variable. The mapping is extended to n-ary predicates in
the obvious way. See [31,32] for some examples of indistinguishability
relations. Analogously to the granularity abstraction fgran, this abstraction is
TI. A TI abstraction overestimates answers; that is, the abstract theory will
suggest certain wffs are true which are not, in fact, true in the ground space.
The problem of inconsistent abstract spaces is not relevant for this type of
abstraction as the ground and abstract languages lack negation. However,
we will often use a closed world assumption to deduce negative information
from such a database, in which case we would have to worry about the
consistency of the abstract space.

A theory of abstraction 363

Example 8.24 (Approximate reasoning). Imielinski's second domain ab-
straction [32], which we will call A, is a TD abstraction. Such an abstraction
underestimates answers; that is, the abstract space will suggest certain wits
are false which are, in fact, true in the ground space. Though 3~ is not
complete, it is sound; all the abstract theorems it returns are guaranteed to
be theorems of the ground space. For this abstraction, properties true of an
object in the ground space hold in the abstract space for some unidentified
member of the (possibly larger) equivalence class of the object.

We define J~ as a A/12-invariant abstraction from a first-order database-
like theory (whose language consists of closed formulas containing only the
3 quantifier and the A and v connectives) to another first-order theory
(whose language consists of closed disjunctive normal formulas containing
only the 3 quantifier and the A and v connectives). The language of 272
differs in two ways from the abstracted language of the previous example:
its domain is the same as that of A1 (and not the equivalence classes) and it
contains a new unary predicate for each equivalence class, [x (a)] (x) , true
for every member x of the equivalence class r (a); we will use "Ix (a)]" to
represent the name of this predicate.

The mapping function, J~, is used to abstract the language (and the
individual axioms) of 271. All wits of AI and I21 are first transformed into
disjunctive normal form. Then for each disjunct ~ we have:

(a) If ~o contains the constant a, then it is replaced by an existentially
quantified variable restricted to members of a's equivalence class
(that is, ~o is rewritten to 3x. [x (a)] (x) A ~o{x/a}). The idea is to re-
place each named constant by an arbitrary member of its equivalence
class. The domain of 272 is thus no smaller than that of 271; however,
the properties true in 271 of an object a are merely true in 272 of some
object in the equivalence class of a.

(b) If ~o contains multiple occurrences of an existentially quantified vari-
able, each occurrence is replaced by a new existentially quantified
variable. The occurrences of an existentially quantified variable can
thereby represent different members of an equivalence class.

For example, 3x.p(a,x) Ap(b,x) is mapped to

3x, u,w.[x(a)](u) Ap(u,x) A [x(b)] (w) Ap(w,x)

by step (a), and then to

3u, v ,w,y .[x(a)] (u) Ap(u,v) A Ix (b)] (w) Ap(w,y)

by step (b). This abstraction is TD.

Theorem 8.25. J~ is TD.

364 F. Giunchiglia, T, VValsh

Proof. By showing that the axioms of Z2 follow from a set of axioms logically
equivalent to the axioms of Zl. TH(Z'2) is therefore a subset of TH(Z~).
First transform each axiom in £21 into (the equivalent) disjunctive normal
form. Then for each disjunct ~0, if (p contains the constant a, replace ~0
by the equivalent formula, 3x . [K(a)] (x) A ~o{x/a}/~ x = a. If ~0 contains
multiple occurrences of an existentially quantified variable, replace each
occurrence by a new existentially quantified variable and add the equality
condition that these new existentially quantified variables are equal. The
resulting axioms are logically equivalent to those of Z~. The axioms of Z2
are just the result of dropping from these clauses all the equality conditions
added for the constants and existentially quantified variables. []

Note that the language of the abstract space is more complex than the
language of the ground space, and that the axioms of the abstract space are
more complicated than the axioms of the ground space. It therefore seems
doubtful that theorems will be easier to solve in the abstract space than
in the ground space. The only saving is that instead of having to show a
property true for a, we merely have to find it true for any of the members
of lc(a) (and one of these proofs might be easier to find).

lmielinski's two domain abstractions, one TI and the other TD, provide
upper and lower bounds on the theorems of the database. That is, the answers
returned by f2 are a subset of the theorems of the ground space while those
returned by f~ are a superset. Imielinski is also able to characterize a subset
of the language of Z over which J] (Z) and j~ (Z) agree exactly with Z.
Consider the "propositional" subset, F , of the language of Zl; that is, those
wffs in A l without existential quantifiers. The following result holds.

Theorem 8.26. fl and f2 are TC with respect to F.

(Here an abstraction f 'Z1 ~ ~v'2 is said to be TC with respect to F iff
for any (p E F, (p E TH(XI) iff f(~0) E TH(Z2) .) This theorem is stated as
[32, Lemma 4].

8.5. Metatheoretic results

This section describes some important metatheoretic results which can be
captured as abstractions.

Example 8.27 (Theorem proving). An important class of abstractions intro-
duced by Plaisted [60,61] is the class of the so-called ground abstractions.
(Note that here the word "ground" is used with a meaning different from
before. This is due to an historical accident. We could have eliminated
the confusion by changing the terminology, e.g. by talking of the "concrete

A theory of abstraction 365

space" instead of the "ground space". As the two uses of the word "ground"
overlap in a very limited number of places and in such a way that the
context always makes clear the correct meaning, we have preferred not to
do so.)

Ground abstractions are A/fl-invariant abstractions from a first-order
calculus to a formal system with a variable and quantifier-free first-order
language and a complete propositional decider that treats ground atomic
formulas as propositions. The mapping function, fground is used to abstract
the wffs (and the axioms) of z~ 1 onto those of 272. fgro,nd can be defined to
work for refutation and provability systems. We consider the second case,
the first case is dual. fground(~) first skolemizes ~0; for provability systems
this means replacing universally quantified variables and free variables by
skolem functions and constants in the usual way. This mapping produces a
formula which is provable if and only if ~0 is. The second step performed by
fgro,nd is to build a disjunction of some ground instances of the skolemized
wff, each ground instance obtained by substituting the existential variables
with elements of the Herbrand Universe. That is, if we write Vi pi to mean
a disjunction of formulas,

where the ~ are ground skolemized instances of 9, possibly infinite in
number.

Theorem 8.28. fground is TD.

In fact fground is TC if we consider all the ground instances of ~0. This
is a corollary to Herbrand's theorem [30]. For Herbrand's theorem an
existential formula is provable iff a finite disjunction of its ground instances
is, which in turn is provable iff the (possibly infinite) disjunction of all
its ground instances is. fsround can be made TD but not TC simply by
dropping some ground instances (if a wff is a theorem, then any disjunction
containing it is). Dropping instances implements the idea of approximating
a theory. A smaller subset gives more savings in the cost of theorem proving
in the abstract space but, at the same time, loses more theorems. The TC
version of f~ound has been used in [19] to build a complete decider for
a class containing the class of UE-formulas,(that is, those formulas whose
prefix contains a sequence of universal quantifiers followed by a sequence
of existential quantifiers).

Notice that fground is not negation preserving. Therefore the fact that it
is TD does not imply that it is NTD. Indeed in general it is not. On the
other hand the version of fground defined for refutation systems, let us call
it fg~o,,d, is NTD. The NTC version of fg~ound (that is, that considering all

366 F. Giunchiglia, T. Walsh

the ground instances) has been proposed as an NTI abstraction by Plaisted
[6o].

Example 8.29 (Theorem proving). Semantic abstractions can be constructed
because of the soundness theorem for a logic. They can be defined for any
logic which has a model-theoretic semantics. The soundness theorem for a
logic states:

Theorem 8.30 (Soundness). I f ~- ~o, then for all interpretations, I, which are
models o f the axioms, ~I q~.

The truth of a wff can be computed in an interpretation after providing
a universe of objects for variables to range over, calculation procedures
(computer programs in effect) for functions and predicates, plus the standard
interpretations for connectives and quantifiers. The computation in the
model can be formalized as deduction in a formal system consisting of some
variation of the lambda calculus (this has been actually done to formalize
the use of the simulation structure inside the F0L system [28,59,72,79]). The
soundness theorem thus expresses a TI abstraction between a formal system
in which we prove theorems and a formal system in which we compute
truth in an interpretation (which constitutes the intended model).

The abductive use of semantic abstractions is not very interesting as it
is not obvious how we could use a computation in the model to drive
the search for a proof in the theory. Also this computation needs usually
an infinite amount of time (the domains of interpretation are in general
infinite). Semantic abstractions are instead useful when used deductively to
prune the search space. It follows from the soundness theorem that:

Lemma 8.31. I f there exists a model I in which ~:~ {o, then ~ ~o.

Hence, if a (sub)goal turns out to be false in a given model then we know
that this (sub)goal will not be provable and can be deleted from the search
space. For example, Gelernter [16] in his famous geometry theorem prover
and Reiter [68] in an incomplete natural deduction theorem prover used
such counter-examples to remove unachievable subgoals. Semantics have
been used extensively in the literature, sometimes in more sophisticated
ways. For example, in [2,68] models are used to suggest the instantiation
of variables. Plaisted [60,61] proposes a class of "semantic abstractions"
for resolution theorem proving which falls half way between the ground
abstractions and the semantic abstractions described here. In this class of
ordinary abstractions, clauses are grounded and each term (but not predi-
cate) is replaced by its interpretation; normal (propositional) resolution is
then applied to these abstracted clauses.

A theory of abstraction 367

8.6. Summary

The properties of the abs t rac t ions described in the examples in this sec-
tion are summarized in Table 1. We will make some general remarks about
this table. We believe that this is a representative sample of abstractions in
general and of abs t rac t ions in particular.

First, all the examples preserve provability in one way or another; almost
all are, in fact, TI* abstractions. This supports our emphasis on provability
preserving abstractions, and more especially on TI* abstractions. Second, the
majority of these examples are negation preserving and theory abstractions.
Indeed, we would argue that you should only change the logical structure of
wffs with great care. It is the theory, not the logic, that needs taming. Third,
almost all the abstractions use the same deductive machinery in the ground
and the abstract spaces. This makes implementation very economical. It also
allows us to use hierarchies of abstractions. Fourth, nearly all abstractions
are A/I2-invariant. This, of course, guarantees that the abstraction of any
wff that is an axiom of the ground space is itself an axiom of the ab-
stract space. Fifth, all the TI* abstractions but the semantic abstraction are
used abductively (to give a complete theorem proving strategy), while TD*
abstractions are used both deductively (to give a sound theorem proving
strategy) and abductively. Finally, most of the (theory) abstractions can be
characterized by whether they map the terms or the predicate names. Since
theory abstractions can only map the atomic formulas, this is perhaps not
so surprising.

9. Inconsistent abstract spaces

Implicit in most work in abstraction is the assumption that the ground
space is consistent. If this is not so, any abstraction is trivially TD/NTD.

Lemma 9.1. I f 271 is inconsistent, then any abstraction f : 271 ~ 272 is a
TD/NTD abstraction.

Another common assumption is that an abstraction maps a (consistent)
formal system onto a consistent formal system, If this is not the case, then
the following fact holds:

Lemma 9.2. I f f : "~1 ::~ "~'2 is an abstraction andS2 is inconsistent, then it
is a T1/NT! abstraction.

The results of these two lemmas can be trivially composed. Thus, if "~1 and
272 are both inconsistent then f : "~1 ::~ 272 is a T C / T D / T I / N T C / N T D / N T I

368 F. Giunchiglia, T. Walsh

Table 1
Summary o f a b s t r a c t i o n s , a

A b s t r a c t i o n Example T* /NT* NP TA invariant used maps

A A/.Q r P/T

ABSTRIPS 8.1 TI x/ v / v / V' x abd N
GPS 8.3 TI x x x x/ ~/ abd N
Weak 8.5 NTI 9 9 ~/ x/ ? abd '~
Ordinary 8.5 NTI 9 ? x/' ~/ ? abd ~
General izat ion 8.8 TI ~/ v / x ~/ × abd T
Chang 8.10 TI x/ x/ ~/ x/ V abd T
Decider b 8.12 TD x/ x V' v / x ded N
Predicate 8.14 TI x/ x/ ~/ v / v / abd P
Restr icted 8.16 TD , / v / , f × x abd P

predicate c
Granulari ty 8.20 TI v / v j , / x/' V' abd T
Imielinski 8.23 TI x/ v / , / , / v / abd T
Imielinski 8.24 TD x/ x ,,/ v / x ded I"
Ground 8.27 T D / N T D x x , / ~/ x a - d T
Semantic a 8.29 TI × × ~ ~ ~ ded N

a In the column headings, NP stands for "negation preserving", TA for "theory abstrac-
t ion", "maps P / T " for "maps the predicate names or the terms".

In the table entries, "x/" means that this abstraction has this property, " x " that this
abstraction does not have this property, "?" that abstraction can have this property (but
does not necessarily have to), "g" that this property is not relevant for this abstraction,
"abd" that this abstraction was used abductively, "ded" that this abstraction was used
deductively, " a - d " that this abstraction was used both deductively and abductively, "P"
that this abstraction maps just the predicate names, "T' that this abstraction maps just
the terms, and "N" i f nei ther is true.
b The proposit ional decider is not strictly speaking 3- invar iant since (in the actual
implementa t ion of the decider) theorem proving in the abstract theory is by way of
truth tables and not the proposit ional natural deduct ion rules of the ground theory.
c Restr icted predicate abstract ions satisfy a property very close to that o f TD abstractions.
It is only very restricted predicate abstractions that are actually TD.

Since the abstract theory with semant ic abstractions is one in which we compute the
truth o f a wff with respect to an interpretat ion, it is not very appropriate to discuss the
various A-, A/O- and S- invar ian t propert ies of this abstraction.

abstraction. All these observations are neither deep nor particularly signif-
icant. The ground space is usually consistent even if in most cases this is
not explicitly verified. The interesting question is whether something can be
said about the consistency of the abstract space under the assumption that
the ground space is consistent. The following fact holds.

Theorem 9 . 3 . I f X1 is consistent and f • Xl ~ X2 is a TD* abstraction, then

X2 is consistent.

A theory of abstraction 369

Proof. Proof by contradiction. Assume TH(272) =/12. From the totality of
fA, for any wff @, fA(@) is defined. But for any fa(~) , fa (~) E TH(272).
This means that, for any wff @, fA(~) E TH(272). Since f is TD, for any
wff ~, ~ E TH(27~). This contradicts the assumption that 27~ is consistent.
The proof for NTD abstractions is very similar. []

TD* (and therefore TC*) abstractions always preserve the consistency
of the ground space. However, this is not true for TI* abstractions; the
abstract space can be inconsistent even though the ground space is consistent.
Several examples of inconsistent abstract spaces have been given in the
previous section. For instance, granularity (Example 8.20) and predicate
abstractions (Example 8.14). For the ABSTRIPS abstraction, fAa, consider
the abstraction which drops the second conjunct of the two operators "al A
o~ 2 --~ a 3 " and " a 1 A a 4 ~ -~a3" , where a~ is a theorem, and 52 and a4 are
not both theorems. Examples of consistent abstract spaces can be trivially
found (see previous section).

We have argued that TI* abstractions are the appropriate abs t rac t ions
to be used. However, we have just shown how they can map a consistent
ground theory onto an inconsistent abstract theory. This is a major problem
for the use of TI* abstractions.

The problem of inconsistent abstract spaces was first identified by Nilsson
[58] for ABSTRIPS abstractions. Tenenberg [73] identified the same prob-
lem for predicate abstractions, calling it the "false proof problem". (In [61],
Plaisted talks of the problem of "false proofs" meaning abstract proofs which
do not map back. The two problems are unrelated.) In [27] we show that the
problem is even more general than either Nilsson or Tenenberg claimed--it
can happen under certain very weak restrictions with TI abstractions (an
thus with abstractions). The intuitive interpretation of why the problem
occurs is as follows. In order to build an abstract space "simpler" than the
ground space, the trick is to "forget" some "irrelevant" details and to keep
around what is judged important. The problem is that the irrelevant looking
details may be exactly those that preserve the theory from being inconsistent
(thus making them not so irrelevant).

This is a major blow to the use of TI* abstractions as no proof which
makes use of the inconsistency of the abstract space will map back. From
an implementational point of view, at a first sight, it might not be obvious
that an inconsistent abstract space is going to be such a bad thing. After all
with TI* abstractions, it is never guaranteed that the abstract proofs map
back. Besides the theoretical objections, which we think are of substantial
importance, we argue that the problem is also very relevant from an imple-
mentational point of view. If the theorem proving strategy in the abstract
space is not suitably constrained, a lot of inefficiency could be introduced,
and reasoning with abstraction could become less efficient than reasoning

370 t". Giunchiglia, Y'. Walsh

without abstraction. Additionally, if the abstract space uses refutation, we
will not know if inconsistency comes from the fact our goal is true or from
the fact that our abstract axioms are inconsistent. To make the problem
even more serious, it is in general not possible to decide in a finite amount
of time whether a formal system is consistent.

When working with a fixed formal system, one solution is to build ab-
stractions which are proved a priori to construct a consistent abstract space.
Often, however, the axioms are not fixed in advance. In such a situation, the
ideal solution would be to find sufficient conditions which guarantee that
whatever the axioms, the abstraction maps a consistent ground space onto a
consistent abstract space. In [27] (or in the shorter version [22]) we show
that this request turns out to be unsatisfiable. In fact, under certain very
weak restrictions (satisfied by almost all abstractLons) , for (the mappings
of) all the TI* abstractions which are not TC* there always exists a set c21
consistent axioms whose abstract space is inconsistent. This problem should
therefore be a major consideration for anyone proposing the use of a TI*
abstraction. A discussion of a possible solution to this problem requires
further machinery which has not yet been introduced and it is therefore
postponed to the end of Section 12.

I0. Operations on abstractions

We have defined an abstraction as a mathematical object; that is, as a
pair of formal systems and a mapping function. This has the advantage
of allowing us to define mathematical operations (like composition and
inversion) and to use them to formalize certain steps which are performed
when using abstraction inside a theorem prover. In the following we give
these definitions only considering fA. In order to tackle the problem of how
to use abstractLons (when we need to describe how proof trees are mapped
from the ground space to the abstract space and vice versa) we need to give
stronger notions which consider also the mappings of the axioms and of the
deductive machinery. These extensions are a trivial extension of the ones
presented here and will be described in a following document.

First we define what it means for two abstractions to be "equal".

Definition 10.1 (Equality). If f : XI ~ X2 and g : X1 ~ X2 are abstractions,
then f is equal to g iff their mapping functions are identical, that is, iff

f t = gA"

The notion of equality between abstractions, which relies on the notion of
functional (extensional) equality, allows us to identify abstractions whose
fA'S are given different intensional definitions.

A theory of abstraction 37 1

We also need a notion of identity abstraction.

Definition 10.2 (Identity). If f : 27 =~ 27 is an abstraction, then f is called
the identity abstraction of 27 iff the mapping function is the identity function.

The identity abstraction maps any formal system, 27 into itself and it is
uniquely determined by it. An identity abstraction is trivially TC/NTC.

Composit ion is a very important operation.

Definition 10.3 (Composition). If f : $1 ~ 272 and g : 272 =~ 273 are abstrac-
tions, then f o g : 271 =~ 273 is the abstraction composition of f and g with
the mapping function fA o gA.

The composition of two abstractions (when possible) is itself an abstrac-
tion. It is therefore a useful way of constructing new abstractions from old
ones. The composition of two abstractions will give an abstraction f o g that
is at least as "strong" as either of the individual abstractions, f or g as it
throws away the same information as f and the same information as g.

Sometimes the proof of the abstract goal is not enough as the proof
of the ground goal is also needed. The typical example is absZraction
where the abstract space is used abductively, that is to suggest theorems or
nontheorems (see Section 5). Another example is when the ground proof is
a plan to be executed [74]. In these cases, we need to unabstract certain
objects of the abstract space, for instance the wffs occurring in a proof,
to their corresponding objects in the ground space. To formalize (part
of) this notion we introduce the notion of inverse of an abstraction. Not
all abstractions have inverses; in fact, it is only possible to invert those
abstractions which do not throw away any information. To be more precise,
an abstraction must be injective if it is to be invertible. (Remember that
we are only considering surjective abstractions.)

Definition 10.4 (Injectivity). An abstraction f : 271 :=~ 272 is injective iff if
a ¢: fl then f (a) # f (f l) .

Definition 10.5 (Inverse). If f : 271 =~ 272 is injective, then the abstraction
g, g : 272 =~ 271 such that f o g = J~, where J~ is the identity abstraction of
271, is called the inverse of f , written f - l .

Notice that the inverse of an abstraction is itself an abstraction and that
it is uniquely determined by f (if g : 272 =~ 271 and h : 272 =~ 271 are both
inverses of f : 271 =~ 272, then g = h). Since they cannot th rowaway any
information from the language, injective abstractions do not in general give
a simpler abstract theory and are not of much practical use as abs t r ac t i ons .

372 F. Giunchiglia, 7~ ~¢'alsh

In general, in the mapping back (for instance of a proof) from the abstract
to the ground space there are many choices, and it is part of the theorem
proving strategy to decide which to try first. This topic is discussed in [24].
A lot of the TC* abstractions are injective (for instance the TC* ground
abstraction is injective modulo the renaming of the free and bound variable
in the ground space, see Example 8.27).

The inverse and the composition of two abstractions are abstractions. In
general we require stronger properties. For instance, we need to know how
composition and inverse affect the preservation of provability and inconsis-
tency. For instance, if we know that the composition of two abstractions
is an a b s t r a c t i o n then composition provides us with a tool for constructing
new abstractions.

The inverse of an abstraction f - L , not too surprisingly, has the inverse
provability or inconsistency preserving property to f . In other words a TI*
abstraction inverts to a TD* abstraction (and vice versa).

Theorem 10.6. I f f : 271 ~ 272 iS a TI* abstraction (TD* abstraction) which
admits an inverse f - l , then f - 1 is a TD* abstraction (TI* abstraction).

Proof. We consider the case where f is TI. The other cases are analo-
gous. If ~0 E TH(271), then f(q~) E TH(X2). Now , f - l (f ((o)) = q~. Thus,
f - l (f (~0)) E TH (271) implies f (~0) E TH (272). Since f is surjective, f (~)
ranges over the whole language of 272. Thus f - ~ : Z2 ~ St is a TD abstrac-
tion. []

The composition of two abstractions preserves provability or inconsistency
in the same way as its components. For example, the composition of two
TI abstractions is itself a TI abstraction.

Theorem 10.7. I f f : $1 ~ Z2 and g : $2 ~ 273 are TI* abstractions
(TD* abstractions), then f o g : Y,1 ~ Z3 is also a TI* abstraction (TD*
abstraction).

Proofl We consider the case of TI abstractions. The other cases are anal-
ogous. If f is a TI abstraction and ~0 E TH(ZI) , then f(~o) E TH(S2) .
However, g is also TI so if f(~o) E TH(272) then g(f (~o)) E TH(S3) .
Thus, if~o ETH(271) then f o g ((o) ETH(Z3) . []

Composing abstractions which preserve provability or inconsistency in
different ways is definitely "not safe". Consider, for example, when f is a
TI abstraction and g is an identity abstraction. Now f o g is equal to f ,
and is thus TI. However, being a TI abstraction gives no guarantee that the

A theory of abstraction

Table 2
Composi t ion of abstractions.

TD
TC
TI
N T D
NTC
NTI

TD TC TI N T D NTC NTI

T D TD .9 .9 ? .9
T D TC TI .9 .9 .9

.9 TI TI .9 .9 .9

.9 .9 .9 N T D N T D .9

.9 ? .9 N T D NTC NTI

.9 .9 .9 .9 NTI NTI

373

abstraction maps nontheorems in a helpful way (except in syntactically com-
plete systems); similarly, being NTI gives no guarantee that the abstraction
maps theorems in a helpful way. Thus composing TI abstractions with NTI
abstractions can give unpredictable effects; the resulting abstraction may be
TI, NTI, or neither.

We summarize all these results (and more) in Table 2. This table de-
scribes the properties of an abstraction formed by composing an abstraction
possessing the property given by the row heading with an abstraction pos-
sessing the property given by the column heading. Thus, the entry in the
second row and third column indicates that composing a TC abstraction
with a TI abstraction gives another TI abstraction. The symbol "?" is used
to indicate that the provability or inconsistency preserving properties of the
abstraction composition is not predictable. Note that only eight question
marks would appear in a table for mappings between syntactically complete
formal systems (in which NTI is the same as TD, etc.); however, such a
table would contain much redundancy and could be represented by just one
quadrant of this full table.

Two observations are worthwhile. First, in the case of abstractions,
preserving provability is not enough as the similarity of proofs must be pre-
served as well. To guarantee that the composition of two abstractions pre-
serves this property (and therefore that it is itself an abstraction) Plaisted's
abstraction mappings [61] additionally have to preserve subsumption (con-
dition (c)). We do not need this additional requirement here, but we use a
definition similar in spirit (called tree subsurnption) when studying how to
use TI* abstractions as abstract ions [24]. Second, notice that abstraction
composition can be iterated. Does such iteration always converge? That is,
do we reach a fixed point? This question will be dealt with i n Section 12
below.

374 F. Giunchiglia, T. Walsh

11. Ordering of abstractions

We have called one abstraction "stronger" than another without precisely
defining how we might order abstractions. Being able to order abstractions
helps to describe the complexity of the abstract spaces. It also offers a
solution to the problem of inconsistent abstract spaces identified in the last
section. The definitions of T* and NT* abstractions suggest two obvious
ways of ordering abstractions: T* abstractions can be ordered by the number
of theorems in the abstract systems, and NT* abstractions by the number
of nontheorems. For syntactically complete systems, these two orders are,
of course, related.

To construct an order, the abstractions must map from the same ground
space. However, they can map to completely different abstract spaces. For
T* abstractions, we use the following order:

Definition 11.1 (_) . If f • 271 ~ 272 and fj • 2~1 ~ 273 are two abstractions,
then j~ _ f# i f f for all wffs (p, if f (~0) E TH(Z2) then j~(~0) E TH(273). We
also say that J) is stronger than ~, or that ~ is weaker than ~ .

J) is "stronger" than f in the sense that there are more wffs, ~, in
TH(Z1) such that ~ (~) E TH(X3) than wffs, fl, in TH(XI) such that
f . (f l) E TH(272). _ will be used to order T* abstractions. Note that f , E_
does not imply that the abstract language of f is a subset of the abstract
language of ~ .

For NT* abstractions we will use a different order:

Definition 11.2 (__). If J} : Xi =* X2 and ~ : X1 ~ 273 are two abstractions,
then f __ fj iff for all wffs ~0 if J~(~o) E NTH(X2) then fj(~o) E NTH(Z3).
We also say that fj is stronger with respect to NTH than f , or that f is
weaker with respect to NTH than .~.

~ is the analogous order to E for NT* abstractions. Its properties are en-
tirely dual to those of E. Indeed, when the systems involved are syntactically
complete we have J) -_<_ f iff j~ _ f j (by Theorem 6.3). The remainder of
this section therefore concentrates on E with the observation that everything
holds dually for _. We first introduce the symbol for equivalence.

Definition 11.3 (--). ~ - ~ iff ~ E_ ~ and fj ~ f .

If fi - 3~, we say that fi is equivalent to ~ . - is in fact an equivalence re-
lation and satisfies the usual properties of equivalence relations (transitivity,
symmetry, and reflexivity). E_ is a preorder, in fact:

A theory of abstraction 375

I.emma 11.4 (Preorder). E is a preorder. That is, it is
• transitive:, ifJ~ E ~ and fj E fk, then J~ E_ fk;
• reflexive:, fi E_ fi.

E is not a partial order as two equivalent abstractions are in general not
equal as they have different abstract spaces and fa's (this makes antisym-
metry fail). Starting from _ we can define, in the obvious way, the partial
order E-- over the equivalence classes of abstractions.

One very important property of this ordering on abstractions is that if
we can order two abstractions, the provability preserving properties of one
abstraction are also possessed by the other.

Theorem 11.5. I f fi : ~'l =~ "/~2 is a TI abstraction (TD) and J) • "~l ~ "~'3 is
an abstraction such that J~ E fj (fj E Ji), then fj is TI (TD).

Proof. We only give the proof for TI abstractions; the proof for TD abstrac-
tions is entirely dual. IfJ~ is TI, then ~ E TH(X1) implies j~(¢) E TH(X2).
As J~E fj, ~ (¢) E TH(X2) implies J~(~) E TH(X3). Thus ~ E TH(XI)
implies .~(¢) E TH(X3). That is, .~ is TI. []

Another useful property is that any TI abstraction is stronger than any
TD abstraction.

Theorem 11.6. I f fi : ~'1 ~ "~'2 is a TI abstraction and fj • X1 =~ X3 is a TD
abstraction, then fj E f i .

Proof. Since fj is TD, J~(~) ~ TH(X3) implies ~ E TH(XI). But, as f,- is
TI, ~ E TH(X1) implies J~(~) E TH(X2). Thus, f j (~) E TH(X3) implies
J~(~) e TH(X2). That is, fj E J~. []

A simple coronary to this last theorem is that J) E Jl E j~ where J~ is
an identity abstraction, J~ is any TI abstraction, and fj any TD abstraction.
Another consequence is that ~ = J~ for any TC abstraction. Thus E generates
orders with chains of TI abstractions on the right, all the TC abstractions
in the middle, and chains of TD abstractions on the left. Given a set of
ordered abstractions, if one of the abstractions is TI then all the stronger
abstractions are also TI, and if one of the abstractions is TD than all the
weaker abstractions are also TD.

Composition is a very natural way to build such ordered sets of T*
abstractions as the following result holds.

Theorem 11.7. I f fi : "~'1 :=~ ~'2 is an abstraction and 3~ " X2 ~ ~,3 is a T~
abstraction (TD abstraction), then fi E fj o fi (fj o fi E fi).

376 F. Giunchiglia, T. Vcalsh

Proof. As usual the proof for TD abstractions is dual to the proof for TI
abstractions. If f(~o) E TH(Z2) and S) is TI, then ~(~(~0)) c TH(Z3).
Thus f (9) E TH(272) implies f j o f (~ o) E TH(X3). That is, f _ [)oJi. []

Notice that in Theorem 11.7 we have made no hypotheses about Ji which
could be TI, TD, TC, or none of these. On the other hand, we can use
Theorem 11.7 to construct ordered sets of TI abstractions out of a basic set of
TI abstractions. For example, we might reduce the computational complexity
of a planning domain by composing an ABSTRIPS-like abstraction, fAB, with
a propositional abstraction, fprop. It quickly follows that,

.~ ~ lAB ----- fprop o JAB-

In Section 9 we have shown that TI* abstractions can map a consistent
theory onto an inconsistent theory. A very useful property of E_ is that
a totally ordered set of abstractions has all those with consistent abstract
theories on the left and those with inconsistent abstract theories on the
right; more precisely, if an abstract theory is consistent then all weaker
abstractions map onto consistent abstract theories, while if an abstract
theory is inconsistent then all stronger abstractions map onto inconsistent
abstract theories.

Theorem 11.8. I f fi " 271 =z~ X 2 ' and fj " 27~ ~ Z3 are two abstractions such
that fj E_ fi, then if Z2 is consistent, Z3 is also. Alternatively, ~f Z3 is
inconsistent then Z2 is also.

Proof. As f j _ f , then fj((p) E TH(Z3) implies j'}(~o) E TH(Z2). Assume
that 2;2 is consistent but that 273 is inconsistent. There will exist a wff, ~,, for
which f (~ /) ~ TH(X2). But f j (~) ~ TH(Z3) as all wffs are provable in an
inconsistent theory. Thus, f (~ ,) (T H (X 2) and ~ (~ ,) c TH(-Y3). But this
contradicts ~(~0) 6 TH(X3) implying J~(~o) 6 TH(Z72) for all ~0. Hence, if
272 is consistent then 273 cannot be inconsistent. And if X3 is inconsistent
then 2"2 cannot be consistent. []

This result will be used, in Section 12, to propose a solution to the problem
of inconsistent abstract spaces discussed in Section 9.

12. Hierarchies of abstraction spaces

So far we have concentrated on applying abstraction only once. However,
the process of abstraction can be iterated to generate hierarchies of abstract
spaces. Almost all the work done in the past with a b s t r a c t i o n s used this
technique as well as that on approximations (which uses also TD abstractions

A theory of abstraction 377

as a means to underestimating the solution). The goal of this section is to
discuss the use of hierarchies on the basis of the results presented before in
this paper. We concentrate on TI abstractions but everything is generalizable
to NT* and TD* abstractions.

By iterating the process of abstracting we mean repeatedly:

• picking an abstraction;
• explicitly generating the abstract space;
• using (or abstracting further) the abstract space.

By composing abstractions we mean abstraction composition (in the math-
ematical sense of function composition) as defined in Section 10. Notice
that, while the iteration of abstractions implies the generation of all the
intermediate spaces, this is not the case with abstraction composition.

At each step, both in abstraction iteration and in abstraction composition,
a different abstraction can be applied, as long as it is TI. Thus, for instance,
we might first collapse predicates (as Tenenberg proposes), then collapse
constants (as Hobbs' granularity theory suggests), then apply an ABSTRIPS
abstraction or granularity again, and so on. Which, among all the possible
sequences of abstractions, is the best to use is very much dependent on the
problem.

If we choose to perform abstraction iteration by composing abstractions,
the abstract spaces can be constructed starting directly from the most abstract
and then going back towards the ground space; this avoids us going forwards
through all the intermediate abstract spaces. Having decided which set of
abstractions to compose, it is sufficient to build the composite mapping
function and with this the most abstract space. Note that this trick can also
be used to generate all the intermediate abstract spaces back to the ground
space.

The question which arises is then as follows. If we do not put a bound on
the number of abstractions applied in the chain, can we get to an abstract
space 27/ such that abstracting 27i generates 27i itself or, more generally, the
same number of theorems as 27/? That is, can we get to a fixed point? A
related question is "if we get to such a situation, are we actually able to
recognize it?". In general there are many sequences of abstractions. Are the
fixed points computed by each sequence the same or different?

There are two possible situations.
In the first case, 27i is inconsistent. In fact, as we increase the strength

of the abstraction, we monotonically increase the number of theorems; we
eventually reach an upper bound when the set of theorems coincides with
the language. Notice that it may not be possible to recognize that we are
at the fixed point due to undecidability. Thus, in trying to generate simpler
and simpler abstract spaces, it is actually possible to generate indefinitely
long chains of abstractions. Putting an upper bound on the depth of the

378 1~: Giunchiglia, T. I4"alsh

chain is one solution to this problem. A better solution perhaps is to require
that there is a point after which all the X~ are decidable (an easy way to
generate a decidable abstract space Xi is to use an propositional abstraction,
that is an abstraction whose abstract space is propositional).

In the second case, Z'~ is consistent but abstracting it further does not
increase the number of theorems. This happens when the abstraction tries
to forget details which have already been forgotten. This might be the case
with most a b s t r a c t i o n s which, at each step, decrease the complexity of the
search space. Possible situations are: trying to delete preconditions which
do not occur, applying a propositional abstraction to a propositional ground
space, or collapsing predicates already collapsed. In this situation, the fixed
point is different for each different abstraction. We are, however, always
able to recognize when we are at such a fixed point.

Abstraction iteration can be used to tackle the problem of inconsistent
abstract spaces (see Section 9). Because abstract spaces are usually undecid-
able, no general methods for building consistent abstract spaces independent
of the (consistent) ground space can exist. In Section 9 we have argued that
an inconsistent abstract space should be avoided. One way around the prob-
lem of inconsistent abstract spaces is to place strong restrictions on the
types of abstraction and/or axioms allowed. For example, we might only
work with TD* abstractions but this loses completeness. Or we might fix in
advance the formal system or the class of formal systems so that the ab-
straction is guaranteed to construct a consistent abstract space; for instance,
we might place a syntactic restriction on the axioms allowed in the ground
space.

Many attempts in this direction have been tried. We will briefly repeat
some observations from the examples reported in Section 8. Tenenberg
[73,74] presents two solutions to this problem for predicate abstractions.
The first keeps in the abstract space only those axioms from the ground
space that do not distinguish between the predicates which are mapped to-
gether. Unfortunately deciding indistinguishability is an undecidable prop-
erty requiring an arbitrary amount of theorem proving in the ground space.
Additionally, the abstractions in this class are not TI as the abstract space
has fewer axioms than the ground space (since we don't map all of them)
and therefore fewer theorems. Tenenberg's second solution [74] overcomes
the objection to undecidability. In this proposal, axioms are kept in the
abstract space provided they can be trivially shown not to distinguish in the
ground space between predicates which are conflated together; thus, instead
of performing an arbitrary amount of theorem proving in the ground space
to determine indistinguishability, we insist that it is an immediate conse-
quence of the axioms. While being decidable, this solution is again not TI.
Hobbs [31] and Imielinski [32] also suggest solutions to the false proof
problem for domain abstractions in which the objects in the language (and

A theory of abstraction 379

not the predicate symbols) are mapped together. Hobbs' proposal, however,
requires arbitrary theorem proving in the ground theory, while Imielinski's
proposed solution is not TI.

One solution (discussed in detail in [21]), suggested by Theorem 11.8
in Section 11, is to use an ordered chain of TI* abstractions, the strongest
of which gives a decidable abstract space. If this abstract space is consis-
tent, then all the intermediate abstract spaces back to the ground space
will be also. Thus we can iterate back through the chain of abstractions
safe in the knowledge that all the intermediate (and possibly undecidable)
abstract spaces are consistent. Of course, we can't escape undecidability so
this trick is inevitably cautious; for instance there will be cases where the
strongest abstract space is inconsistent but the intermediate abstract spaces
are consistent.

13. Building abstractions

We have argued at length that abstractions should preserve provability.
Unfortunately, it is difficult to predict in advance how an abstraction will
affect the "global" property of provability.

The goal of this section is to define some "local" properties of an ab-
straction we can test, that is a set of restrictions on fa and on the rela-
tions between axioms and deductive machinery in the ground and abstract
spaces, which guarantee that it is TI*. One step in this direction was done
by Plaisted, who provided a set of properties, built inside his definition
of ordinary and weak abstractions, for NTI abstractions between resolution
systems. However his definitions are still based on the preservation of prov-
ability and not on the more primitive notions of fA, 271, and Z'2. This means
that, given a definition of abstraction we still have to prove that it satisfies
these properties. (Plaisted, in fact, lists, as examples, a set of abstractions
which satisfy those properties [60].)

A first result is that all 2?-invariant abstractions are TI. (A 2?-invariant
abstraction is an abstraction in which the language, axioms, and inference
rules are all abstracted using the same mapping function.)

Theorem 13.1. I f f : S l =~ S,2 is a ~,-invariant abstraction, then it is a TI
abstraction.

The proof follows trivially from the consideration that we can map a proof
tree H1 of (D onto a proof tree/72 of f (q~) merely by applying f to every
wff in the proof tree. Notice that Theorem 13.1 holds even if the abstraction
is d-variant, that is, even if the deductive machinery in the abstract space
is different from that in the ground (as in GPS).

380 F. Giunchiglia, T. Walsh

This is, of course, not the only way to build TI abstractions. Indeed, there
are TI abstractions that are not X-invariant. In most cases, we inherit a
fixed language and inference engine for the abstract and ground theories.
We cannot therefore use S-invariant abstractions which change the inference
rules. Instead we want to find A-invariant abstractions as this saves us
implementing a new inference engine for the abstract theory, and allows us
to use hierarchies of abstractions. Plaisted proves [61, Theorem 2.t] some
local properties that are sufficient but not necessary to make such mappings
between resolution systems NTI abstractions. We can generalize this result
to find conditions on a A-invariant abstraction between first-order languages
with complete deductive machinery that make the abstraction TI/NTI.

As we noted before, most useful abs t r ac t i ons change the theory not the
logic. That is, they map the predicates but not the logical structure of the
wff. In general, the logic is well-behaved and it is the theory that needs to
be simplified. There is another good reason for using theory abstractions;
if the abstraction is to be TI, then it needs to preserve the meaning of the
connective introduction and elimination rules. For example, since we can
derive p A q from p and q, we need to be able to derive f (p / ' , q) from
f (p) and f (q). A theory abstraction will guarantee that deductions using
the connective rules remain valid deductions in the abstract theory'. The
majority of useful abs t r ac t i ons are also A/~2-invariant abstractions. For
an abstraction to be TI, the abstraction of the axioms of the ground theory
must also be theorems of the abstract theory. This is easily achieved by
making the abstraction A/~2-invariant.

We have thus reduced the problem of constructing a A-invariant abstrac-
tion to the much easier problem of deciding on a suitable mapping of atomic
formulas for a A/12-invariant theory abstraction. The question now becomes:
can we come up with any syntactic test on this mapping which guarantees
that the abstraction is TI? Given the undecidability of provability, it is
impossible for us to find a test that captures the whole class of TI abstrac-
tions. However, it is possible to come up with a test that captures a very
large subclass. Indeed, the test captures most of the abs t r ac t ions listed in

Section 8.

Theorem 13.2. I f f : S1 ~ X2 is a A/~2-invariant theory abstraction such
that its mapping function, f t , preserves the names" of the occurrences of the
free and bound variables which occur in the abstract space and preserves
substitution instances, that is, fA (P [a]) = fA (P [x]){f~ (a)/x}, then f is a
TI* abstraction.

Proof (Outline). (Remember that we are restricting ourselves to first-order
systems). Since f is a theory abstraction it is negation preserving. Thus
it is sufficient to prove that f is a TI abstraction. We show how, given a

A theory of abstraction 381

proof tree H~ of ~ in ,a~l, w e can construct a proof t ree / /2 of f (~) in 272.
The argument proceeds by induction on the length of the proof tree HI.
If the proof tree is of length 1, then (0 must be an axiom. But, as f is
A/t'2-invariant, f (~) is also an axiom. We then assume that we can show
it for all proof trees up to length N, and prove it is true of all proof trees
H~ of length N + 1. We consider the last inference in the proof tree H~. If
it is a connective introduction or elimination, a universal elimination or an
existential introduction, then we apply the same rule at the bottom of the
proof tree we construct in 272. For a reductio ad absurdum, the preservation
of substitution instances guarantees f (±) = ±. We can therefore apply an
application of reductio ad absurdum at the bottom of 272. If it is a universal
introduction or an existential elimination, then the same rule can also be
applied in 272 since the conditions on applying the rule (that the assumptions
do not mention the free variable being universally quantified, etc.) still hold
as variable names are preserved. []

Notice that we can drop variables in the abstract space, for instance by
applying a propositional abstraction (this is why the theorem is restricted
to the variables which occur in the abstract space). Actually, we can drop
the requirement on preserving the name of bound variables provided we
are carefully to avoid any naming clashes. If we restrict ourselves to ab-
straction mappings between resolution systems, Theorem 13.2 is similar to
[61, Theorem 2.1]; for Plaisted's abstractions, our extra condition on the
name of variables is redundant since all wffs are already skolemized and no
variable naming problems can arise. Note that preserving variable names
and substitution instances does not capture all TI theory abstractions. For
example, the theory abstraction that maps p (a) onto -I- and p (x) onto p (x)
is TI if p (a) is a theorem of the ground space; however, this abstraction
does not preserve substitution instances.

Thus we have found a useful syntactic condition on the mapping that
guarantees that the resulting abstraction be TI. The question now becomes:
what sort of mappings preserve substitution instances and preserve (or
drop) variables? Historically, most abstractions fall into four main types
(see Sections 8.1-8.4):

• predicate abstractions where we map the predicate names in some uni-
form way;

• domain abstractions where we map the constants or function symbols
in some uniform way;

• propositional abstractions where we drop some or all of the arguments
to predicates;

• A B S T R I P S abstractions where we map some of the preconditions onto
q- (the condition on preserving substitution is vacuously satisfied).

382 F. Giunchiglia, T. Walsh

All the abstractions in these four classes satisfy the hypotheses of Theo-
rem 13.2.

Taking a closer look at the classes of a b s t r a c t i o n s defined above it is easy
to notice that all of them work on atomic formulas and that each abstracts
different parts. This observation can be exploited to make a systematic clas-
sification of abstractions which satisfy the hypotheses of Theorem 13.2. This
characterization can be given following the recursive definition of atomic
formulas. Thus theory abstractions that preserve substitution instances can
be characterized as follows:

(1) term abstractions which map the terms, themselves classified into:
• constant symbol abstractions which map constants,
• function symbol abstractions which map function symbols;

(2) predicate symbol abstractions which map predicate symbols.

Notice that this last classification is exhaustive in the sense that it considers
all and only the possible ways to build TI abstractions by manipulating the
parts of the atomic wffs.

The only examples of constant symbol abstractions are domain abstrac-
tions. In fact the only syntactic information that a constant carries is its
name, which is thus the only thing which can be forgotten. To forget details
of a constant necessarily means to collapse it with another one (to introduce
a new name is useless). We call this collapsing.

With function symbol abstractions, it is possible to collapse the function
name, or to change the arity. Thus the arity can be decreased by any number
of arguments (in the limit, functions become constants), or the order of
the arguments can be changed (increasing the number of arguments is not
considered here since it corresponds to an increase of complexity). We call
this argument manipulation.

With predicate symbol abstractions it is possible to collapse the pred-
icate name (i.e. predicate abstractions) and argument manipulation (e.g.
propositional abstractions). The one type of mapping which distinguishes
function symbol abstractions from predicate symbol abstractions is that
predicate symbols can be (selectively) mapped, after having deleted all the
arguments, onto the special symbols q- or ±. We call this a truth mapping.
ABSTRIPS is an example of a truth mapping.

Finally we note that Theorems 13.1 and 13.2 provide us with a way
to build abstractions which are TI irrespective of the particular axioms
of the ground space. Theorems 13.1 and 13.2, in fact, do not place any
restrictions on the axioms of the ground space, all X-invariant abstractions,
and A-invariant abstractions which preserve substitution instances are TI
irrespective o f the axioms of the ground space. Notice that it is not sufficient
that we abstract the axioms in the same way as the wffs since not all
A/f2-invariant abstractions are TI. For example, let ~1 and X2 be complete

A theory of abstraction 383

propositional theories. If f (p) = T, f (q) = p A q, f (~) = q~ otherwise,
and 121 = {p, q, r}, then it is TI. However, if Q1 = {P, r}, then f is not TI
(since we cannot show p ---, r E TH(272)).

Once we have built up a collection of abstractions, we can use the various
operations on abstractions to construct yet more abstractions. In particular,
we can use the fact that the composition of two T* (NT*) abstractions is
itself a T* (NT*) abstraction, and that the inverse of a TI* abstraction is
a TD* abstraction (and vice versa). Finally, to construct NT* abstractions,
we can call upon the fact that a T* abstraction that is negation preserving
is also an NT* abstraction, and vice versa to construct T* abstractions.

14. Summary and conclusions

We have presented the beginnings of a theory of abstraction. Abstraction is
defined as a mapping between formal systems. We consider such mappings
in the light of how they preserve provability and, for refutation systems,
inconsistency. This framework is very general. Indeed it captures a lot of the
work on abstraction done in the past (see the references in Section 1) and,
as a particular case, abs t rac t ion . Abstractions often satisfy much stronger
requirements than just the preservation of provability; for example, there is
frequently a correspondence between the structure of proof in the abstract
formal system and that in the ground. However, even restricting ourselves
to the weak property of preserving provability, we are able to prove some
very interesting results.

We have used this theory of abstraction to capture and generalize
previous work on abstraction and, in particular, because of our inter-
ests, on abs t rac t ion . This has allowed us to formalize work often in-
formally described in an uniform way, and to classify the different types of
abs t rac t ions . Many, at first sight, seemingly different abstractions are in
fact related; for example, we have shown that Hobbs' granularity [31] is an
example of one of Plaisted's abstractions [61].

The other main use of this theory of abstraction has been to study the
formal properties of abstractions and the operations like composition and
ordering which can be defined upon them. In particular, we have investigated
the properties of the four main classes of abstraction (TI, TD, NTI, NTD),
and the relationships that exist between them. We have also considered the
different ways to use abstractions. Finally we have presented some results
which tackle the problem of how to build "useful" abstractions.

Three individual results are worth highlighting. Firstly, preserving prov-
ability seems a good way to characterize abstractions (and in particular
abs t r ac t ions) . Indeed, with very few exceptions, abstractions fall into one
of two classes, those in which proof (inconsistency) in the abstract space

384 F. Giunchiglia, T. Walsh

implies proof (inconsistency) in the ground, and those in which the opposite
holds. This has immediate implications on the different ways we can use
abstractions (that is, deductively or abductively). Secondly, the problem of
inconsistent abstract spaces, where a consistent space maps onto an incon-
sistent abstract space, is inevitable for almost all abstractions. We have
proposed a solution which exploits the fact that abstractions can ordered.
Thirdly, there are very few choices to be made in building abstractions.
Since in general it is the theory not the logic that is introducing complexity
into the problem solving, one needs merely to decide how to map the atomic
formulas. For an abstraction to preserve provability, it is sufficient that the
mapping of atomic formulas preserve substitution instances. And the sorts of
mappings that preserve substitution instances (that is, collapsing, argument
manipulation, and truth mapping abstractions) capture the four main types
of a b s t r a c t i o n s (that is, predicate, domain, propositional, and ABSTRIPS
abstractions) identified in Section 8.

15. Further work

This paper describes the basic underlying theory we are currently using in
our work on abstraction. At the moment we are working on the following
topics:

• Firstly, we want to refine our formal definition of abstraction to capture
more properties of abs t r ac t ions . This result is a direct consequence
of the development of a theory of mapping an abstract proof back
into the ground space. This requires the definition of the class of
abstractions which preserve (as well as provability) the structure of the
proof between the ground and the abstract spaces. Some preliminary
results can already be found in [24].

• Secondly we need to study what is meant by the abstract representation
being "simpler to handle". Ultimately this will involve a complexity
analysis of the process of solving an abstract problem and using the
abstract solution to aid the proof in the ground space. Some preliminary
results can already be found in [25].

• Thirdly, we want to define and implement a theorem prover for using
abstraction. As hinted in Section 1, we want to implement abstraction
inside an abstract proof checker, that is, inside a system which allows
us to use abstraction interactively. The abstract proof checker is under
development (some preliminary ideas can be found in [26]) and it is
being implemented on top of GETFOL [20], an interactive theorem prover
which runs on top of a re-implementation of the F0L system [28,79].
Some preliminary testing has been made; for instance we have proved

A theory of abstraction 385

with GETFOL a (very) simplified version of G6del's theorem. The results
are encouraging.

• Fourthly, if such a theorem prover is going to be used on real problems,
it will have to construct automatically (or, possibly, suggest in the case
of interactive theorem proving) abstractions. We have done some work
in the case of ABSTRIPS abstractions [7,8].

There are also some areas where we plan on developing our work. In
particular, we are interested in broadening our definition of abstraction to
look at analogy. Abstraction is closely related to analogy and we would
like to study (and implement) them in a uniform framework. Finally, we
would like to combine abstraction with other theorem proving techniques
like proof plans [9]; a successful synthesis of such techniques would help
us towards the dream of creating artificial (mathematical) reasoners.

Acknowledgement

The idea of describing abstraction as a mapping between formal systems
originated when the first author was working inside the F0L group, at the CS
Department of Stanford University. This work started when the first author
was at the AI Department of Edinburgh University. In Edinburgh, financial
support for the first author was provided by SERC grant GR/E/4459.8.
Currently the first author's research at IRST is funded by ITC (Istituto
Trentino di Cultura). The second author is supported by a SERC postdoc-
toral fellowship.

The research described in this paper owes a lot to the openness and
sharing of ideas which exists in the Mathematical Reasoning Group in
Edinburgh and Mechanized Reasoning Group in Trento. The authors thank
Alan Bundy, Alessandro Cimatti, Craig Knoblock, Paolo Pecchiari, Luciano
Serafini, Alex Simpson, Carolyn Talcott, and Adolfo Villafiorita for their
careful reading of earlier versions of this paper. Gregori Mints and Alan
Smaill have helped in the solution of two technical problems. The referee
has provided very detailed and useful feedback which has allowed us to
improve substantially the quality of the paper.

References

[1] S. Abramsky and C. Hankin, An introduction to abstract interpretation, in: Abstract
Interpretation of Declarative Languages (Ellis Horwood, Chicester, England, 1987).

[2] W. Blvdsoe, Using examples to generate instantiations of set variables, in: Proceedings
IJCAI-83, Karlsruhc, Germany (1983).

[3] W. Bledsoc, A precondition prover for analogy, CS Department Memo, University of
Texas at Austin, TX (1990).

386 F. Giunchiglia, T. Walsh

[4] W. Bledsoe and M. Tyson, The UT interactive prover, Tech. Rept. ATP-17, Mathematics
Department, University of Texas at Austin, TX (1975).

[5] B. Brock, S. Cooper and W. Pierce, Analogical reasoning and proof discovery, in:
Proceedings CADE-9 Argonne, IL (1988) 451-468.

[6] A. Bundy, The Computer Modelling of Mathematical Reasoning (Academic Press, NY,
1983).

[7] A. Bundy, F. Giunchiglia and T. Walsh, Building abstractions, in: Working Notes" o[
AAAL90 Workshop on Automatic Generation of Approximations and Abstractions, Boston,
MA (1990); also: DAI Research Paper No. 506, University of Edinburgh (1990); also
Tech. Rept. 9007-02, IRST, Trento, Italy (1990).

[8] A. Bundy, F. Giunchiglia and T. Walsh, Calculating criticalities, Tech. Rept., DAI
University of Edinburgh (1991): also: Tech. Rept. 9112-23, IRST. Trento, Italy (1991);
also: Artif Intell. (submitted).

[9] A. Bundy, D. Sannella, F. Giunchiglia, F. van Harmelen, J. Hesketh, P. Madden,
A. Smaill, A. Stevens and L. Wallen, Proving properties of logic programs: a progress
report, in: 1988 Alvey Conference (1988) 131-133; also: DAI Research Paper No. 361,
Department Artificial Intelligence, University of Edinburgh (1988).

[10] C. Chang, Resolution plans in theorem proving, in: Proceedings" IJCA1-79. Tokyo (1979)
143-148.

[11] C. Chang and J. Slagle, Using rewriting rules for connection graphs to prove theorems, in:
B.L. Webber and N.J. Nilsson, eds.. Readings in Art(fical Intelligence (Morgan Kaufmann,
San Mateo, CA, 1981) 109-118.

[12] R. Cremonini, K. Marriott and H. Sondergaard, A framework for abstraction based on
abstract interpretation, in: Working Notes of AAA1- 90 Workshop on Automatic Generation
of Approximations and Abstractions, Boston, MA (1990) 233-244.

[13] R. Doyle, Constructing and refining causal explanations from an inconsistent domain
theory, in: Proceedings AAAI-86, Philadelphia, PA (1986).

[14] B. Dreben and W. Goldfarb, The Decision problem--Solvable Classes qfQuantfficational
Formulas (Addison-Wesley, Reading, MA, 1979).

[15] T. Ellman, Mechanical generation of heuristics through approximation of intractable
theories, in: Working Notes of AAAI-90 Workshop on Automatic Generation of
Approximations and Abstractions, Boston, MA (1990) .

[16] H. Gelernter, Realization of a geometry theorem-proving machine, in: Proc. IFIP
Congress (1959) 273-282.

[17] A. Giordana and L. Saitta, Abstraction: a general framework for learning, in: Working
Notes of AAAI-90 Workshop on Automatic Generation of Approximations and Abstractions,
Boston, MA (1990).

[18] E. Giunchiglia, A set of hierarchically structured decision procedures fbr some subclasses
of First Order Logic, in: Proceedings 3rd Scandinavian Conference on Artificial Intelligence
Roskilde University, Denmark (1991); also: MRG-DIST Tech. Rept. 9101-01, University
of Genova, Italy (1991).

[19] F. Giunchiglia and E. Giunchiglia, Building complex derived inference rules: a decider
for the class of prenex universal-existential formulas, in: Proceedings 7th European
Conference on Artificial Intelligence, Munich, Germany (1988); extended version: DAI
Research Paper 359, Department of Artificial Intelligence, University of Edinburgh
(1980).

[20] F. Giunchiglia and P. Traverso, GETFOL user manual--GETFOL version 1, D1ST Tech.
Rept. 9107-01, University of Genova, Italy (1991).

[21] F. Giunchiglia and T. Walsh, Abstract theorem proving, in: Proceedings IJCAI-89,
Detroit, MI (1989); also: Tech. Rept. 8902-03, IRST, Trento, Italy (1989); also: DAI
Research Paper No. 430, University of Edinburgh (1989).

[22] F. Giunchiglia and T. Walsh, Abstracting into inconsistent spaces (or the false proof
problem), in: Proceedings AI*IA 89 (1989); also: Tech. Rept. 8904-02, IRST, Trento,
Italy (1989); also: DAI Research Paper No. 514, University of Edinburgh (1989).

[23] F. Giunchiglia and T. Walsh, Theorem proving with definitions, in: Proceedings 7th
Conference qf the Society for the Study of Artificial Intelligence and Simulation of

A theory of abstraction 387

Behaviour (1989); also: Tech. Rept. 8901.03, IRST, Trento, Italy (1989); also DAI
Research Paper No. 429, Department of Artificial Intelligence, University of Edinburgh
(1989).

[24] F. Giunchiglia and T. Walsh, Abstract theorem proving: mapping back, Tech. Rept.
8911-16 IRST Trento, Italy (1989); also: DAI Research Paper No. 460a, University of
Edinburgh (1989).

[25] F. Giunchiglia and T. Walsh, Using abstraction, in: Proceedings 8th Conference of the
Society for the Study of Artificial Intelligence and Simulation of Behaviour, Leeds, England
(1991); also: Tech. Rept. 9010-08, IRST, Trento, Italy (1990); also DAI Research Paper
No. 515, University of Edinburgh (1990).

[26] F. Giunchiglia and T. Walsh, An abstract proof checker, in: Proceedings 2ndlnternational
Conference on Artificial Intelligence and Mathematics, Fort Lauderdale, FL (1992).

[27] F. Giunchiglia and T. Walsh, The inevitability of inconsistent abstract spaces, Tech.
Rept. 9006-16, IRST, Trento, Italy (1990); also: DAI Research Paper, University of
Edinburgh (1990); also: J. Autom. Reasoning (to appear).

[28] F. Giunchiglia and R. Weyhrauch, F0L user manual--FOL version 2, Tech. Rept. 9107-02,
DIST, University of Genova, Genova, Italy (1991).

[29] C. Green, Application of theorem proving to problem solving, in: Proceedings IJCAI-69,
Washington, DC (1969) 219-239.

[30] J. Herbrand, Investigations in proof theory: the properties of true propositions, Ph.D.
Thesis (1930), in: J. Heijenoort, ed., From Frege to Grdel: A Source Book in
Mathematical Logic, 1879-1931 (Harvard University Press, Cambridge, MA, 1967).

[31] J. Hobbs, Granularity, in: Proceedings IJCAI-85, Los Angeles, CA (1985).
[32] T. Imielinski, Domain abstraction and limited reasoning, in: Proceedings IJCAI-87,

Milan, Italy (1987) 997-1003.
[33] B. Indurkhya, Approximate semantic transference: a computational theory of metaphors

and analogies, Cogn. Sci. 11 (1987) 445-480.
[34] J.N. Johnson-Laird, Mental Models (Harvard University Press, Cambridge, MA, 1983).
[35] L. Joskowicz, Approximation and abstraction in spatial reasoning: a case study, in:

Working Notes of AAAI-90 Workshop on Automatic Generation of Approximations and
Abstractions, Boston, MA (1990) 134-140.

[36] M. Keane, Analogical mechanisms, Artif Intell. Rev. 2 (1988) 229-250.
[37] S.C. Kleene, Introduction to Metamathematics (North-Holland, Amsterdam, 1952).
[38] C.A. Knoblock, Learning hierarchies of abstraction spaces, in: Proceedings Sixth

International Workshop on Machine Learning, Ithaca, NY (1989).
[39] C.A. Knoblock, A theory of abstraction for hierarchical planning, in: P. Benjamin, ed.,

Proceedings of the Workshop on Change of Representation and Inductive Bias (Kluwer,
Boston, MA, 1989).

[40] C.A. Knoblock, Learning abstraction hierarchies for problem solving, in: Proceedings
AAAI-90, Boston, MA (1990).

[41] C.A. Knoblock, Search reduction in hierarchical problem solving, in: Proceedings AAAI-
91, Anaheim, CA (1991).

[42] C.A. Knoblock, S. Minton and O. Etzioni, Integrating abstraction and explanation-based
learning in PRODIGY, in: Proceedings A,OI-91, Anaheim, CA (1991).

[43] C.A. Knoblock, Abstracting the tower of hanoi, in: Working Notes of AAAI-90 Workshop
on Automatic Generation of Approximations and Abstractions, Boston, MA (1990) 13-23.

[44] C.A. Knoblock, J. Tenenberg and Q. Yang, Characterizing abstraction hierarchies for
planning, in: Proceedings AAAI-91, Anaheim, CA (1991).

[45] R. Korf, Planning as search: a quantitative approach, Artif lntell. 33 (1987) 65-88.
[46] R. Kowalski, A proof procedure using connection graphs, J. ACM 22 (4) (1975)

227-260.
[47] H.R. Lewis, Unsolvable Classes of QuantificationalFormulas (Addison-Wesley, Reading,

MA, 1979).
[48] J. McCarthy and P.J. Hayes, Some philosophical problems from the standpoint of

artificial intelligence, in: B. Meltzer and D. Michie, eds., Machine Intelligence 4
(Edinburgh University Press, Edinburgh, Scotland, 1969) 463-502.

388 F. Giunchiglia, T. Wah'h

[49] T. Melham, Abstraction mechanisms for hardware verification, Tech. Rept. 106,
University of Cambridge, Computer Laboratory (1987).

[50] C. Mellish, Abstract interpretation of PROLOG programs, in: Abstract Interpretation q[
Declarative Languages (Ellis Horwood, Chicester, England, 1987) 181-198.

[51] E. Mendelson, Introduction to Mathematical Logic (Van Nostrand Reinhold, New York,
1964).

[52] A. Modi, D. Steier and A. Westerberg, Learning to use approximations and abstractions in
the design of chemical processes, in: Working Notes of AAAI-90 Workshop on Automatic
Generation of Approximations and Abstractions, Boston, MA (1990) 53-63.

[53] I. Mozetic, Abstractions in model-based diagnosis, in: Working Notes of AAA1-90
Workshop on Automatic Generation of Approximations and Abstractions, Boston, MA
(1990) 64-75.

[54] 1. Mozetic, Reduction of diagnostic complexity through model abstractions, in:
Proceedings 1990 International Workshop on Principles of Diagnoses, Stanford, CA
(1990).

[55] I. Mozetic and C. Holzbaur, Extending EBG by abstraction operators, in: Proceedings
EWSL-91, Porto, Portugal (1991).

[56] J. Munyer, Analogy as a means of discovery in problem solving and learning, Ph.D.
Thesis, University of California, Santa Cruz, CA (1991).

[57] A. Newell and H. Simon, Human Problem Solving (Prentice-Hall, Englewood Cliffs, N J,
1972).

[58] N.J. Nilsson, Logic and artificial intelligence, Artif lntell. 47 (1991) 31-56.
[59] P. Pecchiari, Meccanizzazione det concetto di modello di un dimostratore interattivo,

IRST, Trento, Italy, Thesis 9009-15 (1990).
[60] D. Plaisted, Abstraction mappings in mechanical theorem proving, in: Proceedings Filth

Conference on Automated Deduction, Les Arcs, France (1980) 264-280.
[61] D. Plaisted, Theorem proving with abstraction, Art(f Intell. 16 (1981) 47-t08.
[62] D. Plaisted, Abstraction using generalization functions, in: Proceedings" 8th Conference

on Automated Deduction (1986) 365-376.
[63] D. Plaisted, Mechanical theorem proving, in: R.B. Banerji, ed., Formal Techniques in

Artificial Intelligence:A Sourcebook (Elsevier Science Publishers, Amsterdam, 1990).
[64] D. Plummer, Gazing: controlling the use of rewrite rules, Ph.D. Thesis, Department of

Artificial Intelligence, University of Edinburgh (1987).
[65] G. Polya, How to Solve It (Princeton University Press, Princeton, NJ, 1945).
[66] D. Prawitz, Natural Deduction-A Proof Theoretical Study (Almquist and Wiksell,

Stockholm, 1965).
[67] A. Prieditis, Machine discovery of effective admissible heuristics, in: Proceedings IJCAL

91, Sydney, Australia (1991).
[68] R. Reiter, A semantically guided deductive system for automatic therem proving, in:

Proceedings IJCAL 73, Stanford, CA (1973).
[69] E. Sacerdoti, Planning in a hierarchy of abstraction spaces, Artif Intell. 5 (1974)

115-135.
[70] A. Simpson, Grazing: A stand alone tactic for theoretical inference, Master's Thesis,

Department of Artificial Intelligence, University of Edinburgh, (1988).
[71] A. Simpson, Developing an abstraction for planning the unfolding of definitions, in:

Proceedings AI*IA International Conference (1989); also: Tech. Rept. 8904-05, IRST,
Trento, Italy (1989).

[72] C. Talcott and R. Weyhrauch, Towards a theory of mechanizable theories, 1. fol
contexts--the extensional view, in: L.C. AieUo, ed., Proceedings 8th European Conference
on Artificial Intelligence, Stockholm (1990) 634-639.

[73] J.D. Tenenberg, Preserving consistency across abstraction mappings, in: Proceedings
IJCAI-87, Milan, Italy (1987) 1011-1014.

[74] J.D. Tenenberg, Abstraction in planning, Ph.D. Thesis, TR 250, Computer Science
Department, University of Rochester, Rochester, NY (1988).

[75] A. Unruh and P. Rosenbloom, Abstraction in problem solving and learning, in:
Proceedings lJCAI-89, Detroit, MI (1989).

A theory of abstraction 389

[76] A. Unruh and P. Rosenbloom, Two new weak method increments for abstraction, in:
Working Notes of AAAI-90 Workshop on Automatic Generation of Approximations and
Abstractions, boston, MA (1990) 134-140.

[77] R. Wang, The use of analogy in the PC system, unpublished.
[78] D.S. Weld, Reasoning about model accuracy, Tech. Rept. 91-05-02, Department of

Computer Science and Engineering, University of Washington, Seattle, WA (1991).
[79] R. Weyhrauch, Prolegomena to a theory of mechanized formal reasoning, Artif. Intell.

13 (1) (1980) 133-170.
[80] B. Williams, Capturing how things work: constructing critical abstractions of local

interactions, in: Working Notes of A4AI-90 Workshop on Automatic Generation of
Approximations and Abstractions, Boston, MA (1990) 163-174.

[81] L. Wos, G. Robinson and D.Carson, The automatic generation of proofs in the language
of mathematics, in: Proceedings IFIP Congress 65, Volume 2 (Barton Books, 1965)
325-326.

