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Abstract.

We focus on a simple, one-dimensional collective decision problem (often referred to as the facility location prob-
lem) and explore issues of strategyproofness and proportional fairness. We present several characterization results for
mechanisms that satisfy strategyproofness and varying levels of proportional fairness. We also characterize one of the
mechanisms as the unique equilibrium outcome for any mechanism that satisfies natural fairness and monotonicity
properties. Finally, we identify strategyproof and proportionally fair mechanisms that provide the best welfare-optimal
approximation among all mechanisms that satisfy the corresponding fairness axiom.

1 Introduction

Facility location problems are ubiquitous in society and capture various collective scenarios. Examples in-
clude electing political representatives (Border and Jordan, 1983; Feldman, Fiat and Golomb, 2016; Moulin,
1980), selecting policies (Barberà and Nicolò, 2021; Dragu and Laver, 2019; Kurz, Maaser and Napel, 2017),
deciding how to allocate a public budget (Freeman, Pennock, Peters and Vaughan, 2021), and deciding the
location or services provided by public facilities (Schummer and Vohra, 2002). Two key concerns in such
problems are that the selection process may be vulnerable to strategic manipulations and/or fail to guaran-
tee “fair” outcomes. In this paper, we simultaneously examine the issues of strategyproofness and fairness
for the facility location problem.

In the facility location problem, each agent is viewed as a point on the unit interval. Depending on the
motivating setting, the point could reflect the agent’s physical location, political position, or social pref-
erence. Each agent has single-peaked preferences and prefers the collective outcome to be near their own
position. The goal of the collective decision problem is to take agents’ preferences (positions) into account
to find a reasonable collective outcome (the location of the facility).

The facility location problem (or the one-dimensional collective decision problem) is one of the most
fundamental problems in economics, computer science, and operations research. It takes a central place in
social choice theory as single-peaked preferences are one of the key preference restrictions that circumvent
the infamous Gibbard-Satterthwaite theorem4 (Gibbard, 1973; Satterthwaite, 1975)—this striking result was
proven by Moulin (1980). When agents have single-peaked preferences, the mechanism that returns the
median voter’s position is unanimous, non-dictatorial, and strategyproof. This seminal result has been
discussed in hundreds of papers. Despite the importance of the median mechanism for the facility location
problem, it does not satisfy several fairness concepts that are inspired from the theory of fair division and
proportional representation. We focus on the following research questions.
4The Gibbard-Satterthwaite theorem says that in general social choice, no unanimous and non-dictatorial voting mech-
anism is strategyproof.
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For the facility location problem, what are natural fairness concepts? How well can these fairness concepts
be achieved by strategyproof mechanisms? For strategyproof mechanisms that satisfy one of these fairness
concepts, which mechanism performs optimally in terms of social welfare? Which mechanisms achieve fairness
in equilibrium?

Our contributions are four-fold. First, we consolidate a number of fairness axioms from the literature,
explicitly describe their relations, and establish the compatibility of strategyproofness—and, in some cases,
incompatibility—with these fairness concepts. We propose a new concept called proportional fairness (PF)
that is based on the idea that the distance of a facility from a group of agents should depend both on the
size of the group as well as how closely the agents are clustered. We also analyze existing axioms from the
literature on fair division, participatory budgeting, and proportional representation such as proportionality,
unanimous fair share (UFS), individual fair share (IFS), and unanimity. Our PF axiom is the strongest of these;
Figure 1 describes the relationship between all the fairness axioms that we study.

Fig. 1: Relations between axioms. An arrow from (A)
to (B) denotes that (A) implies (B). All relations are strict.

Fig. 2: Approximation ratio as a function of n. The welfare-
optimal UFS (IFS) mechanism is also strategyproof, anony-
mous, and unanimous. The welfare-optimal UFS mecha-
nism also satisfies proportionality and PF. The welfare-
optimal IFS mechanism does not satisfy proportionality.

Second, we present two characterization results. We characterize the family of strategyproof mecha-
nisms that satisfy unanimity, anonymity, and IFS. We then identify a specific mechanism, called the Uni-
form Phantom mechanism, that uniquely satisfies strategyproofness, unanimity, and proportionality. We
also prove that the Uniform Phantom mechanism uniquely satisfies strategyproofness and UFS. Since we
show that the Uniform Phantom mechanism also satisfies PF (and because PF implies UFS), we obtain as a
corollary that the Uniform Phantom mechanism is the only strategyproof mechanism satisfying PF. There-
fore, within the class of strategyproof mechanisms, PF and UFS collapse to the same property. In contrast,
we show that within the class of strategyproof mechanisms, IFS is markedly weaker.

Third, we consider the fairness of outcomes under strategic behavior when a mechanism is not strate-
gyproof. We prove that if a mechanism satisfies continuity, strict monotonicity, and UFS, then a pure Nash
equilibrium exists, and every (pure) equilibrium under the mechanism satisfies UFS with respect to agents’
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true locations. Furthermore, for such mechanisms,5 the equilibrium facility location is unique and coincides
with the facility location of the Uniform Phantom mechanism. Thus, our equilibrium analysis of continuous,
strictly monotonic, and UFS mechanisms provides an alternative characterization of the Uniform Phantom
mechanism.

Lastly, we take an approximate mechanism design perspective (Nisan and Ronen, 2001; Procaccia and
Tennenholtz, 2013) and explore how well the maximum social welfare can be approximated when fairness
axioms are imposed. We identify “optimal and fair” mechanisms that provide the best possible approxima-
tion of the maximum social welfare among all mechanisms that satisfy the corresponding fairness axiom
(such as IFS and UFS). The mechanisms we identify are also strategyproof; in this sense, the fairness axioms
impose a greater cost on the approximation guarantees than the strategyproofness requirement. Figure 2
illustrates the approximation results.

1.1 Related literature

Facility location problems. The facility location problem has been studied extensively in operations research,
economics, and computer science. As is common in the economics literature, our paper takes a mechanism
design approach to the facility location. We assume an incomplete information setting, whereby agents
have privately known location and can (mis)report their location. The problem is to design a mechanism
that is strategyproof and achieves a “desirable” facility location with respect to the agents’ true locations.6

Moulin’s (1980) seminal work characterizes the family of strategyproof and Pareto efficient mechanisms
when agents have single-peaked preferences. 7 In our paper, agents have single-peaked preferences that are
also symmetric, i.e., agents prefer the facility to be located closer to their location regardless of whether it is to
left or right of their location; therefore, our setting is closer to Border and Jordan (1983). Border and Jordan
characterize a strict subfamily of strategyproof mechanisms, which includes the family of strategyproof and
unanimous mechanisms. 8

Since Moulin (1980) and Border and Jordan (1983), numerous scholars have explored open-questions
related to these characterizations (see, e.g., Barberà and Jackson, 1994; Barberà et al., 1998; Ching, 1997; Jen-
nings et al., 2021; Massó and Moreno De Barreda, 2011; Peremans et al., 1997; Weymark, 2011). Others have
explored extensions and variations of the facility location problem. For example, Nehring and Puppe (2006,
2007) relax the assumption that agents have single-peaked preferences; Miyagawa (1998, 2001) and Ehlers
(2002, 2003) extend the facility location problem to consider locating multiple facilities; Aziz et al. (2020a,b)
introduce capacity constraints into the problem; Jackson and Nicolò (2004) introduce interdependent util-
ities; Cantala (2004) introduce an outside option; and Schummer and Vohra (2002) extend the facility lo-
cation problem to a network setting.9 Our paper contributes to this literature by formalizing a hierarchy

5One mechanism in this class is the Average mechanism, which locates the facility at the average of all agents’ reported
locations.

6There is an extensive literature in operations research and computer science that studies the facility location problem
within a complete information setting. These literatures largely focus on issues of computational complexity and ap-
proximation and, therefore, are not directly relevant to the present paper (for an overview, see Brandeau and Chiu,
1989; Zanjirani Farahani and Hekmatfar, 2009).

7More specifically, Moulin provides three characterizations. Via three (distinct) families of “Phantom mechanisms,” he
characterizes: (i) all strategyproof and anonymous mechanisms, (ii) all strategyproof, anonymous, and Pareto efficient
mechanisms, and (iii) all strategyproof mechanisms.

8Massó and Moreno De Barreda (2011) formalize the connection between the mechanism design problem in settings
where agents have single-peaked preferences and where they must, in addition, be symmetric.

9For a recent survey of computational social choice literature on facility location problems, see Chan et al. (2021).
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of “proportionally fair” axioms for the facility location problem and characterizing strategyproof and fair
mechanisms. Additionally, in Section 5, we explore the equilibrium properties of non-strategyproof mech-
anisms.

Fairness in collective decision problems. Issues of fairness in collective decision problems have been studied in
a variety of contexts (see, e.g., Dummett, 1997; Mill, 1861; Nash, 1950, 1953; Rawls, 1971; Sen, 1980; Shapley,
1953; Yaari, 1981). Most closely related to the present paper are the social choice and computational social
choice literatures (for an overview, see Arrow et al., 2010; Aziz et al., 2019b; Endriss, 2017; Faliszewski
et al., 2017; Klamler, 2010; Laslier and Sanver, 2010). We formalize a hierarchy of fairness axioms for the
facility location problem that are conceptually related to proportional representation. Two of our fairness
axioms (IFS and UFS) are translations of the “individual fair share” and “unanimous fair share” axioms,
which appear in fair division and participatory budgeting problems (Aziz et al., 2019a; Moulin, 2003), into
the facility location problem. In addition, we utilize a natural axiom of proportional representation, called
“proportionality”, which is explored in the context of participatory budgeting by Freeman et al. (2021).
Beyond translating existing notions of fairness into the facility location problem, we also introduce the new
axiom of “Proportional Fairness” that is stronger than all of the aforementioned axioms.

Our approach contrasts with a number of facility location papers that attempt to obtain outcomes that
achieve (or approximate) the egalitarian outcome, i.e., maximizing the utility of the worst off agent (see,
e.g., Procaccia and Tennenholtz, 2013).10 Mulligan (1991) notes that the egalitarian objective is sensitive
to extreme locations and recommends distributional equality as an underlying principle for considering
equality measures. When placing multiple facilities, several new concepts have been proposed for captur-
ing proportional fairness concerns (see, e.g., Bigman and Fofack, 2000; Jung et al., 2020). However, these
concepts are equivalent to weak Pareto optimality or unanimity when there is only one facility. For the
single-facility problem, Zhou et al. (2022) recently examined the issue of welfare guarantees for groups of
agents. Our approach and results differ in that we consider the classic facility location problem whereas
Zhou et al. overlay it with additional information that places agents in predetermined groups.

In the context of the facility location problem, our paper characterizes strategyproof and “fair” mech-
anisms. Some of our results directly relate to those of Freeman et al. (2021). In the context of participatory
budgeting setting, Freeman et al. explore the problem of designing strategyproof mechanisms that satisfy
proportionality. One of their key results (Proposition 1) applies to the facility location problem and shows
that there is a unique anonymous, continuous, strategyproof and proportional mechanism, which is called
the Uniform Phantom mechanism.1112 Our paper differs in focus and provides a broader treatment of is-
sues of fairness and strategyproofness in facility location problems; for example, we characterize a larger
family of strategyproof mechanisms that satisfy the weaker fairness axiom of IFS. In addition, one of our
results strengthens Freeman et al.’s Proposition 1 by showing that the anonymity axiom is redundant in
their characterization. We also provide an alternative characterization of the Uniform Phantom mechanism
as the equilibrium outcome of any continuous, strictly monotonic, and UFS mechanism.

10The egalitarian approach also appears in more general collective choice problems (see, e.g., Bogomolnaia and Moulin,
2004; D’Aspremont and Gevers, 1977; Hammond, 1976).

11Like our paper, Freeman et al.’s (2021) setting assumes that agents have single-peaked and symmetric preference.
Jennings et al. (2021) provide a similar characterization of the Uniform Phantom mechanism in the setting where
agents have single-peaked (and possibly asymmetric) preferences.

12Jennings et al. (2021) mention that the Uniform Phantom mechanism was first proposed by Jennings (2010) as the
‘linear median’ and it was independently discovered by Caragiannis et al. (2016). However, the Uniform Phantom
mechanism appears indirectly in Renault and Trannoy (2005) (see also Renault and Trannoy, 2011).
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Finally, we note that in more general mechanism design problems, “fairness” is often explored in a
relatively minimal manner. For example, Sprumont (1991) interprets a mechanism to be fair if it satisfies
anonymity and envy-freeness, and Moulin (2017) interprets a mechanism to be fair if it satisfies anonymity,
envy-freeness, and a status-quo participation constraint. These minimal notions of fairness have persisted
because of various impossibility results in the literature.13 Like Sprumont (1991) and Moulin (2017), the
unidimensional facility location problem that we study escapes these impossibility results. Our paper con-
tributes a complementary set of fairness axioms that go beyond the basic requirement of anonymity and
connect to the notion of proportional representation. We do not consider envy-freeness since, in the con-
text of the facility location problem, it is trivially satisfied by any facility location (see, e.g., Section 8.1 of
Moulin, 2017). The status-quo participation constraint explored by Moulin (2017) requires that an agent
weakly prefers the mechanism’s outcome to some status-quo outcome. This is distinct but has a similar fla-
vor to our IFS axiom, which is one of our weakest fairness axioms. The IFS axiom requires that the facility
location is not located too far from any agent. When reframed in terms of utility, IFS enforces a minimum
utility guarantee for all agents, which could be viewed as an outside option.

Approximate mechanism design. The final section of our paper explores the performance of strategyproof and
fair mechanisms with respect to maximizing utilitarian (or social) welfare. Adopting the approximation
ratio approach of Nisan and Ronen (2001); Procaccia and Tennenholtz (2013), we measure the performance
of these mechanisms by their worst-case performance over the domain of possible preferences profiles rel-
ative to the welfare-optimal mechanism. This is a common approach in the economics and computation
literature (see, e.g., Aziz et al., 2020b,a; Feldman et al., 2016; Nisan and Ronen, 2001). For our main fairness
axioms of Proportionality, IFS, UFS and PF, we identify the best performing strategyproof and fair mecha-
nism. In particular, we find that the Uniform Phantom mechanism has the best welfare approximation ra-
tio among all mechanisms satisfying UFS (including non-strategyproof mechanisms). In the participatory
budgeting setting, Caragiannis, Christodoulou and Protopapas (2022) show a related result: when there
are only 2 projects, the Uniform Phantom mechanism achieves the best cost approximation ratio among all
strategyproof mechanisms.

2 Model

Let N = {1, . . . , n} be a set of agents with n ≥ 2, and let X := [0, 1] be the domain of locations.14 Agent
i’s location is denoted by xi ∈ X ; the profile of agent locations is denoted by x = (x1, . . . , xn) ∈ Xn. A
mechanism is a mapping f : Xn → X from a location profile x̂ ∈ Xn to a facility location y ∈ X .

Given a facility location y ∈ X , agent i’s cost is d(y, xi) := |y − xi|. We take an agent’s utility to be
u(y, xi) = 1 − d(y, xi). This utility function is convenient but is not necessary for most of our results; the
key assumption that we require is that agents’ utilities are symmetric (around their location) and single-
peaked.15

13For example, Theorem 3 of Border and Jordan (1983) shows that, for the multi-dimensional facility location problem
with not necessarily separable preferences, there is no strategyproof, unanimity-respecting, and anonymous mecha-
nism (see also Laffond, 1980).

14Our results naturally extend to any compact interval on R with the appropriate modification of axioms.
15With the exception of Section 6, which focuses on welfare approximation, all our results hold verbatim if agents have

arbitrary single-peaked and symmetric preferences and the fairness axioms (IFS, UFS, PF) are defined with respect
to the distance function (instead of utilities). In Appendix A, we discuss why the fairness axioms, when defined
with respect to distance, may still be normatively desirable in cases where agents’ preferences are single-peaked (and
possibly asymmetric).



6 Haris Aziz, Alexander Lam, Barton E. Lee, and Toby Walsh

A widely accepted—albeit minimal—fairness principle is that a mechanism should not depend on the
agents’ labels. This is referred to as anonymity.

Definition 1 (Anonymous). A mechanism f is anonymous if, for every location profile x̂ and every bijection
σ : N → N ,

f(x̂σ) = f(x̂),

where x̂σ := (x̂σ(1), x̂σ(2), . . . , x̂σ(n)).

Given a location profile x, a facility location y is said to be Pareto optimal if there is no other facility
location y′ such that for all i ∈ N , d(y′, xi) ≤ d(y, xi), with strict inequality holding for at least one agent.
A mechanism f is said to be Pareto efficient if, for every location profile x, the facility location f(x) is Pareto
optimal. In our setting, Pareto optimality is equivalent to requiring that y ∈ [mini∈N xi,maxi∈N xi].

We are interested in mechanisms that are “strategyproof”, i.e., the mechanism never incentivizes an
agent to misreport their location. Before providing a formal definition, we introduce some notation. Given a
profile of locations (or reported locations) x′, the profile (x′

−i, x
′′
i ) denotes the profile obtained by swapping

x′
i with x′′

i and leaving all other agent locations (or reports) unchanged.

Definition 2 (Strategyproof). A mechanism f is strategyproof if for every agent i ∈ N , we have for every x′
i, x̂−i

and xi,

u(f(x̂−i, xi), xi) ≥ u(f(x̂−i, x
′
i), xi) or, equivalently, d(f(x̂−i, xi), xi) ≤ d(f(x̂−i, x

′
i), xi).

By Barberà et al. (2010), in our setting, a mechanism is strategyproof if and only if it is group-strategyproof :
no subset of agents N ′ ⊆ N can misreport their locations and obtain a facility location that is strictly
preferred by all of the agents in N ′ compared to what is obtained by truthfully reporting their locations (see
also Massó and Moreno De Barreda, 2011, Remark 1).

Omitted proofs appear in the Appendix.

3 Proportional Fairness

We now introduce a hierarchy of proportional fairness axioms. The first three axioms have previously been
proposed in the literature; the fourth axiom, Proportional Fairness, is a new concept that we propose. When-
ever appropriate, we formulate our fairness axioms in two ways. We provide a formulation in terms of
agents’ utilities (under the assumption that u(y, xi) = 1−d(y, xi)) and also in terms of the distance function
d(y, xi).

The first axiom, Individual Fair Share (IFS), requires that the facility location provides every agent with
at least 1

n of the maximum obtainable utility, i.e., 1. In the context of cake-cutting, IFS coincides with the
axiom of Steinhaus (1948) commonly known as proportionality. It also appears as the “Fair Welfare Share”
axiom in the context of participatory budgeting, as defined by Bogomolnaia et al. (2005).

Definition 3 (Individual Fair Share (IFS)). Given a profile of locations x, a facility location y satisfies Individual
Fair Share (IFS) if each agent obtains at least 1/n utility, i.e. for all i ∈ N ,

u(y, xi) ≥ 1/n or, equivalently, d(y, xi) ≤ 1− 1/n.
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The second axiom, Unanimous Fair Share (UFS), is a strengthening of IFS; it requires that, for every
group of agents that share the same location, say S ⊆ N , the facility location provides agents in S with at
least |S|

n utility. That is, the minimum-utility guarantee ensured by UFS increases proportionally with the
group-size, |S|. In the context of participatory budgeting, UFS appears in Aziz et al. (2019a).

Definition 4 (Unanimous Fair Share (UFS)). Given a profile of locations x such that a subset of S ⊆ N agents
share the same location, a facility location y satisfies Unanimous Fair Share (UFS) if for all i ∈ S,

u(y, xi) ≥
|S|
n

or, equivalently, d(y, xi) ≤ 1− |S|
n

.

The third axiom Proportionality requires that, if all agents are located at “extreme” locations (i.e., 0 or
1), the facility is located at the average of the agents’ locations. Freeman et al. (2021) focus on this axiom in
a public budgeting setting.

Definition 5 (Proportionality). Given a profile of locations x such that xi ∈ {0, 1} for all i ∈ N , a facility location
y satisfies Proportionality if y = |i∈N : xi=1|

n .

Finally, we propose a new fairness concept called Proportional Fairness (PF). PF requires that the
minimum-utility guarantee provided by the facility location to a group of agents depends on both the
size of the group and how closely the agents are clustered. The idea behind the concept is similar in spirit
to proportional representation axioms in voting which require that if a subset of agents is large enough
and the agents in the subset have “similar” preferences, then the agents in the subset deserve an appropri-
ate level of representation or utility (see, e.g., Aziz et al., 2017; Aziz and Lee, 2020, 2022; Dummett, 1984;
Sánchez-Fernández et al., 2017).

Definition 6 (Proportional Fairness (PF)). Given a profile of locations x, a facility location y satisfies Propor-
tional Fairness (PF) if, for any subset of agents S ⊆ N within a range of distance r := maxi∈S{xi} −mini∈S{xi},
the agents in S obtain at least |S|

n − r utility, i.e. for all i ∈ S,

u(y, xi) ≥
|S|
n

− r or, equivalently, d(y, xi) ≤ 1− |S|
n

+ r.

In the definition of PF, given a group S, r is non-negative and equals zero if and only if all agents
in S share the same location. Hence, PF implies UFS. For any r that is larger, the corresponding fairness
concept is weaker. For any r that is smaller, there may not exist any outcome that satisifies the corresponding
definition.

A natural—albeit weak—notion of fairness is called Unanimity. It requires that, if all agents are unan-
imous in their most preferred location, then the facility is located at this same location. Notice that Pareto
optimality implies unanimity.

Definition 7 (Unanimity). Given a profile of locations x such that xi = c for some c ∈ X and for all i ∈ N , a
facility location y satisfies unanimity if y = c.

Proposition 1 establishes the logical connection between the fairness axioms. Figure 1 provides an il-
lustration of proposition. PF is the strongest fairness notion: it implies all of the other axioms (UFS, IFS,
Proportionality, and Unanimity). The next strongest axiom is UFS: it implies IFS, proportionality, and una-
nimity. There is no relationship between proportionality, IFS, and unanimity; however, they are compatible
with each other.
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Proposition 1 (A hierarchy of axioms).

(i) UFS implies proportionality, IFS, and unanimity
(ii) PF implies UFS

All of the above relations are strict; there is no logical relation between proportionality, IFS, and unanimity. Figure 1
provides an illustration.

4 Strategyproof and Proportionally Fair Mechanisms

We begin by reviewing some prominent mechanisms from the literature. The median mechanism fmed

places the facility at the median location (i.e., the ⌊n/2⌋-th location when locations are placed in increasing
order). The median mechanism is sometimes referred to as the utilitarian mechanism since it places the
facility at a location that maximizes the sum of agent utilities.

The midpoint mechanism fmid places the facility at the midpoint of the leftmost and rightmost agents,
i.e.,

fmid(x) =
1

2

(
min
i∈N

xi +max
i∈N

xi

)
.

The midpoint mechanism is sometimes referred to as the egalitarian mechanism since it maximizes the
minimum agent utility.

A Nash mechanism places the facility at a location that maximizes the product of agent utilities.16 For-
mally, a Nash mechanism fNash locates the facility at

fNash(x) = arg max
y∈[0,1]

∏
i∈N

u(y, xi).

The Nash mechanism is described by Moulin (2003, p. 80) as achieving a “sensible compromise between
utilitarianism and egalitarianism.”

Incompatibility results. All of the above mechanisms either fail to provide fair outcomes (per the axioms
in Section 3) or fail to be strategyproof. The median mechanism fails Proportionality and IFS; however,
it is strategyproof and satisfies unanimity. The midpoint mechanism—often heralded as a hallmark of
fairness—fails to satisfy many of Section 3’s fairness axioms; it only satisfies the weakest axioms: IFS and
unanimity. Furthermore, the midpoint mechanism is not strategyproof. Finally, the Nash mechanism ob-
tains the strongest axiom of proportional fairness, PF—and, hence, satisfies the other fairness axioms: UFS,
Proportionality, IFS, and unanimity. However, the Nash mechanism is not strategyproof (Lam et al., 2021).
Proposition 2 summarizes these results.

Proposition 2 (Review of existing mechanisms).

(i) The median mechanism satisfies unanimity and strategyproofness, but does not satisfy IFS, PF, UFS nor Pro-
portionality.

(ii) The midpoint mechanism satisfies IFS and unanimity, but it is not strategyproof. The midpoint mechanism does
not satisfy PF, UFS, nor Proportionality.

(iii) The Nash mechanism satisfies PF, but it is not strategyproof.
16The mechanism’s namesake is an allusion to the Nash bargaining solution (Nash, 1950, 1953). The product of utilities

is often referred to as the Nash social welfare or Nash welfare.
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4.1 Characterization of IFS and strategyproof mechanisms

We now characterize the family of strategyproof and IFS mechanisms. Our characterization leverages the
class of Phantom mechanisms introduced by Moulin (1980) (see also Border and Jordan, 1983).17 Intuitively,
Phantom mechanisms can be understood as locating the facility at the median of 2n − 1 reports, where
n reports correspond to the agents’ reports and n − 1 reports are fixed (and pre-determined) at locations
p1, . . . , pn−1. The fixed reports are referred to as “phantom” locations.

Definition 8 (Phantom Mechanisms). Given x ∈ X and n − 1 values 0 ≤ p1 ≤ · · · ≤ pn−1 ≤ 1, a Phantom
mechanism locates the facility at Median{x1, . . . , xn, p1, . . . , pn−1}.

The family of Phantom mechanisms is broad and captures many well-known mechanisms. To build
intuition, we provide some examples below.

(i) The classic median mechanism is obtained by locating ⌊(n − 1)/2⌋ phantoms at 0 and ⌈(n − 1)/2⌉
phantoms at 1.

(ii) The “Maximum” (resp., “Minimum”) mechanism, which locates the facility at the maximum (resp.,
minimum) agent location, is obtained by locating all the phantoms at 1 (resp., 0).

(iii) The “Moderate− 1
2” mechanism, which locates the facility at the minimum (resp., maximum) agent

reported location when all agents report below (resp., above) 1/2 and otherwise (i.e., when some
agent(s) report either side of 1/2) the facility is located at 1/2. This mechanism is obtained by locating
all the phantoms at 1/2.

On the other hand, mechanisms such as the midpoint mechanism and the Nash mechanism from Section 4
do not belong to the family of Phantom mechanisms. Similarly, the “Average” mechanism, which locates the
facility at the average of all agents’ reports, is not a Phantom mechanism. Figure 3 provides an illustration
of these mechanisms (and also other mechanisms that will be defined later).

The family of Phantom mechanisms are known to characterize all strategyproof, anonymous, and Pareto
efficient mechanisms (Corollary 2 of Massó and Moreno De Barreda, 2011).18 This characterization of Phan-
tom mechanisms forms the foundation of our characterization results.

Theorem 1 says that the family of IFS, strategyproof, anonymous, and unanimous mechanisms are char-
acterized by the subfamily of Phantom mechanisms that have their phantom locations contained in the
interval [ 1n , 1−

1
n ]. Intuitively, when the facility is located in the interval [ 1n , 1−

1
n ], IFS is satisfied regardless

of the agents’ locations. The restricted class of Phantom mechanisms in Theorem 1 satisfies IFS by prevent-
ing the facility from being located at an “extreme” point (i.e., beyond the interval [ 1n , 1−

1
n ]) unless all agents

are located close together and at an extreme point.

Theorem 1 (Characterization: IFS, unanimous, anonymous, and strategyproof). A mechanism is strate-
gyproof, unanimous, anonymous and satisfies IFS if and only if it is a Phantom mechanism with n − 1 phantoms
all contained in the interval [ 1n , 1−

1
n ].

17Although both Moulin (1980) and Border and Jordan (1983) deal with a setting where agents’ locations are in R rather
than [0, 1], it can be shown that their results extend naturally (see Footnote 8 of Schummer and Vohra, 2002, for a
sketch of the argument).

18This result differs to Moulin’s (1980) results because Massó and Moreno De Barreda’s corollary applies to the setting
where agents have single-peaked and symmetric preferences. Moulin also shows that a broader class of phantom
mechanisms (that uses n+1 phantoms) characterizes the class of all anonymous and strategyproof but not necessarily
Pareto-efficient mechanisms.
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Proof. We start with the backwards direction. Let f be a Phantom mechanism with the n − 1 phantoms
contained in [ 1n , 1−

1
n ]. First note that f is strategyproof because all Phantom mechanisms are strategyproof

(see, e.g., Corollary 2 of Massó and Moreno De Barreda, 2011). Furthermore, it is immediate from the Phan-
tom mechanism definition (Definition 8) that f satisfies unanimity. It remains to show that f satisfies IFS. To
see this, notice that the facility is located above (resp., below) both of the endpoints of the interval [ 1n , 1−

1
n ]

if and only if all agents are located above (resp., below) of the interval. Therefore, in such cases, the facility
is located within a distance of 1

n of all agents. Otherwise, the facility is located within the interval and the
largest possible cost is 1− 1

n , as required.

We now prove the forward direction. Let f be a mechanism that is strategyproof, unanimous, anony-
mous, and satisfies IFS. Border and Jordan’s (1983) Lemma 3 says that any strategyproof and unanimous
mechanism is Pareto efficient. Hence, f is strategyproof, IFS, unanimous, anonymous, and Pareto efficient.
We now apply Corollary 2 of Massó and Moreno De Barreda (2011), which says that a mechanism is strate-
gyproof, anonymous, and Pareto efficient if and only if it is a Phantom mechanism (Definition 8). We now
show that pj ∈ [ 1n , 1−

1
n ] for all j ∈ {1, . . . , n− 1}. For sake of a contradiction, suppose p1 < 1

n (the case of
pn−1 > 1− 1

n is dealt with similarly and, hence, is omitted). If n− 1 agents are located 0 and the remaining
agent is located at 1, then the facility must be located at p1 < 1

n . But then the agent at location 1 experiences
cost strictly greater than 1 − 1

n—a contradiction of IFS. Therefore, pj ∈ [ 1n , 1 −
1
n ] for all j ∈ {1, . . . , n − 1},

as required. ⊓⊔

Theorem 1 is “tight” in the following sense: if any one of the requirements in theorem (i.e., strategyproof-
ness, unanimity, anonymity, and IFS) is removed, then the theorem fails to hold. In Appendix B.4, for each
smaller set of requirements, we identify a mechanism that satisfies them and does not belong to the family
of mechanisms described in Theorem 1.

4.2 Characterization of PF, UFS, Proportional, and strategyproof mechanisms

We now show that strategyproofness and PF are compatible and can be achieved via the “Uniform Phan-
tom” mechanism. By Proposition 1 this also implies that UFS and, hence, proportionality, IFS, and unanim-
ity can be attained simultaneously. The Uniform Phantom mechanism is obtained from the general class of
Phantom mechanisms (Definition 8) by locating the phantoms at j

n for j = 1, . . . , n − 1. Figure 3 provides
an illustration of the mechanism. This mechanism is the focus of Freeman et al. (2021); later we provide a
discussion of the similarities and differences between our results and those of Freeman et al..

Definition 9 (Uniform Phantom Mechanism). Given x ∈ X , the Uniform Phantom mechanism fUnif locates the
facility at

Median{x1, . . . , xn,
1

n
,
2

n
, . . . ,

n− 1

n
}.

It is immediate that the Uniform Phantom mechanism is strategyproof since it belongs to the family of
Phantom mechanisms (Definition 8). However, in addition to strategyproofness, Proposition 3 says that the
Uniform Phantom mechanism satisfies PF. Intuitively, the Uniform Phantom mechanism locates the facility
at the n-th location of the 2n− 1 phantom and agent locations. Given the phantom locations, for every 1/n

units of distance, there is at least one phantom. Therefore, for any set of agents S, the distance between the
most extreme agent in S and the facility is at most n−|S|

n and, hence, the distance between any agent in S

and the facility is at most n−|S|
n + r, where r is the range of the agents in S.
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Proposition 3 (Uniform Phantom mechanism properties). The Uniform Phantom mechanism is strategyproof
and satisfies PF. Thus, it also satisfies UFS, IFS, proportionality, and unanimity.

A natural question is whether there exist other strategyproof mechanisms satisfying UFS or proportion-
ality and unanimity. It turns out that there are not: Theorem 2 says that the Uniform Phantom mechanism
is the only strategyproof mechanism that is proportional and unanimous. A key challenge in the theorem is
that anonymity is not supposed and hence, the well-known characterization of Phantom mechanisms can-
not be immediately applied. In the appendix, we prove an auxiliary lemma that says anonymity is implied
by strategyproofness, unanimity, and proportionality. With this in hand, the Phantom mechanism charac-
terization can be utilized. Proportionality then implies the (unique) locations of the n− 1 phantoms. This is
because of two observations. First, proportionality requires that, for any k = 1, . . . , n− 1, when k agents are
located at 1 and n − k agents at 0 the facility is located at k/n. Second, for such a profile of locations, any
Phantom mechanism will locate the facility at the kth phantom. Therefore, the phantoms must be located
at k

n for k = 1, . . . , n− 1.

Theorem 2 (Characterization: proportional, unanimous, and strategyproof). A mechanism satisfies strate-
gyproofness, unanimity, and proportionality if and only if it is the Uniform Phantom mechanism.

Proof. The backward direction follows immediately from Proposition 3 and Proposition 1. It remains to
prove the forward direction. Suppose f is strategyproof and satisfies proportionality and unanimity. We
utilize an auxiliary lemma, which says that any strategyproof, unanimous, and proportional mechanism
must be anonymous (Lemma 4). The proof of Lemma 4 is quite involved and is proven in Appendix B.5.
Given Lemma 4, we apply Border and Jordan’s (1983) Lemma 3 (i.e., any strategyproof and unanimous
mechanism is Pareto efficient). This tells us that f must also be anonymous and Pareto efficient. We now
apply Corollary 2 of Massó and Moreno De Barreda (2011), which says that a mechanism is strategyproof,
anonymous, and Pareto efficient if and only if it is a Phantom mechanism (Definition 8). We now show that
pj =

j
n for all j ∈ {1, . . . , n−1}. To see this, take arbitrary j ∈ {1, . . . , n−1}, and let x be a profile of locations

such that there are j agents at 1 and n − j agents at 0. By definition of the Uniform Phantom mechanism,
f(x) = pj . But proportionality requires that f(x) = j

n ; hence, pj = j
n . This completes the proof. ⊓⊔

Combining Proposition 1 and Proposition 3 with Theorem 2 provides two complementary characteri-
zations. Corollary 1 says that the Uniform Phantom mechanism is the only strategyproof mechanism that
satisfies UFS; similarly, the Uniform Phantom mechanism is the only strategyproof mechanism that satisfies
PF.

Corollary 1 (Characterization: UFS/PF and strategyproof). A mechanism satisfies strategyproofness and UFS
(PF) if and only if it is the Uniform Phantom mechanism.

UFS and PF are (strictly) stronger requirements than proportionality, so the characterization given by
Corollary 1 does not hold if UFS or PF are replaced by proportionality. In other words, Theorem 2 does not
hold if we remove unanimity. A simple example illustrating this can be found in Appendix B.6.

Theorem 2 and Corollary 1 gives the equivalence in Corollary 2. The statements are “tight”: dropping
any property in (i), (ii), or (iii) will break the equivalence with (iv).

Corollary 2. The following are equivalent:

(i) f satisfies strategyproofness, proportionality, and unanimity
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(ii) f satisfies strategyproofness and UFS.
(iii) f satisfies strategyproofness and PF.
(iv) f is the Uniform Phantom mechanism.

A perhaps interesting implication of Corollary 2 is that, although combining proportionality and una-
nimity is a strictly weaker concept than UFS, when combined with strategyproofness the UFS concept is
equivalent to requiring both proportionality and unanimity. Similarly, the UFS concept is strictly weaker
concept than PF but, when combined with strategyproofness, PF is equivalent to UFS.

Comparing our results with Freeman et al. (2021). The Uniform Phantom mechanism appears in Freeman et al.
(2021). Freeman et al.’s Proposition 1 shows that a mechanism is continuous, anonymous, proportional, and
strategyproof if and only if it is the Uniform Phantom mechanism. Equivalently, by Border and Jordan’s
(1983) Corollary 1, Freeman et al.’s characterization holds if continuity is replaced with unanimity. Our
results complement Freeman et al.’s characterization. Firstly, we have shown (in Appendix B.6) that conti-
nuity (equivalently, unanimity) is essential for Freeman et al.’s characterization. Secondly, our Theorem 2
shows that the anonymity requirement can be removed.19 Finally, we provide a more general analysis of
fairness axioms in facility location problems and show that the Uniform Phantom mechanism is the unique
strategyproof mechanism that satisfies different combinations of these fairness axioms (Corollary 2).

5 Equilibria of non-strategyproof, UFS mechanisms

We now explore the equilibrium properties of non-strategyproof mechanisms. We begin with some termi-
nology. Given two profiles of locations, x < x′ if and only if xi ≤ x′

i for all i ∈ N and xi < x′
i for some

i ∈ N . We say a mechanism f is strictly monotonic if

f(x) < f(x′) for all x < x′.

An example of a strictly monotonic mechanism is the “Average” mechanism favg(x) := 1
n

∑
i∈N xi. The

Average mechanism is also continuous and satisfies UFS (see Proposition 4 in Appendix C). It is clearly not
strategyproof. In contrast, the Uniform Phantom mechanism is not strictly monotonic.

Perhaps surprisingly, Theorem 3 says that the pure Nash equilibrium of any continuous, strictly mono-
tonic, and UFS mechanism has the facility located at the same position as would have been attained by the
(strategyproof) Uniform Phantom mechanism. Therefore, in the equilibrium outcome of such mechanisms,
UFS with respect to the agents’ true location is satisfied—even if agents misreport their location in equilib-
rium. This provides an alternative characterization of the Uniform Phantom mechanism as the equilibrium
outcome of any continuous, strictly monotonic, and UFS mechanism.20

19 Studying a slightly different setting, where agents have single-peaked and (possibly) asymmetric preferences, Jen-
nings et al. (2021) show that neither continuity nor anonymity is required for Freeman et al.’s characterization. The
necessity of unanimity in Theorem 2 clarifies a key difference with the setting of symmetric preferences: continuity is
required.

20In a slightly different setting, where agents have single-peaked (and possibly asymmetric) preferences, Yamamura
and Kawasaki (2013) provide a general characterization of the equilibrium outcome of anonymous, continuous,
strictly monotonic, and unrestricted-range mechanisms. Although Yamamura and Kawasaki’s results do not formally
apply to our setting and do not focus on issues of fairness, our Theorem 3 is consistent with their characterization.
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Theorem 3. Suppose f is continuous, strictly monotonic, and satisfies UFS. There exists a pure Nash equilibrium,
and the output of every (pure) equilibrium of f coincides with the facility location of the Uniform Phantom when
agents report truthfully.

Proof. The existence of a pure Nash equilibrium follows immediately (Debreu, 1952; Glicksberg, 1952; Fan,
1952).21 Now let x be a profile of agents’ (true) locations, and let x∗ be a pure Nash equilibrium of f .
Denote by sunif := funif(x) the facility location under the Uniform Phantom mechanism when agents report
truthfully. We wish to prove that f(x∗) = sunif. We consider two cases.

Case 1. Suppose sunif = k/n for some k ∈ {0, . . . , n}. By construction of the Uniform Phantom, it must be
that at least n − k agents have true location (weakly) below sunif and at least k agents have true location
(weakly) above. Now, for sake of a contradiction, suppose that f(x∗) < sunif = k/n (the reverse inequality is
treated similarly and therefore is omitted). Notice that there are at least k agents with true location strictly
above than f(x∗); let N ′ := {i ∈ N : f(x∗) < xi}. If x∗

i = 1 for all i ∈ N ′, then f(x∗) ≥ k/n (since f

satisfies UFS)—a contradiction because f(x∗) < sunif = k/n. Therefore, x∗
i < 1 for some agent i ∈ N ′′. But

then x∗ cannot be an equilibrium: agent i can profitably deviate by reporting some x′
i ∈ (x∗

i , 1], which—due
to continuity and strict monotonicity of f—increases the facility location.

Case 2. Suppose sunif ∈ ( kn ,
k+1
n ) for some k ∈ {0, . . . , n − 1}. By construction of the Uniform Phantom, it

must be that at least n− k agents have true location (weakly) below sunif and at least k+1 agents have true
location (weakly) above—note that there are at least k + 1 agents weakly above sunif because at least one
agent is located at exactly sunif. Now, for sake of a contradiction, suppose that f(x∗) < sunif (the reverse
inequality is treated similarly and therefore is omitted). Notice that there are at least k + 1 agents with
location strictly above f(x∗); let N ′′ := {i ∈ N : f(x∗) < xi}. If x∗

i = 1 for all i ∈ N ′′, then (k+1)/n ≤ f(x∗)

(since f satisfies UFS)—a contradiction because f(x∗) < sunif ∈ ( kn ,
k+1
n ). Therefore, x∗

i < 1 for some i ∈ N ′′.
But x∗ cannot be an equilibrium: agent i can profitably deviate by reporting some x′

i ∈ (x∗
i , 1], which—due

to continuity and strict monotonicity of f—increases the facility location. ⊓⊔

An immediate corollary of Theorem 3 is that the equilibrium outcome of any continuous, strictly mono-
tonic, and UFS mechanism satisfies UFS with respect to the agents’ true locations.

Corollary 3. Suppose f is continuous, strictly monotonic, and satisfies UFS. The output of every (pure) equilibrium
of f satisfies UFS with respect to the agents’ true location profile.

Another corollary of Theorem 3 is that the equilibrium outcome of the average mechanism coincides
with the facility location of the Uniform Phantom mechanism when agents report truthfully.22

Corollary 4. Every (pure) equilibrium of the average mechanism coincides with the facility location of the Uniform
Phantom when agents report truthfully.

Unfortunately, Theorem 3 cannot be applied to the Nash mechanism’s equilibrium outcome since the
Nash mechanism is not strictly monotonic.23

21Note that because f is continuous and strictly monotonic, agents have single-peaked utility with respect to their report
and, hence, their utility is quasiconcave in their report.

22In a slightly different setting, where agents have single-peaked (and possibly asymmetric) preferences, Renault and
Trannoy (2005) obtain the same result (see also Renault and Trannoy, 2011).

23This can be illustrated via a simple example with 3 agents. The Nash mechanism maps the location profiles x =
(0, 0.5, 0.9) and x′ = (0, 0.5, 1) to 0.5. However, strict monotonicity requires that x′ be mapped to a location strictly
higher than 0.5.
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6 Welfare approximation results

A common objective in collective decision making is to maximize (utilitarian or social) welfare. Therefore,
given a profile of locations x and a facility location y, the (utilitarian or social) welfare is the defined as the
sum of agents’ utilities:

n∑
i=1

u(y, xi) =

n∑
i=1

(
1− d(y, xi)

)
.

In this section, we explore the performance of strategyproof and “fair” mechanisms with respect to wel-
fare maximization. Rather than make distributional assumptions, we measure the performance of these mech-
anisms by their worst-case performance over the domain of preference profiles. Given a profile of agent lo-
cations, x and facility location y, we define the optimal welfare by Φ∗(x) := maxy∈X

∑n
i=1 u(y, xi), and given

a mechanism f , let Φf (x) denote the welfare attained by the mechanism, i.e., Φf (x) :=
∑n

i=1 u(f(x), xi).
The mechanism f is an α-approximation if

max
x∈Xn

{
Φ∗(x)

Φf (x)

}
= α. (1)

Notice that α ≥ 1 for all mechanisms f . We refer to a mechanism f with 1-approximation ratio as a welfare-
optimal mechanism.

Maximizing welfare vs minimizing cost. Another common objective in collective decision making is to min-
imize the total cost (i.e.,

∑
i∈N d(y, xi)). Minimizing the total cost and maximizing (utilitarian) welfare are

equivalent optimization problems; hence, both problems have the same “optimal” mechanism. However,
in general, when considering approximately-optimal mechanisms, the welfare approximation ratio of a
mechanism will not equal the total cost approximation ratio.24 In this paper, we focus on the welfare ap-
proximation ratio for two reasons. First, the welfare approximation ratio allows for a more detailed analysis
that is not possible with the total cost approximation ratio. For example, every mechanism satisfying IFS has
an identical approximation ratio of (n − 1).25 Second, the results we obtain from analyzing the welfare ap-
proximation ratio appear more intuitive than those obtained from the total cost approximation ratio.26

We begin by defining the median mechanism, which is known to maximize (utilitarian) welfare (Pro-
caccia and Tennenholtz, 2013).

Definition 10 (Median mechanism). The median mechanism locates the facility at the median of all agents’ loca-
tions. If there are an even number of agents, the facility is placed at the leftmost of the two middle agent locations.

The median mechanism is strategyproof, anonymous, Pareto efficient, and satisfies unanimity. However,
it does not satisfy IFS nor proportionality. Lemma 1 provides a welfare approximation lower bound for
mechanisms that satisfy IFS.

Lemma 1. Any mechanism satisfying IFS has a welfare approximation of at least 1 + n−2
n2−2n+2 . As n → ∞, this

lower bound approaches 1.
24Formally, the total cost approximation ratio for a mechanism f is defined as

maxx∈Xn

{∑
i∈N d(f(x), xi)/miny

∑
i∈N d(y, xi)

}
.

25Results available from the authors upon request.
26For example, the mechanism focused on in Theorem 4 outputs a facility location that converges to the (welfare-

optimal) median mechanism as n → ∞, and the welfare approximation ratio reflects this by converging to one. In
contrast, the total cost approximation ratio is equal to (n− 1) and grows unboundedly.
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We now provide an example of an IFS mechanism, which we call the Constrained Median mechanism,
that obtains the welfare approximation of Lemma 1. The Constrained Median mechanism locates the facility
at the median location whenever the median location lies in the interval [1/n, 1 − 1/n]. When the median
location is below 1/n (resp., above 1 − 1/n), the facility is located at the minimum of 1/n and maximum-
agent report (resp., maximum of 1 − 1/n and the minimum-agent report). Definition 11 provides a formal
definition, and Figure 3 provides an illustration of the mechanism.

Definition 11 (Constrained Median). The Constrained Median mechanism fCM is a phantom mechanism that
places ⌈n−1

2 ⌉ phantoms at 1/n and the remaining phantoms at 1− 1
n .

0 1/6 2/6 3/6 4/6 5/6 1

x
x
x
x

xx

yNash

yUnif

yCMymed ymidyavg

Fig. 3: Facility location problem with n = 6 agents, with location profile (0, 0, 0, 0, 0.8, 1) represented by
x. The facility locations (represented by •) correspond to the: Median mechanism, ymed = 0; Constrained
Median mechanism, yCM = 1

6 ; Nash mechanism, yNash ≈ 0.284; Average mechanism, yavg = 0.3; Uniform
Phantom mechanism, yUnif =

2
6 ; and Midpoint mechanism, ymid = 3

6 .

Theorem 4 says that the Constrained Median mechanism obtains the best approximation guarantee
among all IFS mechanisms, including non-strategyproof mechanisms. Furthermore, the Constrained Me-
dian mechanism can easily be seen to not only satisfy IFS but also to be strategyproof, anonymous, and
unanimous (Theorem 1).

Theorem 4. Among all IFS mechanisms, the Constrained Median mechanism provides the best approximation guar-
antee, i.e., it achieves the approximation ratio in Lemma 1.

Lemma 2 provides a minimum welfare approximation bound for mechanisms that satisfy UFS (or pro-
portionality or PF).

Lemma 2. Any mechanism satisfying UFS (or proportionality or PF) has a welfare approximation of at least

max
k∈N : 0≤k≤n/2

n(n− k)

k2 + (n− k)2
. (2)

As n → ∞, this lower bound approaches
√
2+1
2 ≈ 1.207.

We now show that the Uniform Phantom mechanism obtains the welfare approximation of Lemma 2.
This means that the Uniform Phantom mechanism provides the best welfare approximation guarantee
among all UFS (or proportional or PF) mechanisms, including non-strategyproof mechanisms. Further-
more, from Theorem 2, we know that the Uniform Phantom mechanism has the added benefit of being
strategyproof, anonymous, and unanimous.
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Mechanism Strategyproof PF UFS Proportionality IFS Util-approx (limit)

Uniform Phantom Yes Yes Yes Yes Yes
√
2+1
2 ≈ 1.207

Median Yes No No No No 1
Constrained Median Yes No No No Yes 1

Nash mechanism No Yes Yes Yes Yes ∈ [
√
2+1
2 , 2]

Midpoint mechanism No No No No Yes 2

Average mechanism No Yes Yes Yes Yes
√
2+1
2

Table 1: Summary of results. All mechanisms are also unanimous, anonymous and Pareto efficient. Proofs
of the results for the Average mechanism can be found in Appendix C. The approximation results for the
Nash and Midpoint mechanisms are from Lam et al. (2021).

Theorem 5. Among all UFS (or proportional or PF) mechanisms, the Uniform Phantom mechanism provides the
best approximation guarantee, i.e., it achieves the approximation ratio in Lemma 2.

Figure 2 illustrates the approximation results of this section.

7 Discussion

Facility location is a classical problem in economic design. In this paper, we provided a deeper under-
standing of strategyproof and proportionally fair mechanisms. Table 1 provides an overview of most of the
mechanisms considered in the paper and the properties they satisfy. Our results provide strong support for
the desirability of the Uniform Phantom mechanism in terms of satisfying fairness and strategyproofness.

Moving beyond the fairness axioms that we presented, one can also consider stronger notions of pro-
portional fairness. For example, the following property, which we call Strong Proportional Fairness (SPF),
is stronger than PF. Given a profile of locations x within range of distance R, a facility location y satisfies
Strong Proportional Fairness (SPF) if, for any subset of voters S ⊆ N within a range of distance r, the location
should be at most Rn−|S|

n + r distance from each agent in S, i.e., d(y, xi) ≤ Rn−|S|
n + r for all i ∈ S.

However, it can be easily shown that the Uniform Phantom mechanism does not satisfy SPF. Our result
(that the Uniform Phantom mechanism is the only SP and PF mechanism) then implies that there exists no
strategyproof and SPF mechanism. In this sense, the compatibility between strategyproofness and fairness
axioms ceases to hold when we move from PF to SPF.

There are several directions of future work including extensions to multiple facilities, multiple di-
mensions, handling facility capacities, alternative fairness concepts, considering weaker notions of strat-
egyproofness, or more general utility functions.

Acknowledgements The authors thank Rupert Freeman, Arindam Pal, Hervé Moulin, and Mashbat Suzuki
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Barberà, Salvador and Matthew Jackson, “A characterization of strategy-proof social choice functions for economies
with pure public goods,” Social Choice and Welfare, 1994, 11 (3), 241–252.
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Moulin, Hervé, “One-dimensional mechanism design,” Theoretical Economics, 2017, 12 (2), 587–619.
Mulligan, Gordon, “Equality measures and facility location,” Papers in Regional Science, 1991, 70 (4), 345–365.
Nash, John, “The Bargaining Problem,” Econometrica, 1950, 18 (2), 155–162.
Nash, John, “Two-Person Cooperative Games,” Econometrica, 1953, 21 (1), 128–140.
Nehring, Klaus and Clemens Puppe, “The structure of strategy-proof social choice — Part I: General characterization

and possibility results on median spaces,” Journal of Economic Theory, 2006, 135 (1), 269–305.
Nehring, Klaus and Clemens Puppe, “Efficient and strategy-proof voting rules: A characterization,” Games and Eco-

nomic Behavior, 2007, 59 (1), 132–153.
Nisan, N. and A. Ronen, “Algorithmic Mechanism Design,” Games and Economic Behavior, 2001, 35 (1), 166–196.
Peremans, W., H. Peters, H. v.d. Stel, and T. Storcken, “Strategy-proofness on Euclidean spaces,” Social Choice and

Welfare, 1997, 14, 379–401.
Procaccia, Ariel D. and Moshe Tennenholtz, “Approximate Mechanism Design Without Money,” in “Proceedings of

the 14th ACM Conference on Electronic Commerce (ACM-EC)” ACM Press 2013, pp. 1–26.
Rawls, John, A Theory of Justice, Harvard University Press, 1971.
Renault, Régis and Alain Trannoy, “Protecting Minorities through the Average Voting Rule,” Journal of Public Economic

Theory, 2005, 7 (2), 169–199.
Renault, Régis and Alain Trannoy, “Assessing the extent of strategic manipulation: the average vote example,” SERIEs,

2011, 2 (4), 497–513.
Sánchez-Fernández, Luis, Edith Elkind, Martin Lackner, Norberto Fernández, Jesús Fisteus, Pablo Basanta Val, and
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A Discussion of our fairness axioms

We discuss the relevance of our results and fairness axioms when agents’ preferences are single-peaked but
not necessarily symmetric (or of the specific functional form: u(y, xi) = 1− d(y, xi)).

In defining our fairness axioms in Section 3, we provided two formulations: one in terms of utility
(assuming u(y, xi) = 1− d(y, xi)) and one in terms of Euclidean distance. Suppose we adopt the Euclidean-
based formulation. Then all our results in Sections 3, 4 and 5, hold verbatim if agents’ preferences are single-
peaked and symmetric—and most of the results hold if agents’ preferences are single-peaked (and possibly
asymmetric). However, the normative motivation for the fairness axioms, when formulated in terms of
Euclidean distance, are less immediate since they no longer correspond to utility guarantees. Nonetheless,
we argue that there are still reasons to believe that the axioms are reasonable notions of fairness. To see
this, suppose that agents can have arbitrary single-peaked preferences. In our setting, it is known that a
strategyproof mechanism must be “tops only” (i.e., the mechanism’s input can only consists of agent’s
ideal points)—using any further information would cause the mechanism to be manipulable (Barberà and
Jackson, 1994). Therefore, behind this veil of ignorance, it seems reasonable that a “fair” outcome should,
at minimum:

(i) impose conditions on the “closeness” of agents’ peaks and the facility location;
(ii) “closeness” should be symmetric (since, for every asymmetric utility function, there is another asym-

metric utility function that is a mirror image and skewed in the opposite direction);
(iii) closeness should be “anonymous” (i.e., the same measure of closeness should be used for all agents).
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These points imply that a single benchmark distance metric should be applied for each agent. We adopt the
standard Euclidean distance for our axioms (IFS, UFS, PF), i.e., d(y, xi) equals |y − xi|; this has desirable
and natural features. For example, suppose n = 2 with one agent located at 0 and the other at 1. The
absolute value |y − xi| is the only metric that requires the facility to be located at exactly 1

2 via the IFS
condition d(y, xi) ≤ 1 − 1/n (the same is true for the UFS, PF conditions). Higher powers of |y − xi| could
be considered (i.e., |y − xi|p for p > 1) but this leads to non-existence. Lower powers could be considered
(i.e., |y − xi|p for 0 < p < 1) but this leads to “fair” outcomes that asymmetrically favor one agent over the
other.

B Omitted proofs

B.1 Proof of Proposition 1

Proof. Point (i): We wish to prove that UFS implies proportionality, IFS, and unanimity. Let x be an arbitrary
location profile and let y be a facility location that satisfies UFS. From the definition of UFS, it is immediate
that IFS and unanimity are satisfied. It remains to prove that proportionality is satisfied. For sake of a
contradiction, suppose that proportionality is not satisfied. That is, x is such that xi ∈ {0, 1} for all i ∈ N

and y ̸= |i∈N : xi=1|
n . Let k = |i ∈ N : xi = 1|. If k = 0, then UFS requires that y = 0, and proportionality is

satisfied—a contradiction. If k > 0, then UFS requires that:

|1− y| ≤ 1− k

n
, i.e., y ≥ k

n
and |0− y| ≤ 1− n− k

n
, i.e., y ≤ k

n
.

The inequalities above imply that y = k
n and proportionality is satisfied—a contradiction.

Point (ii): We wish to prove that PF implies UFS. This follows immediately by noting that a set of agents
all located at the same location are within a range of distance r = 0. Taking r = 0 in the PF definition shows
that PF implies UFS.

It is straightforward to see that the relations in the proposition are strict and also that there is no logical
relation between proportionality, IFS, and unanimity. We omit the proofs. ⊓⊔

B.2 Proof of Proposition 2

Proof. Point (i): We wish to prove that the median mechanism satisfies unanimity and strategyproofness,
but does not satisfy IFS, PF, UFS, nor Proportionality. The median mechanism is known to be strategyproof
(Procaccia and Tennenholtz, 2013); it is also clearly unanimous. Finally, consider the agent location profile
with n− 1 agents at 0 and 1 agent at 1. The median mechanism locates the facility at 0, which violates both
IFS and Proportionality (and hence also UFS and PF).

Point (ii): We wish to prove that the midpoint mechanism satisfies IFS and unanimity, but does not
satisfy strategyproofness, PF, UFS, nor Proportionality. The midpoint mechanism places the facility at the
average of the leftmost and rightmost agent. It is therefore unanimous but not strategyproof. The maximum
cost that can be incurred by an agent is 1/2, which is obtained when the leftmost agent is at 0 and the
rightmost agent is at 1. However, this IFS is satisfied since n ≥ 2. To see that the midpoint mechanism
does not satisfy Proportionality, consider the agent location profile with 2 agents at 0 and 1 agent at 1. The
midpoint mechanism places the facility at 1/2, but Proportionality requires that the mechanism is placed at
1/3. Since Proportionality is not satisfied, UFS and PF are also not satisfied.
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Point (iii): We wish to prove that the Nash mechanism satisfies PF but is not strategyproof. To this
end, we first define a notion of monotonicity that requires that if a location profile is modified by an agent
shifting its location, the facility placement under the modified profile will not shift in the opposite direction.
Definition 12 formalizes this notion.

Definition 12 (Monotonic). A mechanism f is monotonic if

f(x) ≤ f(x′)

for all f(x) and f(x′) such that xi ≤ x′
i for all i ∈ N and xi < x′

i for some i ∈ N .

We next prove the following auxiliary lemma.

Lemma 3. A mechanism that satisfies UFS and monotonicity also satisfies PF.

Proof. Let x be an arbitrary agent location profile, and f be a mechanism that satisfies UFS and monotonic-
ity. Consider the set S = {1, . . . ,m} ⊂ N of m agents and denote r := maxi∈S{xi} −mini∈S{xi}. We prove
that the maximum distance of the facility from any agent in S is at most n−m

n + r.
Denote f := argmaxi∈S{d(f(x), xi)} as the agent in S whose location xf under x is furthest from

the respective facility location27. Consider the modified profile x′ where x′
i = maxi∈S{xi} for all i ∈ S if

f(x) ≥ xf and x′
i = mini∈S{xi} for all i ∈ S if f(x) < xf . Also, x′

i = xi for all i ∈ N\S. In other words,
the agents in S have their locations moved to the rightmost agent in S if the facility is weakly right of the
furthest agent of S under x. If the facility is strictly left of the furthest agent of S under x, the agents in S

have their locations moved to the leftmost agent.
Due to monotonicity, the facility does not move closer to xf when modifying x to x′, so we have

d(f(x′), xf ) ≥ d(f(x), xf ).

Note that all m agents of S are at the same location under x′. Denote this location as x′
S . Due to UFS, we

also have
d(f(x′), x′

S) ≤
n−m

n
.

We therefore have

d(f(x), xf ) ≤ d(f(x′), xf ) ≤ d(f(x′), x′
S) + r ≤ n−m

n
+ r.

⊓⊔

The Nash mechanism is known to satisfy UFS and monotonicity (Lam et al., 2021). It therefore satisfies
PF. ⊓⊔

B.3 Proof of Proposition 3

Proof. The Uniform Phantom mechanism is strategyproof since it is a Phantom mechanism and all Phantom
mechanisms are strategyproof (see, e.g., Corollary 2 of Massó and Moreno De Barreda, 2011). We now

27This is either maxi∈S{xi} or mini∈S{xi}.



22 Haris Aziz, Alexander Lam, Barton E. Lee, and Toby Walsh

prove that the Uniform Phantom mechanism satisfies PF. Let x be an arbitrary location profile and let S =

{1, . . . , s} ⊆ N be a set of s agents; denote r := maxi∈S{xi} −mini∈S{xi}. We prove d(f(x), xi) ≤ n−s
n + r

for all i ∈ S. If r = 1, then the result is trivially true. Suppose that r < 1. If the location is within the range
of the agents in S, PF is immediately satisfied. Next we consider the case there the location is outside the
range of the agents in S. Recall that the Uniform Phantom mechanism places the facility at the n-th entity
of the 2n− 1 phantoms and agents. There are at least s agents in the range of the locations of the agents in
S, so the facility is at most n − s phantoms away from the nearest agent in S. Since the distance between
adjacent phantoms is 1/n, the facility is at most distance (n − s)/n from the nearest agent in S. Hence, the
maximum distance of the facility from any agent in S is n−s

n + r. ⊓⊔

B.4 Tightness of Theorem 1

Proof. We wish to prove that each of the requirements in Theorem 1 are necessary for the theorem to hold.
We show that if any one of the requirements (i.e., strategyproofness, unanimity, anonymity, and IFS) are
removed, then the Theorem 1—not only fails to hold—but there exists such a mechanism. We do this by
providing examples of mechanisms that fulfill all but one of the requirements of Theorem 1 but is not a
phantom mechanism with the n− 1 phantoms contained in [1/n, 1− 1/n].

Strategyproofness. By Proposition 2, the midpoint mechanism is an example of a mechanism is not strate-
gyproof, but satisfies unanimity, anonymity and IFS. However, the midpoint mechanism is not a phantom
mechanism—this follows immediately because phantom mechanisms are necessarily strategyproof.

Unanimity. For n ≥ 2, consider the constant- 12 mechanism, whereby the facility is always located at 1
2 .

This mechanism is clearly strategyproof and anonymous and does not satisfy unanimity. Furthermore, it
satisfies IFS because the largest cost that any agent can experience is 1

2 , which is (weakly) lower than 1− 1
n

for any n ≥ 2. However, the constant- 12 mechanism is not a phantom mechanism—this follows immediately
because phantom mechanisms necessarily satisfy unanimity.28

Anonymity. For simplicity take n = 3 and consider the mechanism f that locates the facility at

f(x) :=max{min{x1,
1

3
+ ε},min{x2,

1

3
},min{x3,

1

3
},

min{x1, x2, 1−
1

3
},min{x2, x3, 1−

1

3
},min{x1, x3, 1−

1

3
},

min{x1, x2, x3, 1}, 0},

where ε > 0 is sufficiently small. This is a Generalized Median mechanism (Border and Jordan, 1983)
and, hence, is strategyproof. Furthermore, it is easy to see that f is unanimous. Border and Jordan’s (1983)
Lemma 3 then says that f is Pareto efficient. However, the mechanism is not anonymous: for x = (0, 0, 1),
f(x) = 1/3, but for x′ = (1, 0, 0), f(x′) = 1/3 + ε.

We now show that the mechanism satisfies IFS. Since the mechanism is Pareto efficient, IFS is trivially
satisfied if xi ≤ 1− 1

3 for all i ∈ N or if xi ≥ 1
3 for all i ∈ N . Now consider some location profile x that does

28Recall that Definition 8 defines the family of Phantom mechanism as having (n − 1) phantoms. In the literature, a
broader class of mechanisms that has (n+ 1) phantoms is sometimes referred to as the class of phantom mechanism;
unanimity is not necessarily satisfied by mechanisms in this broader class.
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not belong to these trivial cases, i.e., there is at least one agent with location below 1
3 (resp., 1− 1

3 ) and at least
one agent with location above 1

3 (resp., 1− 1
3 ). In these cases, IFS can only possibly be violated if f(x) > 1− 1

3

or f(x) < 1
3 . However, f(x) > 1− 1

3 if and only if xi > 1− 1
3 for all i ∈ N—but the latter condition does not

hold. Similarly, f(x) < 1
3 if and only if xi <

1
3 for all i ∈ N—but, again, the latter condition does not hold.

Therefore, we conclude that IFS is satisfied. However, the mechanism f is not a phantom mechanism—this
follows immediately because phantom mechanisms are necessarily anonymous.

IFS. The Phantom mechanism that places all n− 1 phantoms at 0 is strategyproof, unanimous and anony-
mous. However, it does not satisfy IFS as the facility can be placed at 0 when there is an agent at 1. It is
immediate that this Phantom mechanism violates the condition of the theorem that all phantoms are lo-
cated in the interval [1/n, 1− 1/n]. ⊓⊔

B.5 Lemma 4 and proof of Lemma 4

Lemma 4. A mechanism that is strategyproof, unanimous, and proportional must also be anonymous.

Proof. Suppose f is strategyproof and satisfies proportionality and unanimity. We wish to show that f is
anonymous (Definition 1). First we note that by Border and Jordan’s (1983) Proposition 2, any unanimous
and strategyproof mechanism must satisfy the following uncompromising property.

Definition 13 (Uncompromising). A mechanism f is uncompromising if, for every profile of locations x, and
each agent i ∈ N , if f(x) = y then

xi > y =⇒ f(x′
i,x−i) = y for all x′

i ≥ y and, (3)

xi < y =⇒ f(x′
i,x−i) = y for all x′

i ≤ y. (4)

Now consider an arbitrary profile of locations x and an arbitrary permutation of the profile x, which
we denote by xσ . We will show that f(x) = f(xσ). First note that if x is such that xi = c for some c ∈ [0, 1],
then f(x) = f(xσ) by unanimity. Therefore, we assume that x is such that xi ̸= xj for some i, j ∈ N .

Case 1. Suppose that f(x) ̸= xi for any i ∈ N . Recall that Border and Jordan’s (1983) Lemma 3 says that
any strategyproof and unanimous mechanism is Pareto efficient; therefore, mini∈N xi ≤ f(x) ≤ maxi∈N xi.
Now if all agents strictly below (resp., above) f(x) shift their location to 0 (resp., 1), then, by the uncom-
promising property, the facility location must be unchanged. Let x′ denote this augmented location profile
and let k′ denote the number of agents with x′

i = 1. By proportionality, it must be that f(x) = f(x′) = k′

n .
Now consider the permutation of the profile x′, i.e., x′

σ . The implication of the proportionality property
is independent of agent labels; therefore, f(x′

σ) = f(x′). Now shift the agent locations in x′
σ so that they

replicate the permuted location profile xσ—note that this process only involves agents strictly above (resp.,
below) f(x′

σ) moving to a location above (resp., below) f(x′
σ). Therefore, by the uncompromising property,

it must be that f(x′
σ) = f(xσ). Combining the three sets of equalities gives

f(x) = f(x′) = f(x′
σ) = f(xσ).

That is, the facility location is unchanged by permutations, i.e., anonymity is satisfied.
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Case 2. Suppose that f(x) = xi for some i ∈ N . Let M ⊆ N be the subset of agents with xi = f(x).
Let M0,M1 ⊆ N correspond to the subset of agents with location strictly below and strictly above f(x),
respectively. Denote |M0| = k0 and |M1| = k1. We first show that

k1
n

≤ f(x). (5)

For sake of contradiction, suppose that (5) does not hold (i.e., f(x) < k1

n ), and consider the location profile
x′ obtained by modifying x such that the M0 (resp., M1) agents’ locations are shifted to 0 (resp., 1) and the
other agents’ (i.e., those in M ) have location unchanged. By the uncompromising property, f(x′) = f(x).
Now consider the modified location profile x′′ such that x′′

i = x′
i for all i /∈ M and x′′

i = 0 for all i ∈ M . By
proportionality, f(x′′) = k1

n and, by supposition that f(x) < k1

n , we have

f(x′) = f(x) <
k1
n

= f(x′′). (6)

Now notice that the profile x′ can be obtained from x′′ by shifting the subset of M agents’ locations from 0
to f(x), which is to the left of f(x′′). The uncompromising property then requires that

f(x′) = f(x′′) =
k1
n
,

which contradicts (6). We conclude that (5) holds.

With condition (5) in hand, we can now proceed by considering two subcases.

Subcase 2a. Suppose that f(x) = k
n for some k ∈ {0, . . . , n}. Consider any profile of locations x′ ∈ {0, 1}n

with k agents at location 1. By proportionality, f(x′) = k
n = f(x). Note that the proportionality axiom

is independent of agent labels and, by (5), f(x) ≥ k1

n =⇒ k ≥ k1. Therefore, the permuted location
of profile xσ can be attained by relabeling agents in x′ and then shifting their reports from 1 (resp., 0) to
their original location that is weakly above (resp., below) f(x′) = k

n—by the uncompromising property, the
facility location will not change. Therefore, f(xσ) = f(x′) = k

n = f(x), as required.

Subcase 2b. Suppose that f(x) ̸= k
n for any k ∈ {0, . . . , n}. Let k∗ be the smallest integer such that f(x) < k∗

n ;
by (5), k∗ > k1. Now consider any location profile x′ ∈ {0, 1}n with exactly k∗ agents at 1. By proportional-
ity,

f(x′) =
k∗

n
> f(x). (7)

Now consider any subset G ⊆ N that contains |k∗ − k1| > 1 agents who are located at 1. Let x′′ denote the
profile obtained from x′ by shifting the G agents’ locations to x̂G = f(x). We shall prove that

f(x′′) = x̂G. (8)

To see this, suppose that this is not the case. Then either

x̂G < f(x′′) or (9)

f(x′′) < x̂G. (10)
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In the former case, all agents in G have location strictly below f(x′′)—namely, x̂G = f(x). Therefore, by
the uncompromising property, if all agents in G shift their location to 0 in the profile x′′, then the facility
location is unchanged and continues to be located at f(x′′). Proportionality then requires that the facility
then be located at k1

n and, hence, f(x′′) = k1

n . But then (9) implies that x̂G < k1

n , which in turn implies that
f(x) = x̂G < k1

n —this contradicts (5). In the latter case, all agents in G have location strictly above f(x′′)—
namely, x̂G = f(x). Therefore, by the uncompromising property, if all agents in G shift their location back
to 1 in the profile x′′, then the facility location is unchanged and, by proportionality, is located at k∗

n . Hence,
f(x′′) = k∗

n . Using (10), this implies that k∗

n < f(x), which contradicts (7).

Now given (8), by the uncompromising property, shifting any agent with location at 0 (resp., 1) to any
location weakly below (resp., above) x̂G must leave the facility’s location unchanged. Therefore, for any
profile with exactly k0, k1 agents strictly below x̂G and strictly above x̂G and n − k0 − k1 agents located at
x̂G, the facility must be located at x̂G. But—since x̂G = f(x)—it is immediate that any permutation of x,
say xσ , satisfies these 3 properties; hence,

f(xσ) = f(x).

We conclude that any mechanism that satisfies strategyproofness, proportionality, unanimity must also
satisfy anonymity. ⊓⊔

B.6 Unanimity is Necessary for Theorem 2

Proof. We wish to prove that Theorem 2 does not hold if unanimity is removed. It suffices to consider the
following mechanism for n = 2

f(x) =


0 if x1, x2 ≤ 1/4,

1 if x1, x2 ≥ 3/4,

1/2 else.

This mechanism is clearly anonymous, satisfies proportionality and is not the Uniform Phantom mecha-
nism. It remains to show that it is strategyproof. Using a symmetry argument, we focus on deviations by
agent 1 without loss of generality. Suppose f(x) = 0, then it must be that x1 ≤ 1/4. But then agent 1 obtains
the minimum possible distance to facility (given x1 and given the mechanism’s range); hence, no devia-
tion can strictly decrease her distance. Suppose f(x) = 1/2, then either x1 ∈ (1/4, 3/4) or x2 ∈ (1/4, 3/4).
In the former case, agent 1 obtains the minimum possible distance to the facility (given x1 and given the
mechanism’s range); hence, no deviation can strictly decrease her distance. In the latter case, no deviation
by agent 1 can change the facility location. Finally, suppose f(x) = 1, then it must be that x1 ≥ 3/4. But
then agent 1 obtains the minimum possible distance to facility (given x1 and given the mechanism’s range);
hence, no deviation can strictly decrease her distance. Therefore, the mechanism is SP. ⊓⊔

B.7 Proof of Lemma 1

Proof. We wish to prove that a mechanism f that satisfies IFS has welfare approximation of at least 1 +
n−2

n2−2n+2 . To this end, suppose f satisfies IFS and consider the profile of locations x ∈ {0, 1}n that places
n− 1 agents at 0. IFS requires that f(x) = 1

n , which provides welfare

Φ(f(x)) = (n− 1)(1− 1

n
) +

1

n
=

(n− 1)2 + 1

n
.
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However, for this instance, the welfare-optimal welfare is Φ∗(x) = n − 1 (obtained by locating the facility
at the median location, 0). Therefore, the approximation ratio of f is at least

Φ∗(x)

Φ(f(x))
=

n(n− 1)

(n− 1)2 + 1
= 1 +

n− 2

(n− 1)2 + 1
.

⊓⊔

B.8 Proof of Theorem 4

Proof. We wish to prove that among all IFS mechanisms, the Constrained Median mechanism provides
the best approximation guarantee i.e., it achieves the approximation ratio in Lemma 1. Let fCM denote the
Constrained Median mechanism. We shall prove that for any location profile x ∈ [0, 1]n there exists some
profile x̃ ∈ {0, 1}n such that

Φ∗(x̃)

Φ(fCM(x̃))
≥ Φ∗(x)

Φ(fCM(x))
, (11)

which implies that

max
x∈[0,1]n

Φ∗(x)

Φ(fCM(x))
= max

x∈{0,1}n

Φ∗(x)

Φ(fCM(x))
.

We begin by noting that, whenever fCM(x) ∈ (1/n, 1− 1/n), the facility location coincides with the median
location and fCM obtains the maximum welfare. Thus, we can restrict our attention to profiles such that
fCM(x) /∈ (1/n, 1− 1/n). We proceed to prove (11) by considering a sequence of profiles that modify x into
some profile x̃ ∈ {0, 1}n such that each modified profile guarantees a weakly higher approximation ratio.

Let the agent labels be ordered such that x1 ≤ . . . ≤ xn; let i = med denote the median agent. Without
loss of generality, suppose fCM(x) ∈ [0, 1/n]. This implies that the median agent is weakly below fCM(x),
i.e., xmed ≤ fCM(x). To assist with visualizing the proof technique, we provide a running example with n =

5 agents. Figure 4 illustrates a profile x such that xmed ≤ fCM(x); in particular, xmed = x3 and fCM(x) = 1/5.

0 1/5 4/5 1

x1 x2 x3 x4 x5

Fig. 4: Running example. Profile x

First, consider the modified profile x′ such that x′
i = 0 for i ∈ N ′ := {i : i < med} and x′

i = xi for
all i /∈ N ′. Applying this operation to the running example illustrated in Figure 4, we obtain the profile
illustrated in Figure 5.
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0 1/5 4/5 1

x′
1

x′
2

x′
3 x′

4 x′
5

Fig. 5: Running example. Profile x′

In this modified profile, we have moved all agents strictly left of the median agent to 0, so neither the
welfare-optimal (median) location nor the facility location under fCM changes. Hence, relative to Φ∗(x) and
Φ(fCM(x)), the optimal welfare, Φ∗(x′), and the welfare provided by fCM, Φ(fCM(x′)), decrease by the same
amount—namely,

∑
i∈N ′ xi ≥ 0. We conclude that

Φ∗(x′)

Φ(fCM(x′))
=

Φ∗(x)−
∑

i∈N ′ xi

Φ(fCM(x))−
∑

i∈N ′ xi
≥ Φ∗(x)

Φ(fCM(x))
,

where the final inequality follows because (x− a)/(y − a) ≥ x/y for any a ≥ 0 and 0 < y ≤ x.

Next we consider the modified profile x′′ such that x′′
med = 0 and x′′

i = x′
i for all i ̸= med. Applying this

operation to the running example illustrated in Figure 5, we obtain the profile illustrated in Figure 6.

0 1/5 4/5 1

x′′
1

x′′
2

x′′
3

x′′
4 x′′

5

Fig. 6: Running example. Profile x′′

In this modified profile, the welfare-optimal (median) location moves from xmed to 0, so the facility
location under fCM remains unchanged, i.e., fCM(x′′) = f(x′). Hence, relative to Φ∗(x′), the optimal welfare,
Φ∗(x′′), decreases by xmed if n is even and decreases by 0 otherwise; relative to Φ(fCM(x′)), the welfare
under fCM, Φ(fCM(x′′)), decreases by xmed. Defining the indicator function In even. as 1 if n is even and 0

otherwise, we conclude that

Φ∗(x′′)

Φ(fCM(x′′))
=

Φ∗(x′)− xmedIn even.

Φ(fCM(x′))− xmed
≥ Φ∗(x′)

Φ(fCM(x′))
≥ Φ∗(x)

Φ(fCM(x))
.

Now either xn ≥ 1/n or xn < 1/n. Suppose the former case holds, then

fCM(x) = 1/n = fCM(x′) = fCM(x′′).

Consider the modified profile x′′′ ∈ {0, 1}n such that x′′′
i = 1 for all i ∈ N ′′′ := {i : x′′

i ≥ 1/n} and x′′′
i = 0

for all i /∈ N ′′′. Applying this operation to the running example illustrated in Figure 6, we obtain the profile
illustrated in Figure 7.
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0 1/5 4/5 1

x′′′
1

x′′′
2

x′′′
3

x′′′
4

x′′′
5

Fig. 7: Running example. Profile x′′′

In this modified profile, we have moved all agent locations that were weakly right of 1/n in x′′ to 1

and all other agents’ locations are shifted to 0. Under x′′′, the welfare-optimal (median) location remains
unchanged (at x′′

med = 0) and the facility location under fCM remains at 1/n. We conclude that

Φ∗(x′′′)

Φ(fCM(x′′′))
=

Φ∗(x′′)−
∑

i∈N ′′′(1− x′′
i ) +

∑
i/∈N ′′′ x′′

i

Φ(fCM(x′′))−
∑

i∈N ′′′(1− x′′
i )−

∑
i/∈N ′′′ x′′

i

≥ Φ∗(x′′)

Φ(fCM(x′′))
≥ Φ∗(x)

Φ(fCM(x))
.

Therefore, there exists x̃ ∈ {0, 1}n—namely, x′′′—with weakly higher approximation ratio than x.

Finally, suppose the latter case, xn < 1/n, holds. In this case,

fCM(x) = xn = fCM(x′) = fCM(x′′) < 1/n.

Consider the modified profile x′′′′ such that x′′′′
n = 1/n and x′′′′

i = x′′
i otherwise. In this modified profile,

we have moved the last agent x′′′
n to 1/n, so the welfare-optimal (median) location remains unchanged (at

x′′
med = 0) and the facility location under fCM shifts to 1/n, i.e., fCM(x′′′′) = 1/n. We conclude that

Φ∗(x′′′′)

Φ(fCM(x′′′′))
=

Φ∗(x′′)− (1/n− xn)

Φ(fCM(x′′))− (n− 1)(1/n− xn)
≥ Φ∗(x′′)

Φ(fCM(x′′))
.

Now the same steps from the former case can be used to show that there exists x̃ ∈ {0, 1}n with weakly
higher approximation ratio than x. Therefore, (11) holds.

It is straightforward to calculate the maximum approximation ratio among profiles x̃ ∈ {0, 1}n. The
maximum is attained when x̃ has (n− 1) agents at 0 and 1 agent at 1, which provides the required approx-
imation ratio (see Proof of Lemma 1) ⊓⊔

B.9 Proof of Lemma 2

Proof. We wish to prove that any mechanism satisfying UFS (or proportionality or PF) has a welfare approx-
imation of at least (2). To this end, suppose f satisfies UFS. Consider the agent location profile x ∈ {0, 1}n

that has k ≤ n/2 agents at 1. The optimal welfare Φ∗(x) = n − k is obtained by placing the facility at the
median location 0. UFS requires that f(x) = k

n , which provides welfare Φ(f(x)) = k2+(n−k)2

n . Therefore, the
approximation ratio is

Φ∗(x)

Φ(f(x))
=

n(n− k)

k2 + (n− k)2
.
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Maximizing the above expression with respect to k ∈ N : 0 ≤ k ≤ n/2 provides the approximation bound
in the lemma statement. Defining r := k

n , this ratio is equal to

Φ∗(x)

Φ(f(x))
=

1− r

2r2 − 2r + 1
.

The derivative of this expression with respect to r is 2r2−4r+1
(2r2−2r+1)2 , which is equal to 0 when r = 2−

√
2

2 or

r = 2+
√
2

2 . We ignore the latter as k cannot exceed n, and we note that r = 2−
√
2

2 is a maximum point
as the derivative is positive for r ∈ [0, 2−

√
2

2 ) and negative for r ∈ ( 2−
√
2

2 , 1]. We therefore deduce that
Φ∗(x)
Φ(f(x)) is maximized when k

n = 2−
√
2

2 , providing approximation ratio
√
2+1
2 . This approximation ratio can

be achieved asymptotically as n → ∞. ⊓⊔

B.10 Proof of Theorem 5

Proof. We wish to prove that among all UFS (or proportional or PF) mechanisms, the Uniform Phantom
mechanism provides the best approximation guarantee, i.e., it achieves the approximation ratio in Lemma 2.
To this end, let fUnif denote the Uniform Phantom mechanism. We prove that for any location profile x ∈
[0, 1]n there exists some profile x̃ ∈ {0, 1}n such that

Φ∗(x̃)

Φ(fUnif(x̃))
≥ Φ∗(x)

Φ(fUnif(x))
. (12)

This implies that

max
x∈[0,1]n

Φ∗(x)

Φ(fUnif(x))
= max

x∈{0,1}n

Φ∗(x)

Φ(fUnif(x))
.

Let the agent labels be ordered such that x1 ≤ . . . ≤ xn; let i = med denote the median agent. Suppose
without loss of generality that x : xmed < fUnif(x); if xmed = fUnif(x), then (12) is trivially satisfied. To
assist with visualizing the proof technique, we provide a running example with n = 6 agents. Figure 8
illustrates a profile x such that xmed < fUnif(x); in particular, xmed = x3 and fUnif(x) = x5.

0 1/6 2/6 3/6 4/6 5/6 1

x1 x2 x3 x4 x5 x6

Fig. 8: Running example. Profile x

First, consider the modified profile x′ such that x′
i = 1 for all i ∈ N ′ := {i : fUnif(x) < xi}, x′

i = 0 for all
i ∈ N ′′ := {i : i < med}, and x′

i = xi for all i /∈ N ′ ∪N ′′—note that N ′ ∩N ′′ = ∅. Applying this operation
to the running example illustrated in Figure 8, we obtain the profile illustrated in Figure 9.
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0 1/6 2/6 3/6 4/6 5/6 1

x′
1

x′
2

x′
3 x′

4 x′
5 x′

6

Fig. 9: Running example. Profile x′

In this modified profile, we have moved all agents with location strictly to the right of the Uniform
Phantom location to 1, and all agents strictly left of the median to 0. Under x′, neither the welfare-optimal
(median) location nor the facility location under fUnif changes. Therefore, relative to Φ∗(x) and Φ(fUnif(x)),
the optimal welfare, Φ∗(x′), and the welfare under f , Φ(fUnif(x

′)), decrease by the same amount—namely,∑
i∈N ′(1− xi) +

∑
i∈N ′′ xi ≥ 0. We conclude that

Φ∗(x′)

Φ(fUnif(x′))
=

Φ∗(x)−
∑

i∈N ′(1− xi)−
∑

i∈N ′′ xi

Φ(fUnif(x))−
∑

i∈N ′(1− xi)−
∑

i∈N ′′ xi
≥ Φ∗(x)

Φ(fUnif(x))
.

Next we consider the modified profile x′′ such that x′′
med = 0 and x′′

i = x′
i for all i ̸= med. Applying this

operation to the running example illustrated in Figure 9, we obtain the profile illustrated in Figure 10.

0 1/6 2/6 3/6 4/6 5/6 1

x′′
1

x′′
2

x′′
3

x′′
4 x′′

5 x′′
6

Fig. 10: Running example. Profile x′′

In this modified profile, the welfare-optimal (median) location moves from xmed to 0 and the facility
location under fUnif remains unchanged, i.e., fUnif(x

′′) = fUnif(x
′). Hence, relative to relative to Φ∗(x′), the

optimal welfare, Φ∗(x′′), decreases by xmed if n is even and decreases by 0 otherwise; relative to Φ(fUnif(x
′)),

the welfare under fUnif, Φ(fUnif(x
′′)), decreases by xmed. We conclude that

Φ∗(x′′)

Φ(fUnif(x′′))
=

Φ∗(x′)− xmedIn even.

Φ(fUnif(x′))− xmed
≥ Φ∗(x′)

Φ(fUnif(x′))
≥ Φ∗(x)

Φ(fUnif(x))
.

Now consider the modified profile x′′′ such that x′′′
i = 0 for all i ∈ N ′′′ := {i : x′′

i < fUnif(x)} and x′′′
i = x′′

i

for all i /∈ N ′′′. Applying this operation to the running example illustrated in Figure 10, we obtain the profile
illustrated in Figure 11.
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0 1/6 2/6 3/6 4/6 5/6 1

x′′′
1

x′′′
2

x′′′
3

x′′′
4

x′′′
5 x′′′

6

Fig. 11: Running example. Profile x′′′

In this modified profile, we move all agents strictly left of the Uniform Phantom facility location to 0,
so neither the welfare-optimal (median) location of 0, nor the facility location under fUnif changes. Hence,
relative to Φ∗(x′′), the optimal welfare, Φ∗(x′′), increases by

∑
i∈N ′′′ x′′

i ; relative to Φ(fUnif(x
′′)), the welfare

under fUnif, Φ(fUnif(x
′′)), decreases by

∑
i∈N ′′′ x′′

i . We conclude that

Φ∗(x′′′)

Φ(fUnif(x′′′))
=

Φ∗(x′′) +
∑

i∈N ′′′ x′′
i

Φ(fUnif(x′′))−
∑

i∈N ′′′ x′′
i

≥ Φ∗(x′′)

Φ(fUnif(x′′))
≥ Φ∗(x)

Φ(fUnif(x))
.

Lastly, consider the modified profile x′′′′ such that x′′′′
i = 1 for all i ∈ N ′′′′ = {i : fUnif(x

′′′) ≤ xi} and
x′′′′
i = 0 for all i /∈ N ′′′′. Applying this operation to the running example illustrated in Figure 11, we obtain

the profile illustrated in Figure 12. In Figure 12, the Uniform Phantom location increases to 2/6.

0 1/6 2/6 3/6 4/6 5/6 1

x′′′′
1

x′′′′
2

x′′′′
3

x′′′′
4

x′′′′
5

x′′′′
6

Fig. 12: Running example. Profile x′′′′

Under this modified profile, we have moved all agents weakly right of the Uniform Phantom location
to 1, so the welfare-optimal (median) location does not change; the facility location under fUnif moves to a
(weakly) higher location, i.e., fUnif(x

′′′′) : fUnif(x
′′′) ≤ fUnif(x

′′′′).

Relative to Φ∗(x′′′), the optimal welfare, Φ∗(x′′′′), decreases by
∑

i∈N ′′′′(1−x′′′
i ). Relative to Φ(fUnif(x

′′′)),
the welfare under fUnif, Φ(fUnif(x

′′′′)) also decreases by
∑

i∈N ′′′′(1− x′′′
i ) due to the movement in agents in

N ′′′′. In addition, Φ(fUnif(x
′′′′)) decreases due to the movement in the facility location: this follows because

the number of agents at location 0 is weakly higher than the number of agents at location 1. Let this addi-
tional decrease in Φ(fUnif(x

′′′′)) be denoted by ∆ > 0. We conclude that

Φ∗(x′′′′)

Φ(fUnif(x′′′′))
=

Φ∗(x′′′)−
∑

i∈N ′′′′(1− x′′′
i )

Φ(fUnif(x′′′))−
∑

i∈N ′′′′(1− x′′′
i )−∆

≥ Φ∗(x′′′)

Φ(fUnif(x′′′))
≥ Φ∗(x)

Φ(fUnif(x))
.
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Therefore, there exists x̃ ∈ {0, 1}n—namely, x′′′′—with weakly higher approximation ratio than x. There-
fore, (12) holds. The theorem statement follows from the fact that the approximation ratio in Lemma 2 is
constructed by restricting agents to locations {0, 1}. ⊓⊔

C Average Mechanism Results

Proposition 4. The average mechanism satisfies PF.

Proof. The average mechanism satisfies UFS and monotonicity. By Lemma 3, it also satisfies PF. ⊓⊔

Proposition 5. The average mechanism achieves the approximation ratio in Lemma 2.

Proof. Let favg denote the average mechanism. We prove that for any location profile x ∈ [0, 1]n there exists
some profile x̃ ∈ {0, 1}n such that

Φ∗(x̃)

Φ(favg(x̃))
≥ Φ∗(x)

Φ(favg(x))
. (13)

This implies that

max
x∈[0,1]n

Φ∗(x)

Φ(favg(x))
= max

x∈{0,1}n

Φ∗(x)

Φ(favg(x))
.

Let the agent labels be ordered such that x1 ≤ . . . ≤ xn; let i = med denote the median agent. Suppose
without loss of generality that for odd n, we have x : xmed < favg(x) and for even n, we have x : xn

2 +1 <

favg(x). This is because (13) is trivially satisfied for odd n if xmed = favg(x), and it is satisfied for even n if
xmed ≤ favg(x) ≤ xn

2 +1.
First, consider the modified profile x′ such that x′

i = 1 for all i ∈ S := {i : xi ≥ favg(x} and x′
i = xi for

all i ∈ S. In this modified profile, the welfare-optimal (median) location does not change, and the facility
location under favg moves towards the agents in S. Denoting this change in facility location as ∆ > 0 and
noting that |S| < n− |S| due to the facility being located right of the welfare-optimal interval/median, the
welfare under favg decreases by ((n− |S|)− |S|)∆ > 0 from the facility moving towards the |S| agents at 1
and away from the remaining n− |S| agents. Due to the agent movements, the optimal welfare Φ∗(x′) and
the welfare under f , Φ(favg(x

′)) both decrease by the same amount —namely,
∑

i∈S(1 − xi)— relative to
Φ∗(x) and Φ(favg(x)). We conclude that

Φ∗(x′)

Φ(favg(x′))
=

Φ∗(x)−
∑

i∈S(1− xi)

Φ(favg(x))−
∑

i∈S(1− xi)− (n− 2|S|)∆
≥ Φ∗(x)

Φ(favg(x))
.

Now consider the modified profile x′′ such that x′′
i = 0 for all i ∈ S′ := {i : x′

i < xmed}, for all i ∈
S′′ := {i : xmed < xi < favg(x

′)} and for i = med, and x′′
i = x′

i otherwise. The change in optimal welfare,
which we will denote as ∆′

opt, can be quantified by observing the agents’ movements sequentially. The
optimal welfare decreases by

∑
i∈S′ xi from the agents of S′ moving to 0. Next, the median agent (and

welfare-optimal facility location) moving towards the S′ agents at 0 causes the optimal welfare to decrease
by xmedIn even. Lastly, the remaining agents of S′′ move towards the median at 0, increasing the optimal
welfare by

∑
i∈S′′ xi. We therefore have

∆′
opt = −

∑
i∈S′

xi − xmedIn even +
∑
i∈S′′

xi. (14)
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We next quantify the change in welfare corresponding to favg, which we denote as ∆′
avg. The wel-

fare decreases by
∑

i∈S′ xi + xmed +
∑

i∈S′′ xi from the agent movements, and increases by (n −
2|S|) 1n

∑
i∈S′∪{med}∪S′′ xi from the facility moving towards the n − |S| agents at 0 and away from the |S|

agents at 1. We therefore have

∆′
avg = −

∑
i∈S′

xi − xmed −
∑
i∈S′′

xi + (n− 2|S|) 1
n

∑
i∈S′∪{med}∪S′′

xi. (15)

We now show that ∆′
opt > ∆′

avg by subtracting Equations (14) and (15). We first note that |S′′| = n
2 − |S| for

even n and |S′′| = n−1
2 − |S| for odd n. If n is even, we have

∆′
opt −∆′

avg = 2
∑
i∈S′′

xi −
n− 2|S|

n

 ∑
i∈S′∪{med}

xi +
∑
i∈S′′

xi


≥ 2

∑
i∈S′′

xi −
2|S′′|
n

(
n

2
xmed +

∑
i∈S′′

xi

)

= 2
∑
i∈S′′

xi − |S′′|xmed −
2|S′′|
n

∑
i∈S′′

xi

=

(∑
i∈S′′

xi − |S′′|xmed

)
+

(∑
i∈S′′

xi −
2|S′′|
n

∑
i∈S′′

xi

)
≥ 0,

where the first inequality is due to xmed > xi for all i ∈ S′, and we have
∑

i∈S′′ xi − |S′′|xmed ≥ 0 due to
xi > xmed for all i ∈ S′′. Now if n is odd, we have

∆′
opt −∆′

avg = 2
∑
i∈S′′

xi + xmed −
n− 2|S|

n

(∑
i∈S′

xi + xmed +
∑
i∈S′′

xi

)

≥ 2
∑
i∈S′′

xi + xmed −
2|S′′|+ 1

n

(
n− 1

2
xmed + xmed +

∑
i∈S′′

xi

)

=

(∑
i∈S′′

xi −
(2|S′′|+ 1)(n− 1)

2n
xmed

)
+

(
xmed +

∑
i∈S′′

xi

)(
1− 2|S′′|+ 1

n

)

=

(∑
i∈S′′

xi − |S′′|xmed −
|S|
n

xmed

)
+

(
xmed +

∑
i∈S′′

xi

)(
2|S|
n

)
≥ 0.

We have shown that ∆′
opt > ∆′

avg , meaning that we have

Φ∗(x′′)

Φ(favg(x′′))
=

Φ∗(x′) +∆′
opt

Φ(favg(x′)) +∆′
avg

≥ Φ∗(x′)

Φ(favg(x′))
≥ Φ∗(x)

Φ(favg(x))
.

Therefore, there exists x̃ ∈ {0, 1}n—namely, x′′—with weakly higher approximation ratio than x. There-
fore, (13) holds. The proposition statement follows from the fact that the approximation ratio in Lemma 2
is constructed by restricting agents to locations {0, 1}. ⊓⊔
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