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Abstract

We present an algorithm to find optimal routes in a multi-modal
public transportation network. Our model takes into account many re-
alistic features such as walking between multi-modal stations, transfer
times, traffic days, multiple objectives and finding connections between
geographical locations rather than just source and destination stations.
In order to provide useful routing directions, we consider the robustness
of the provided solutions. In addition we present numerous speed up
techniques that reduce both the preprocessing time and storage. Our
preliminary experiments on the Sydney transit network are promising.
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1 Introduction

There exist many different systems that provide users with transit infor-
mation, e.g. NSW TranportInfo [8], Google Transit [6]. Such systems are
often available as a Web or smart phone application. The application ask a
user to input an origin, destination and expected departure or arrival time
and provides the user with recommended travel routes. Such systems are
useful in encouraging people to switch from their private cars to use public
transport services, thus reducing congestion, CO2 emission and providing
the travelers a better experience.
We present here an algorithm to find optimal paths in a multi-modal public



transportation network. Our algorithm extends the Transit algorithm [3, 4]
using an improved time expanded graph of the multi-modal public network.
The original Transit algorithm is one of the best methods for finding short-
est paths in very large road networks, [5], but was previously limited to a
single mode of transport and static and undirected graphs. The nature of
public network is very different from road network in many ways, e.g., links
are directional, time/day dependent, etc. In addition, the number of nodes
is very large, especially if, as is the usual case, we deal with time depen-
dency by constructing a time expanded graph. In practice, simply applying
Transit to a time expanded graph does not scale. To deal with this problem,
we will apply it to two-layers model of the public network. We start with a
single objective problem and show how to extend it to multi-objective cri-
teria, such as travel time, tickets cost and hassle of interchanges according
to user preferences.

2 Related Work

In recent years several algorithms have been developed that use precom-
puted information to obtain a shortest path in a road network in a few
microseconds, [10]. However there has been less progress on public trans-
port networks. In [1] H. Bast discusses why finding shortest paths in public
transport networks is not as straight forward as in road networks. There are
several issues that arise in public networks, which are not encountered in
road networks. For example, source and target of the query are geograph-
ical locations, and we need to walk first to some nearby station. A priori
it is not so clear what station should we start our search from, so here we
have set of source and target stations. Other issues we need to consider are
transfer time safety buffers, tickets cost, operating days, etc. The recent and
the most prominent result in this area is by H. Bast et al [2]. They report a
time of 10ms for station-to-station query for a North America public trans-
portation network consisting of 338K stations and more than 110M events.
Besides being relatively complicated, the main drawback of their algorithm
is the large computational resources required for precomputation. The au-
thors report requirements of 20-40 (CPU core) hours per 1 million of nodes.
For the Swiss transit network, which is comparable in size to the Sydney
network, the reported precomputation time was between 560 − 635 hours.
Our approach is more intuitive, has much less hardware requirements and
precomputation time. In addition we show how to provide multiple results
incorporating user preferences.



3 Modeling the Network

Currently, there are two main approaches to model a public transport net-
works, known as Time-Dependent and Time-Expanded models. For an ex-
haustive description of the models and existing techniques we address the
readers to [7, 9]. Typically the Time-Expanded model has three types of
nodes: arrival node, departure node and transfer node. In our new model
we eliminate transfer nodes and all the links from transfer nodes to depar-
ture nodes. Instead we connect arrival and departure nodes directly. For the
Sydney public transport network containing 9.3K stations and 4M events,
the space reduces from 600Mb to 480Mb. In addition to the storage saving
this modification also speeds up precomputation time. The model consist of
two layers: station graph and events graph. The events graph nodes are ar-
rival and departure events of a station and are interconnected by four types
of links: departure links, continue links, changing links, waiting links. The
station graph nodes are the stations and it has two types of links station
links and walking links. In our experiments we assume that we can walk
from every station to every other station within 10 minutes walking radius.
The described graph is illustrated below.

Figure 1: The two layered, time expanded graph with three stations.



4 The Modified Transit Algorithm

Assume for a moment that our world is a public transport network, i.e. we
start and finish our journey at event nodes. We start with solving a single
objective problem, e.g. we are interested to find the fastest way to get from
station A to station B starting our journey at time t. Being consistent
with [2] we denote this problem as A@t → B. This problem is equivalent
to finding an earliest arrival time, given the departure time. In reality the
user may be interested in finding a route with the latest departure time,
given an arrival time, which we will denote as A → B@t. This query can
be answered efficiently by simply applying exactly the same algorithm but
using backward Dijkstra. Similarly to the original Transit algorithm [3] our
algorithm also consists of two phases - precomputation and query.

Precomputation
Similarly to the original transit algorithm, in order to identify transit nodes
we exploit the fact that the public transport stations have a geographical
coordinates associated with them and use a rectangular grid.
At first stage of this phase, we identify a set of transit nodes. Intuitively
a transit node is a node through which at least one long distance shortest
path pass. Since the time expanded graph is large, both precomputation
time and storage space will be prohibitive. In order to overcome this issue
we define transit nodes to be stations rather than events and determine them
in the stations graph, rather than in the events graph. This approach very
successfully solves the scalability issue, but introduces several complications.
Between two stops, one path can be a shortest path, say in the morning
and another one in the evening. Therefore we need to make our transit
nodes time dependent. We partition the day into segments that reflects
public services daily patterns, say 6am-9am, 9am-12am, 12pm-4pm, 4pm-
7pm, 7pm-10pm, 10pm-6am. Since the station graph is relatively small
(10K-40K nodes), this is done relatively fast and can be executed in parallel.
The next stage is performed on the events graph layer of our network. We
precompute the following shortest routes and store them in three tables:
(i) node-to-transit : for every station S, from every departure event of S to
every transit station node of S, according to the time of the day, (ii) transit-
to-transit : from every event of transit station node to every other transit
station node and (iii) transit-to-node: for every node S, from every event of
its associated transit station node to S.



Query (time only)
Given the query A@t → B, if A and B are a ”long distance” 1 away we
find the fastest journey time as follows. We fetch transit station nodes of A
and B, TA and TB accordingly. Let τA ∈ TA and τB ∈ TB be transit nodes
of A and B. For every τA we fetch c1 = cost(A@t, τA). Let’s assume that
this route arrived to τA at time t1. Then we fetch c2 = cost(τA@t1, τB).
Finally, assuming that the fastest route from τA at time t1 arrived to τB
at time t2, we fetch c3 = cost(τB@t2, B). Eventually the total travel time
will be c1 + c2 + c3. Iterating over all τA ∈ TA the cost of the fastest route
will be the one that yields minimal c1 + c2 + c3. In case A and B are not
”long distance” away, we just apply any efficient search algorithm, A* for
example.

Query (actual path)
Unlike road networks, where for many applications returning the time (or
distance) is good enough, in public transport networks users will be usually
interested in concrete route directions. More precisely, besides knowing on
which service to board at the start of their journey, we need to provide
instructions where they should change services. Luckily, the vast majority
of our journeys consist of very small number of transfers, 2-3, 4 and more
on very rare cases. Observing this, during precomputation phase for every
precomputed pair we can store the instructions where to change services.
Alternatively we can store only the first transfer instruction and reconstruct
the whole journey by iteratively applying the Query from the next transfer
station. Again the number of iterations should be very small.

4.1 Dealing with Multiobjectiveness

In addition to find the fastest connection between two points, the user may
consider also other criteria, such as the cost of tickets, hassle of interchang-
ing between services, etc. Moreover, different users can have different pref-
erences over these criteria. For example a businessmen may try to optimize
his travel time, a student may try to minimize his costs and a visitor may
wish to avoid changing services in order not to get lost. There are several
ways to deal with multiobjective optimization [7], in this work we choose the
normalization approach, by introducing a linear utility function. This ap-
proach reduces the multi-criteria problem to a single-criterion optimization,
which we can solve as described.

1”long distance” will be precisely defined in the full paper



4.2 Providing multiple results in the real world

Until now we have assumed that our world is a public transport network, i.e.
the start and end point of the journey is always a station node and we are
departing exactly at time t. The result we obtain is theoretically optimal,
but of course in the real world most of the time this is not the case. We may
need to walk from our home to our first station and from the last station to
our final destination. Moreover, in real life we would prefer to wait a little
bit now if we know that eventually we may arrive earlier, for example to
wait for an express bus. In addition we all like choices, therefore the system
will be more user friendly if it could provide multiple attractive alternatives
to the user. In order to cover those real life scenarios and provide the user
several attractive suggestions we will run our Query starting from different
stations around the user’s starting location and different times around his
specified departure/arrival time t. From those we will choose, say the best
five.
Another important aspect we consider is robustness of the provided solu-
tions. In practice, public transport often runs late due to traffic congestion or
accidents or other unpredicted events. Missing a connection by one minute
may cost us an hour in our total journey time, if the next connection is
infrequent and departs say only once an hour. In order to minimize such
occurrences and to make the system more reliable and user friendly we iden-
tify those trips and warn the user about risky connections. Then the user
will choose his preferred trip according to his risk adverseness.

4.3 Complexity Analysis

We will start with complexity analysis of the original Transit algorithm for
road networks. The complexity of the algorithm depends on many factors,
such as graph nodes distribution, node connectivity, etc. Intuitively we can
see that if we choose Sinner to be very small (say containing only one node),
then every node will be a transit node and the precomputation will com-
pute all the shortest paths. In this case a query will be a simple lookup in a
large precomputed table. On the other extreme, suppose we choose Sinner
to contain all the nodes. In this case, every query is local and we do no pre-
computation. So we can observe that there is a clear tradeoff between size of
the squares, precomputation time, storage and query time. In what follows,
we will start assuming a simplified ”grid world” graph layout, where nodes
are equally distributed and every node is connected to its four neighbors by
a link of unit cost. Let k denote the number of cells and n = |V | denote the



number of nodes. Consider cell C. Then |VC | = n
k . Let Sinner be a square

centred on C consisting of some constant number of cells. In the worst case,
the number of transit nodes for cell C equals the number of border nodes

of Sinner, which is O(
√

n
k ). Since we have n nodes, the storage space for

the node-to-transit table will be O(n
√
n) for any choice of k, which may be

prohibitive.
In real life networks, not every road has the same travel time. There are
highways, major roads, minor roads, etc. In order to make our simplified
”grid-world” graph resemble a real life road network we assume that every,
say, 10th vertical and horizontal road is a highway. We will model this by
assigning zero cost to such highways. Since every cell C is of bounded size,
it follows that only a constant number of highways cross every cell. Conse-
quently the number of transit nodes for every cell is O(1). This gives O(n)
storage space for the node-to-transit table. Now, the total number of transit
nodes is O(k). Therefore, if we choose k to be O(

√
n) we need O(k2) = O(n)

storage space for the transit-to-transit table.
In a public transport network, there is an additional factor - events. Let
e be an average number of events per station. Then, the total number
of nodes is ne. When applying the proposed algorithm on public trans-
portation network, eventually we need to run a Dijkstra from every event.
Since there are totally ne nodes and the running time of one Dijkstra is
O(ne log(ne)), the total precomputation time is O(n2e2 log(ne)). Similarly
to the original Transit algorithm, the storage space is O(ne). While asymp-
totical precomputation time may look somewhat discouraging, by using the
speed up techniques described in 4.4, in practise the precomputation time
is much faster.

4.4 Speed up techniques

One significant improvement was achieved by noticing that there is no need
to precompute and store distances from/to every node in the network. With-
out loss of accuracy we can ignore stations that are visited only by one ser-
vice. Given a query where source or destination one of this nodes we can just
simply follow the only path from this node until we encounter first station
node that is visited by more than one service and was precomputed. We
observed about 40% reduction in the number of nodes for which we should
perform a precomputation stage 4.
Another significant speed up was achieved by noticing that same service
running, say 10 minutes later, will eventually take me to the same stations
just 10 minutes later. Since there is no point for the user to wait on the sta-



tion for exactly the same service which will arrive 10 minutes later, during
the precomputation stage, when running Dijkstra this whole branch can be
pruned. This gave us about 20% speed up in time performance.
Similarly, we can notice that a journey from station A to a nearby station
B, say at 9am and 9:30am has actually the same pattern. On the other
hand traveling from A to B, say at 6pm may have a different pattern. In
order to capture this, we divide the day into segments (e.g. 6am-9am, 9am-
12pm, 12pm-4pm, 4pm-7pm, 7pm-10pm, 10pm-6am) and precompute the
node-to-transit table only once for every time range, for a single event of
every service. This short-cut may sacrifice a small amount of optimality,
but makes a significant improvement in precomputation time.
Another ’trick’ to make precomputation twice as fast is to precompute the
tables only for departure events. During the query time, if we need to con-
tinue on the same service through one of the transit stations, the departure
event associated with the arrival event of these service can be momentarily
accessed by an auxiliary link connecting between those two events.
Finally, an additional significant speed up is achieved by noticing that the
process of determining transit nodes for a cell is completely independent of
other cells and therefore can be parallelized. Similarly we can observe that
during Stage 2 the precomputation and storage of the three database (node-
to-transit, transit-to-transit, transit-to-node) tables is also independent and
can be performed in parallel. The query between different source and desti-
nation pairs, as described in section 4.2 can be also easily parallelized.

5 Implementation and Experiments

The proposed algorithm was implemented using the Java programming lan-
guage and the experiments were performed on PowerEdge 1950 server, with
those specifications: CPU: 2 x 2.00GHz Intel Quad Core Xeon E5405, Mem-
ory: 16 GB. We present some preliminary tests results obtained using the
Sydney public transport multimodal network consisting of buses, trains,
ferries, lightrail and monorail modes. There are 9.3K station nodes, 2.1M
event nodes and 8.1M links in the underlying graph of that network.



Inner/Outer Grid size |T | Storage
squares size Mb.

3/5 32 x 32 51 685

5/9 32 x 32 9 36

3/5 64 x 64 234 1510

5/9 64 x 64 104 747

3/5 128 x 128 1065 9914

5/9 128 x 128 496 3028

Table 1: Experimental results using different grid sizes, and different sizes
of Sinner and Souter squares comparing between |T | number of transit nodes,
and estimated storage space.

In what follows we present results for grid size of 100x100 cells and using
Sinner consisting of 5×5 cells and Soutter of 9×9 cells. In this setup, we have
319 transit nodes, the offline, precomputation stage, including presented
speed-up techniques took us˜20 hours and˜1.2Gb of storage space including
full transit instructions. Without any speed-ups the estimated time of this
stage is more than 100 hours. On average, running 1000 random queries
a single ’station-to-station’ query time is ˜0.4ms and ’location-to-location’
query time is ˜20ms.

6 Conclusions and Future work

In this work we presented a novel approach for finding optimal connections
in public transit network. We presented an experimental results using the
Sydney public transportation network. Our future work includes improving
the preprocessing time and reducing the database tables storage space, if
possible whilst preserving optimality. There are several promising directions
we are interested to investigate in order to achieve this, such as using an
adaptive grid rather than simple, fixed grid or partitioning the underlying
graph into clusters in completely different matter. In addition we would like
to extend this idea to fully realistic inter modal journey planer which includes
combination of private transport (e.g. car, motorbike, bicycle) and public
transport and incorporates real time updates for both traffic conditions and
public transport actual location and estimated time of arrival.
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