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Abstract
A simple mechanism for allocating indivisible re-
sources is sequential allocation in which agents
take turns to pick items. We focus on possible and
necessary allocation problems, checking whether
allocations of a given form occur in some or all
mechanisms for several commonly used classes of
sequential allocation mechanisms. In particular, we
consider whether a given agent receives a given
item, a set of items, or a subset of items for natural
classes of sequential allocation mechanisms: bal-
anced, recursively balanced, balanced alternation,
and strict alternation. We present characterizations
of the allocations that result respectively from the
classes, which extend the well-known characteriza-
tion by Brams and King [2005] for policies without
restrictions. In addition, we examine the computa-
tional complexity of possible and necessary alloca-
tion problems for these classes.

1 Introduction
Efficient and fair allocation of resources is a pressing prob-
lem within society today. One important and challenging case
is the fair allocation of indivisible items [Chevaleyre et al.,
2006, Bouveret and Lang, 2008, Bouveret et al., 2010, Aziz
et al., 2014b, Aziz, 2014]. This covers a wide range of prob-
lems including the allocation of classes to students, landing
slots to airlines, players to teams, and houses to people. A
simple but popular mechanism to allocate indivisible items is
sequential allocation [Bouveret and Lang, 2011, Brams and
Taylor, 1996, Kohler and Chandrasekaran, 1971, Levine and
Stange, 2012]. In sequential allocation, agents simply take
turns to pick the most preferred item that has not yet been
taken. Besides its simplicity, it has a number of advantages
including the fact that the mechanism can be implemented in
a distributed manner and that agents do not need to submit
cardinal utilities. Well-known mechanisms like serial dicta-
torship [Svensson, 1999] fall under the umbrella of sequential
mechanisms.

The sequential allocation mechanism leaves open the par-
ticular order over the agents (the so called “policy”) [Kali-
nowski et al., 2013a, Bouveret and Lang, 2014]. Should
it be a balanced policy i.e., each agent gets the same total

number of rounds? Or should it be recursively balanced so
that agents pick items in phases, and each agent gets one
round per phase? Or perhaps it would be fairer to alter-
nate but reverse the order of the agents in successive phases:
a1Ba2Ba3Ba3Ba2Ba1 . . . so that agent a1 takes the first
and sixth round? This particular type of policy is used, for
example, by the Harvard Business School to allocate courses
to students [Budish and Cantillion, 2012] and is referred to
as a balanced alternation policy. Another class of policies is
strict alternation in which the same ordering is used in each
round, such as a1 B a2 B a3 B a1 B a2 B a3 . . . . The sets
of balanced alternation and strict alternation policies are sub-
sets of the set of recursively balanced policies which itself is
a subset of the set of balanced policies.

We consider here the situation where a policy is chosen
from a family of such policies. For example, at the Harvard
Business School, a policy is chosen at random from the space
of all balanced alternation policies. As a second example, the
policy might be left to the discretion of the chair but, for fair-
ness, it is restricted to one of the recursively balanced poli-
cies. Despite uncertainty in the policy, we might be inter-
ested in the possible or necessary outcomes. For example,
can I get my three most preferred courses? Do I necessarily
get my two most preferred courses? We examine the com-
plexity of checking such questions. There are several high-
stake applications for these results. For example, sequential
allocation is used in professional sports ‘drafts’ [Brams and
Straffin, 1979]. The precise policy chosen from among the set
of admissible policies can critically affect which teams (read
agents) get which players (read items).

The problems of checking whether an agent can get some
item or set of items in a policy or in all policies is closely
related to the problem of ‘control’ of the central organizer.
For example, if an agent gets an item in all feasible policies,
then it means that the chair cannot ensure that the agent does
not get the item. Apart from strategic motivation, the prob-
lems we consider also have a design motivation. The central
designer may want to consider all feasible policies uniformly
at random (as is the case in random serial dictatorship [Aziz
et al., 2013, Saban and Sethuraman, 2013]) and use them to
find the probability that a certain item or set of item is given
to an agent. The probability can be a suggestion of time shar-
ing of an item. The problem of checking whether an agent
gets a certain item or set of items in some policy is equiva-



Problems Sequential Policy Class
Any Balanced Recursively Balanced Strict Alternation Balanced Alternation

POSSIBLEITEM in P NPC (Thm. 4) NPC (Thm. 4) NPC (Thm. 4) NPC (Thm. 4)

NECESSARYITEM in P coNPC (Thm. 8);
in P for const. k (Thm. 10)

coNPC for all k ≥ 2 (Thm. 13) coNPC for all k ≥ 2 (Thm. 19) coNPC for all k ≥ 2 (Thm. 21)

POSSIBLESET in P NPC (Thm. 4) NPC (Thm. 4) NPC (Thm. 4) NPC (Thm. 4)
NECESSARYSET in P in P (Thm. 11) coNPC for all k ≥ 2 (Thm. 13) coNPC for all k ≥ 2 (Thm. 19) coNPC for all k ≥ 2 (Thm. 22)

Top-k POSSIBLESET in P in P (trivial) NPC for all k ≥ 3 (Thm. 15);
in P for k = 2 (Thm. 14)

NPC for all k ≥ 3 (Thm. 18);
in P for k = 2 (Thm. 17)

NPC for all k ≥ 2 (Thm. 21)

Top-k NECESSARYSET in P in P (Thm. 11) coNPC for all k ≥ 2 (Thm. 13) coNPC for all k ≥ 2 (Thm. 19) coNPC for all k ≥ 2 (Thm. 22)
POSSIBLESUBSET in P NPC (Thm. 4) NPC (Thm. 4) NPC (Thm. 4) NPC (Thm. 4)

NECESSARYSUBSET in P coNPC (Thm. 8);
in P for const. k (Thm. 9)

coNPC for all k ≥ 2 (Thm. 13) coNPC for all k ≥ 2 (Thm. 19) coNPC for all k ≥ 2 (Thm. 21)

POSSIBLEASSIGNMENT in P in P (Coro. 1) in P (Coro. 2) in P (Coro. 3) in P (Coro. 4)
NECESSARYASSIGNMENT in P in P (Thm. 7) in P (Thm. 12) in P (Thm. 16) in P (Thm. 20)

Table 1: Complexity of possible and necessary allocation for sequential allocation. All possible allocation problems are NPC for k = 1. All
necessary problems are in P for k = 1.

lent to checking whether an agent gets a certain item or set
of items with non-zero probability. Similarly, the problem of
checking whether an agent gets a certain item or set of items
in all policies is equivalent to checking whether an agent gets
a certain item or set of items with probability one.

We let A = {a1, . . . , an} denote a set of n agents, and I
denote the set of m = kn items1. P = (P1, . . . , Pn) is the
profile of agents’ preferences where each Pj is a linear order
over I . Let M denote an assignment of all items to agents,
that is, M : I → A. We will denote a class of policies by
C. Any policy π specifies |I| rounds of the agents. An agent
picks her most preferred item that has not yet been allocated
in her rounds.

Example 1. Consider the setting in whichA = {a1, a2}, I =
{b, c, d, e}, the preferences of agent a1 are b � c � d � e
and of agent a2 are b � d � c � e. Then for the policy
a1 B a2 B a2 B a1, agent a1 gets {b, e} whilst a2 gets {c, d}.
There are four rounds divided into two phases. Agent a1 picks
item e in the second phase.

We consider the following natural computational prob-
lems.

(i) POSSIBLEASSIGNMENT: Given (A, I, P,M) and pol-
icy class C, does there exist a policy in C which results in
M?; (ii) NECESSARYASSIGNMENT: Given (A, I, P,M),
and policy class C, is M the result of all policies in C? ;
(iii) POSSIBLEITEM: Given (A, I, P, aj , o) where aj ∈ A
and o ∈ I , and policy class C, does there exist a policy in
C such that agent aj gets item o? ; (iv) NECESSARYITEM:
Given (A, I, P, aj , o) where aj ∈ A and o ∈ I , and pol-
icy class C, does agent aj get item o for all policies in C? ;
(v) POSSIBLESET: Given (A, I, P, aj , I

′) where aj ∈ A and
I ′ ⊆ I , and policy class C, does there exist a policy in C such
that agent aj gets exactly I ′? ; (vi) NECESSARYSET: Given
(A, I, P, aj , I

′) where aj ∈ A and I ′ ⊆ I , and policy class
C, does agent aj get exactly I ′ for all policies in C? ; (vii)
POSSIBLESUBSET: Given (A, I, P, aj , I

′) where aj ∈ A and
I ′ ⊆ I , and policy class C, does there exist a policy in C such
that agent aj gets I ′? ; (viii) NECESSARYSUBSET: Given

1This is without loss of generality since we can add dummy items
of zero utility to any agent.

(A, I, P, aj , I
′) where aj ∈ A and I ′ ⊆ I , and policy class C

does agent aj get I ′ for all policies in C?
We will consider problems top-k POSSIBLESET and top-k

NECESSARYSET that are restrictions of POSSIBLESET and
NECESSARYSET in which the set of items I ′ is the set of top
k items of the distinguished agent. When policies are chosen
at random, the possible and necessary allocation problems we
consider are also fundamental to understand more complex
problems of computing the probability of certain allocations.

Contributions: Our contributions are two fold. First, we
provide necessary and sufficient conditions for an allocation
to be the outcome of balanced, recursively balanced, balanced
alternation, and strict alternation policies respectively. Previ-
ously Brams and King [2005] characterized the outcomes of
arbitrary policies. In a similar vein, we provide sufficient and
necessary conditions for more interesting classes of policies
such as recursively balanced and balanced alternation. Sec-
ond, we provide a detailed analysis of the computational com-
plexity of possible and necessary allocations under sequential
policies. Table 1 summarizes our complexity results. Our
NP/coNP-completeness results also imply that there exists no
polynomial-time algorithm that can approximate within any
factor the number of admissible policies which do or do not
satisfy the target goals.

Related Work. Sequential allocation has been consid-
ered in the operations research and fair division literature
(e.g. [Kohler and Chandrasekaran, 1971, Brams and Taylor,
1996]). It was popularized within the AI literature as a sim-
ple yet effective distributed mechanism [Bouveret and Lang,
2011] and has been studied in more detail subsequently [Kali-
nowski et al., 2013a,b, Bouveret and Lang, 2011, 2014].

The problems considered in the paper are similar in spirit
to a class of control problems studied in voting theory: if it
is possible to select a voting rule from the set of voting rules,
can one be selected to obtain a certain outcome [Erdélyi and
Elkind, 2012]. They are also related to a class of control prob-
lems in knockout tournaments: does there exist a draw of a
tournament for which a given player wins the tournament [Vu
et al., 2009, Aziz et al., 2014a]. Possible and necessary win-
ners have also been considered in voting theory [Konczak and



Lang, 2005, Xia and Conitzer, 2011, Aziz et al., 2012].
When n = m, serial dictatorship is a well-known mecha-

nism in which there is an ordering of agents and with respect
to that ordering agents pick the most preferred unallocated
item in their turns [Svensson, 1999]. We note that serial dic-
tatorship for n = m is a balanced, recursively balanced and
balanced alternation policy.

2 Characterizations of Outcomes of
Sequential Allocation

In this section we provide necessary and sufficient conditions
for a given allocation to be the outcome of a balanced policy,
recursively balanced policy, or balanced alternation policy.
We first define conditions on an allocation M . An allocation
is Pareto optimal if there is no other allocation in which each
item of each agent is replaced by at least as preferred an item
and at least one item of some agent is replaced by a more
preferred item.
Condition 1. M is Pareto Optimal.
Condition 2. M is balanced.

It is well-known that Condition 1 characterizes outcomes
of all sequential allocation mechanisms (without constraints).
Brams and King [2005] proved that an assignment is achiev-
able via sequential allocation iff it satisfies Condition 1. The
theorem of Brams and King [2005] generalized the character-
ization of Abdulkadiroğlu and Sönmez [1998] of Pareto op-
timal assignments as outcomes of serial dictatorships when
m = n. We first observe the following simple adaptation of
the characterization of Brams and King [2005] to characterize
possible outcomes of balanced policies:
Remark 1. Given a profile P , an allocation M is the out-
come of a balanced policy if and only if M satisfies Condi-
tions 1 and 2.

Given a balanced allocation M , for each agent aj ∈ A and
each i ≤ k, let pij denote the item that is ranked at the i-th
position by agent aj among all items allocated to agent aj by
M . The third condition requires that for all 1 ≤ t < s ≤ k,
no agent prefers the s-th ranked item allocated to any other
agent to the t-th ranked item allocated to her.
Condition 3. For all 1 ≤ t < s ≤ k and all pairs of agent
aj , aj′ , agent aj prefers ptj to psj′ .

The next theorem states that Conditions 1 through 3 char-
acterize outcomes of recursively balanced policies.
Theorem 1. Given a profile P , an allocation M is the out-
come of a recursively balanced policy if and only if it satisfies
Conditions 1, 2, and 3.

Proof. To prove the “only if” direction, clearly if M is the
outcome of a recursively balanced policy then Condition 1
and 2 are satisfied. If Condition 3 is not satisfied, then there
exists 1 ≤ t < s ≤ k and a pair of agents aj , aj′ such that
agent aj prefers psj′ to ptj . We note that in the round when
agent aj is about to choose ptj according to M , psj′ is still
available, because it is allocated by M in a later round. How-
ever, in this case agent aj will not choose ptj because it is not
her top-ranked available item, which is a contradiction.

To prove the “if” direction, for any allocation M that sat-
isfies the three conditions we will construct a recursively bal-
anced policy π. For each i ≤ k = m/n, we let phase i denote
the ((i−1)n+1)-th round through in-th round. It follows that
for all i ≤ k, {pij : j ≤ n} are allocated in phase i. Because
of Condition 3, {pij : j ≤ n} is a Pareto optimal allocation
when all items in {pi′j : i′ < i, j ≤ n} are removed. There-
fore there exists an order πi over A that gives this allocation.
Let π = π1 B π2 B · · ·B πk. It is not hard to verify that π is
recursively balanced and M is the outcome of π.

Given a profile P and an allocation M that is the outcome
of a recursively balanced policy, that is, it satisfies the three
conditions as proved in Theorem 1, we construct a directed
graph GM = (A,E), where the vertices are the agents, and
we add the edges in the following way. For each odd i ≤ k,
we add a directed edge aj′ → aj if and only if agent aj
prefers pij′ to pij and the edge is not already in GM ; for each
even i ≤ k, we add a directed edge aj → aj′ if and only if
agent aj prefers pij′ to pij and the edge is not already in GM .

Condition 4. SupposeM is the outcome of a recursively bal-
anced policy. There is no cycle in GM .

Theorem 2. An allocation M is achievable by a balanced
alternation policy if and only if satisfies Conditions 1, 2, 3,
and 4.

Proof. The “only if” direction: SupposeM is achievable by a
balanced alternation policy π. Let π′ denote the suborder of π
from turn 1 to turn n. Let Gπ′ = (A,E′) denote the directed
graph where the vertices are the agents and there is an edge
aj′ → aj if and only if aj′ Bπ′ aj . It is easy to see that Gπ′

is acyclic and complete. We claim that GM is a subgraph of
Gπ′ . For the sake of contradiction suppose there is an edge
aj → aj′ in GM but not in Gπ′ . If aj → aj′ is added to GM
in an odd round i, then it means that agent j′ prefers pij to pij′ .
Because aj → aj′ is not in Gπ′ , aj′ Bπ′ aj . This means that
right before aj′ choosing pij′ inM , pij is still available, which
contradicts the assumption that aj′ chooses pij′ inM . If aj →
aj′ is added toGM in an even round, then following a similar
argument we can also derive a contradiction. Therefore, GM
is a subgraph of Gπ′ , which means that GM is acyclic.

The “if” direction: Suppose the four conditions are satis-
fied. Because GM has no cycle, we can find a linear order π′
overA such thatGM is a subgraph ofGπ′ . We next prove that
M is achievable by the balanced alternation policy π whose
first n rounds are π′. For the sake of contradiction suppose
this is not true and let t denote the earliest round that the al-
location in π differs the allocation in M . Let aj denote the
agent at the t-th tound of π, let pi

′

j′ denote the item she gets
at round t in π, and let pij denote the item that she is sup-
posed to get according to M . Due to Condition 3, i′ ≤ i. If
i′ < i then agent aj′ did not get item pi

′

j′ in a previous round,
which contradicts the selection of t. Therefore i′ = i. If i
is odd, then there is an edge aj′ → aj in GM , which means
that aj′ Bπ′ aj . This means that aj′ would have chosen pij′
in a previous round, which is a contradiction. If i is even,



then a similar contradiction can be derived. Therefore M is
achievable by π.

Given a profile P and an allocation M that is the outcome
of a recursively balanced policy, that is, it satisfies the three
conditions as proved in Theorem 1, we construct a directed
graph HM = (A,E), where the vertices are the agents, and
we add the edges in the following way. For each j ≤ n and
i ≤ k, we let pij denote the item that is ranked at the i-th
position among all items allocated to agent j. For each i ≤ k,
we add a directed edge aj′ → aj if j prefers pij′ to pij if the
edge is not already there.
Condition 5. If M is the outcome of a recursively balanced
policy, then there is no cycle in HM .
Theorem 3. An allocation M is achievable by a strict alter-
nation policy if and only if satisfies Condition 1, 2, 3, &5.

Proof. The “only if” direction: IfM is an outcome of a recur-
sively balanced policy but does not satisfy 5, then this means
that there is a cycle in HM . Let agents ai and aj be in the
cycle. This means that ai is before aj in one phase and aj is
before ai in some other phase.

The “if” direction: Now assume that M is an outcome of a
recursively balanced policy but is not alternating. This means
that there exist at least two agents ai and aj such that ai
comes before aj in one phase and aj comes before ai in some
other phase. But this means that there is cycle ai → aj → ai
in graph HM .

3 General Complexity Results
Before we delve into the complexity results, we observe the
following reductions between various problems.
Lemma 1. Fixing the policy class to be one of {all, bal-
anced policies, recursively balanced policies, balanced al-
ternation policies}, there exist polynomial-time many-one
reductions between the following problems: POSSIBLESET
to POSSIBLESUBSET; POSSIBLEITEM to POSSIBLESUB-
SET; Top-k POSSIBLESET to POSSIBLESET; NECESSARY-
SET to NECESSARYSUBSET; NECESSARYITEM to NECES-
SARYSUBSET; and Top-k NECESSARYSET to NECESSARY-
SET.

A polynomial-time many-one reduction from problemQ to
problem Q′ means that if Q is NP(coNP)-hard then Q′ is also
NP(coNP)-hard, and if Q′ is in P then Q is also in P. We also
note the following. For n = 2, POSSIBLEASSIGNMENT and
POSSIBLESET are equivalent for any type of policies. Since
n = 2, the allocation of one agent completely determines the
overall assignment.

For m = n, checking whether there is a serial dictatorship
under which each agent gets exactly one item and a desig-
nated agent aj gets item o is NP-complete [Theorem 2, Saban
and Sethuraman, 2013]. They also proved that for m = n,
checking if for all serial dictatorships, agent aj gets item o is
polynomial-time solvable. Hence, we get the following state-
ments.
Theorem 4. POSSIBLEITEM and POSSIBLESET is NP-
complete for balanced, recursively balanced as well as bal-
anced alternation policies.

Theorem 4 does not necessarily hold if we consider the
top element or the top k elements. Therefore, we will es-
pecially consider top-k POSSIBLESET. Similarly, we get
that for m = n, NECESSARYITEM and NECESSARYSET is
polynomial-time solvable for balanced, recursively balanced,
and balanced alternation policies.

For arbitrary policies, we first observe that POSSI-
BLEITEM, NECESSARYITEM and NECESSARYSET are triv-
ial: POSSIBLEITEM always has a yes answer (just give all the
turns to that agent) and NECESSARYITEM and NECESSARY-
SET always have a no answer (just don’t give the agent any
turn). Similarly, NECESSARYASSIGNMENT always has a no
answer.
Theorem 5. POSSIBLEASSIGNMENT is polynomial-time
solvable for arbitrary policies.

Proof. By the characterization of Brams and King [2005], all
we need to do is to check whether the assignment is Pareto op-
timal. It can be checked in polynomial time O(|I|2) whether
a given assignment is Pareto optimal via an extension of a
result of Abraham et al. [2005].

There is also a polynomial-time algorithm for POSSIBLE-
SET for arbitrary policies via a greedy approach.
Theorem 6. POSSIBLESET is polynomial-time solvable for
arbitrary policies.

4 Balanced Policies
In contrast to arbitrary policies, POSSIBLEITEM, NEC-
ESSARYITEM, NECESSARYSET, and NECESSARYASSIGN-
MENT are more interesting for balanced policies since we
may be restricted in allocating items to a given agent to en-
sure balance. Before we consider them, we get the following
corollary of Remark 1.
Corollary 1. POSSIBLEASSIGNMENT for balanced assign-
ments is in P.

Note that an assignment is achieved via all balanced poli-
cies iff the assignment is the unique balanced assignment that
is Pareto optimal. This is only possible if each agent gets his
top k items. Hence, we obtain the following.
Theorem 7. NECESSARYASSIGNMENT for balanced as-
signments is in P.

Compared to NECESSARYASSIGNMENT, the other ‘neces-
sary’ problems are intractable.
Theorem 8. NECESSARYITEM and NECESSARYSUBSET
for balanced policies where k is not fixed is coNP-complete.

Proof. Membership in coNP is obvious. By Lemma 1 it suf-
fices to prove that NECESSARYITEM is coNP-hard, which we
will prove by a reduction from POSSIBLEITEM for k = 1,
which is NP-complete [Saban and Sethuraman, 2013]. Let
(A, I, P, a1, o) denote an instance of the possible alloca-
tion problem for k = 1, where A = {a1, . . . , an}, I =
{o1, . . . , on}, o ∈ I , P = (P1, . . . , Pn) is the preference
profile of the n agents, and we are asked whether it is pos-
sible for agent a1 to get item o in some sequential alloca-
tion. Given (A, I, P, a1, o), we construct the following NEC-
ESSARYITEM instance.



Agents: A′ = A ∪ {an+1}.
Items: I ′ = I ∪D∪F1∪· · ·∪Fn, where |D| = n−1 and

for each aj ∈ A, |Fj | = n−2. We have |I ′| = (n+1)(n−1)
and k = n− 1.

Preferences:
• The preferences of a1 is [F1 � P1 � others].

• For any j ≤ n, the preferences of aj are obtained from
[Fj � Pj ] by replacing o by D, and then add o to the
bottom position.

• The preferences for an+1 is [o � others].

We are asked whether agent an+1 always gets item o.
If (A, I, P, a1, o) has a solution π, we show that the

NECESSARYITEM instance is a “No” instance by consider-
ing π B · · ·B π︸ ︷︷ ︸

n−1

B an+1 B · · ·B an+1︸ ︷︷ ︸
n−1

. In the first (n − 2)n

rounds all Fj’s are allocated to agent aj’s. In the following n
rounds o is allocated to a1, which means that an+1 does not
get o.

Suppose the NECESSARYITEM instance is a “No” instance
and agent n + 1 does not get o in a balanced policy π′. Be-
cause agent a2 through an rank o in their bottom position, o
must be allocated to agent a1. Clearly in the first n− 2 times
when agent a1 through an choose items, they will choose F1

through Fn respectively. Let π denote the order over which
agents a1 through an choose items for the last time. We ob-
tain another order π∗ overA from π by moving all agents who
choose an item inD after agent a1 while keeping other orders
unchanged. It is not hard to see that the outcomes of running
π and π∗ are the same from the beginning until agent a1 gets
o. This means that π∗ is a solution to (A, I, P, a1, o).

The problems becomes easier when k is constant or we are
concerned about top k items.

Theorem 9. For any constant k, NECESSARYSET and NEC-
ESSARYSUBSET for balanced policies are in P.

Proof. W.l.o.g. given a NECESSARYSET instance
(A, I, P, a1, I

′), if I ′ is not the top-ranked k items of
agent a1 then it is a “No” instance because we can simply
let agent a1 choose items in the first k rounds. When
I ′ is top-ranked k items of agent a1, (A, I, P, a1, I

′) is
a “No” instance if and only if (A, I, P, a1, o) is a “No”
instance for some o ∈ I ′, which can be checked in polyno-
mial time by Theorem 10. A similar algorithm works for
NECESSARYSUBSET.

Theorem 10. For any constant k, NECESSARYITEM for bal-
anced policies is in P.

Proof. Given a NECESSARYITEM instance (A, I, P, a1, o), if
o is ranked below the k-th position by agent a1 then we can
return “No”, because by letting agent a1 choose in the first
k rounds she does not get item o. Suppose o is ranked at
the k′-th position by agent a1 with k′ ≤ k, the next claim
provides an equivalent condition to check whether the NEC-
ESSARYITEM instance is a “No” instance.

Claim 1. Suppose o is ranked at the k′-th position by agent a1
with k′ ≤ k, the NECESSARYITEM instance (A, I, P, a1, o)
is a “No” instance if and only if there exists a balanced policy
π such that (i) agent a1 picks items in the first k′ − 1 rounds
and the last k − k′ + 1 rounds, and (ii) agent a1 does not get
o.

Let I∗ denote agent a1’s top k′ − 1 items. In light of the
claim above, to check whether the (A, I, P, a1, o) is a “No”
instance, it suffices to check for every set of k − k′ + 1 items
ranked below the k′-th position by agent a1, denoted by I ′,
whether it is possible for agent a1 to get I∗ and I ′ by a bal-
anced policy where agent a1 picks items in the first k′ − 1
rounds and the last k − k′ + 1 rounds. To this end, for each
I ′ ⊆ I − I∗ − {o} with |I ′| = k − k′ + 1, we construct the
following maximum flow problem FI′ , which can be solved
in polynomial-time by e.g. the Ford-Fulkerson algorithm.
• Vertices: s, t, A− {a1}, I − I ′ − I∗.
• Edges and weights: For each a ∈ A − {a1}, there is an
edge s → a with weight k; for each a ∈ A − {a1} and
c ∈ I−I ′−I∗ such that agent a ranks c above all items in I ′,
there is an edge a→ cwith weight 1; for each c ∈ I−I ′−I∗,
there is an edge c→ t with weight 1.
•We are asked whether the maximum amount of flow from
s to t is k(n− 1) (the maximum possible flow from s to t).

Claim 2. (A, I, P, a1, o) is a “No” instance if and only if
there exists I ′ ⊆ I − I∗ − {o} with |I ′| = k − k′ + 1 such
that FI′ has a solution.

Because k is a constant, the number of I ′ we will check is
a constant. Algorithm 1 is a polynomial algorithm for NEC-
ESSARYITEM with balanced policies.

Algorithm 1: NECESSARYITEM for balanced policies.
Input: A NECESSARYITEM instance (A, I, P, aj , o).

1 if o is ranked below the k-th position by agent aj then
2 return “No”.
3 end
4 Let I∗ denote agent aj’s top k′ − 1 items.
5 for I ′ ⊆ I − I∗ − {o} with |I ′| = k − k′ + 1 do
6 if F|I′| has a solution then
7 return “No”
8 end
9 end

10 return “Yes”.

Theorem 11. NECESSARYSET and top-k NECESSARYSET
for balanced policies are in P even when k is not fixed.

Proof. Given an instance of NECESSARYSET, if the target set
is not top-k then the answer is “No” because we can simply
let the agent choose k items in the first k rounds. It remains
to show that top-k NECESSARYSET for balanced policies is
in P. That is, given (A, I, P, a1), we can check in polynomial
time whether there is a balanced policy π for which agent a1
does not get exactly her top k items.

For NECESSARYSET, suppose agent a1 does not get her
top-k items under π. Let π′ denote the order obtained from π



by moving all agent a1’s rounds to the end while keeping the
other orders unchanged. It is easy to see that agent a1 does
not get her top-k items under π′ either. Therefore, NECES-
SARYSET is equivalent to checking whether there exists an
order π where agent a1 picks item in the last k rounds so that
agent a1 does not get at least one of her top-k items.

We consider an equivalent, reduced allocation instance
where the agents are {a1, a2, . . . , an}, and there are k(n −
1)+ 1 items I ′ = (I − I∗)∪ {c}, where I∗ is agent a1’s top-
k items. Agent aj’s preferences over I ′ are obtained from
Pj by replacing the first occurrence of items in I∗ by c, and
then removing all items in I∗ while keeping the order of other
items the same. We are asked whether there exists an order π
where agent a1 is the last to pick and a1 picks a single item,
and each other agents picks k times, so that agent a1 does
not get item c. This problem can be solved by a polynomial-
time algorithm based on maximum flows that is similar to
the algorithm for NECESSARYITEM for balanced policies in
Theorem 10.

5 Recursively Balanced Policies
From Theorem 1, we get the following corollary.
Corollary 2. POSSIBLEASSIGNMENT for recursively bal-
anced policies is in P.

We also report computational results for problems other
than POSSIBLEASSIGNMENT. The following algorithm
works via a greedy approach.
Theorem 12. NECESSARYASSIGNMENT for recursively bal-
anced policies is in P.

The other ‘necessary problems’ turn out to be computation-
ally intractable.
Theorem 13. For k ≥ 2, NECESSARYITEM, NECESSARY-
SET, top-k NECESSARYSET, and NECESSARYSUBSET for
recursively balanced policies are coNP-complete.

On the other hand, Top-2 POSSIBLESET is easy via a re-
duction to maximum matching.
Theorem 14. Top-k POSSIBLESET for recursively balanced
policies is in P for k = 2.

Finally, top-k-POSSIBLESET is NP-complete iff k ≥ 3.
Theorem 15. For all k ≥ 3, top-k POSSIBLESET for bal-
anced policies is NP-complete.

6 Strict Alternation Policies
Since there are n! possible strict alternation policies, so if n
is constant, then all problems can be solved in polynomial
time by brute force search. Note that such an argument does
not apply to recursively balanced policies. As a result of our
characterization of strict alternation outcomes (Theorem 3),
we get the following.
Corollary 3. POSSIBLEASSIGNMENT for strict alternation
polices is in P.

We also present other computational results.
Theorem 16. NECESSARYASSIGNMENT for strict alterna-
tion polices is in P.

Theorem 17. Top-k POSSIBLESET for strict alternation
policies is in P for k = 2.

For Theorem 17, the polynomial-time algorithm is similar
to the algorithm for Theorem 14. The next theorems state that
the remaining problems are hard to compute. Both theorems
are proved by reductions from POSSIBLEITEM.

Theorem 18. For all k ≥ 3, top-k POSSIBLESET is NP-
complete for strict alternation policies.

Theorem 19. For all k ≥ 2, NECESSARYITEM, NECES-
SARYSET, top-k NECESSARYSET, and NECESSARYSUBSET
are coNP-complete for strict alternation policies.

7 Balanced Alternation Policies
If n is constant, then all problems can be solved in polyno-
mial time by brute force search. As a result of our characteri-
zation of balanced alternation outcomes (Theorem 2), we get
the following.

Corollary 4. POSSIBLEASSIGNMENT for balanced alterna-
tion polices is in P.

NECESSARYASSIGNMENT can be solved efficiently as
well.

Theorem 20. NECESSARYASSIGNMENT for balanced alter-
nation polices is in P.

We already know that for k = m/n = 1, top-k possible
and necessary problems can be solved in polynomial time.
The next theorems state that for any other k, they are NP-
complete for balanced alternation policies. Theorem 21 is
proved by a reduction from the EXACT 3-COVER problem
and Theorem 22 is proved by a reduction from the POSSI-
BLEITEM problem.

Theorem 21. For all k ≥ 2, top-k POSSIBLESET is NP-
complete, NECESSARYITEM is coNP-complete, and NEC-
ESSARYSUBSET is coNP-complete for balanced alternation
policies.

Theorem 22. For all k ≥ 2, top-k NECESSARYSET for bal-
anced alternation policies is coNP-complete.

8 Conclusions
We have studied sequential allocation mechanisms where the
policy has not been fixed or has been fixed but not announced.
We have characterized the allocations achievable with com-
mon classes of policies.We have also identified the compu-
tational complexity of identifying the possible or necessary
items, set or subset of items to be allocated to an agent when
using one of the policy classes. There are interesting fu-
ture directions including considering other common classes
of policies, as well as other properties of the outcome like the
possible or necessary welfare.
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