
Computing Abstraction Hierarchies by Numerical Simulation�Alan BundyDept of AIUniversity of Edinburgh Fausto GiunchigliaIRST, Trento andUniversity of Trento Roberto SebastianiDISTUniversity of Genoa Toby WalshIRST, Trento andDIST, University of GenoaAbstractWe present a novel method for building ABSTRIPS-style abstraction hierarchies in planning. The aim ofthis method is to minimize the amount of backtrackingbetween abstraction levels. Previous approaches havedetermined the criticality of operator preconditions byreasoning about plans directly. Here, we adopt a sim-pler and faster approach where we use numerical sim-ulation of the planning process. We demonstrate thetheoretical advantages of our approach by identifyingsome simple properties lacking in previous approachesbut possessed by our method. We demonstrate theempirical advantages of our approach by a set of fourbenchmark experiments using the ABTWEAK sys-tem. We compare the quality of the abstraction hi-erarchies generated with those built by the ALPINEand HIGHPOINT algorithms.IntroductionIn an ABSTRIPS-style abstraction, operator precon-ditions are ranked according to a criticality (Sacerdoti1973). The i-th abstract space is constructed by ignor-ing preconditions with rank i or less. To re�ne a planat the i-th level, we need to achieve those precondi-tions of rank i whilst preserving (or, where necessary,re-achieving) those with greater rank. Such abstrac-tion hierarchies can give an exponential speed-up in thetime needed to build a plan (Giunchiglia &Walsh 1991;Knoblock 1990). However, if we have to backtrack be-tween abstraction levels, abstraction can greatly in-crease the time to �nd a plan. The \downward re-�nement property" (Bacchus & Yang 1994) removesthe need to backtrack as every abstract plan can bere�ned to a concrete plan. Unfortunately, relativelyfew abstraction hierarchies possess this property. Inpractice, we therefore try to build abstractions whichlimit the amount of backtracking but do not precludeit altogether.Previous approaches for building ABSTRIPS-styleabstractions have reasoned about plans directly. For�Authors are listed in alphabetical order. The lastauthor is supported by a HCM personal fellowship. Wethank Qiang Yang for assistance with ABTWEAK andHIGHPOINT.

example, in ABSTRIPS (Sacerdoti 1973) low critical-ities were assigned to those preconditions which canbe achievied with short plans assuming all high criti-cality preconditions are true. More recently, ALPINEreasoned about operators to build abstraction hierar-chies which satisfy the \ordered monotonicity" prop-erty (Knoblock 1994). In (Bacchus & Yang 1994), Bac-chus and Yang show that backtracking may be neededwith such abstraction hierarchies. To reduce back-tracking, they propose the HIGHPOINT procedure.This re�nes the abstraction hierarchies produced bythe ALPINE procedure using estimates of the proba-bility for successful re�nement. The abstractions pro-duced by HIGHPOINT are close to having the down-ward re�nement property (in the terminology of (Bac-chus & Yang 1994), they are \near-DRP") but maystill cause backtracking.In this paper, we o�er a novel method for buildingabstraction hierarchies which is both fast and simple.Instead of reasoning about plans directly, we simulatethe planning process numerically. The simplicity ofthis simulation allows us to impose two simple \mono-tonicity" conditions not guaranteed by previous meth-ods. These conditions ensure that harder precondi-tions are achieved at higher levels of abstractions. Thisgreatly limits the amount of backtracking between ab-straction levels. On four benchmark examples, ourmethod give hierarchies which o�er superior perfor-mance to those generated by both the ALPINE andHIGHPOINT algorithms.Criticality functionsGiven a set of operators, Ops, we compute the crit-icality of the operator precondition, p by successiveapproximation. At the n-th iteration, the criticalityfunction C(p; n) returns the numerical criticality of p.This converges to a limiting value as we iterate n. Theintuition is that the easier it is to achieve p, the smallerthe numerical criticality of p should be. We collect to-gether the limiting numerical criticalities of the samevalue to give the sets Si. We then order these sets usingless than, giving S1 < ::: < Sm. Following (Sacerdoti1973), the criticality of a precondition, p is the index

i such that p 2 Si. In the i-th level of abstraction,we drop all preconditions of criticality i or less. Wethereby achieve the hardest preconditions in the mostabstract space.We impose various restrictions on criticality func-tions. For example, criticality functions should be or-der independent. That is, they should not depend onthe order of the operators in the set Ops or the or-der of preconditions within an operator. Criticalityfunctions also ought to treat symmetric preconditionssymmetrically. If swapping the precondition p for theprecondition q merely reorders the operators then pand q are said to be symmetric preconditions.De�nition 1 (Symmetry) If p and q are symmetricpreconditions then then C(p; n) = C(q; n).We also demand that criticality functions treat equiv-alent e�ects equivalently. Let Pre(op) be the precon-ditions of the operator op and Ops(p) be the subsetof operators which have p as primary e�ects. We saythat a set of operators, S is equivalent to a set of oper-ators, T i� jSj = jT j and for any op1 2 S there is someop2 2 T with Pre(op1) = Pre(op2) and vice versa.De�nition 2 (Precondition equivalence) IfOps(p) is equivalent to Ops(q) then C(p; n) = C(q; n).Finally, to reduce backtracking between levels, we de-mand that the numerical criticality of a preconditiondecreases with the number of operators which achieveit (operator monotonicity), and increases with thenumber of preconditions to operators which achieve it(precondition monotonicity).De�nition 3 (Operator monotonicity) If Ops(p)is equivalent to a subset of Ops(q) then C(p; n) �C(q; n).We say that a set of operators, S is subsumed by a setof operators, T i� jSj = jT j and for any op1 2 S thereis some op2 2 T with Pre(op1) � Pre(op2). Note thatif S is equivalent to T then S is subsumed by T and Tis subsumed by S.De�nition 4 (Precondition monotonicity) IfOps(p) is subsumed by Ops(q) then C(p; n) � C(q; n).If operator monotonicity is satis�ed, hard precondi-tions (those that are e�ects of few operators) willbe proved in the higher abstraction levels. This willtend to minimize backtracking between abstractionlevels. Similarly, if precondition monotonicity is sat-is�ed, hard preconditions (those e�ects of operatorswith many preconditions) will be proved in the higherabstraction levels. Again this will tend to minimize theneed to backtrack. Precondition and operator mono-tonicity both imply precondition equivalence.ALPINE and HIGHPOINT generate abstraction hi-erarchies which fail to satisfy these properties andtherefore cause unnecessary backtracking. Consider,for example, the manufacturing domain of (Smith &

Peot 1992; Peot & Smith 1993). There are three oper-ators which shape, drill and paint objects. For simplic-ity, we consider just their primary e�ects. The �rst op-erator has a single precondition Object and has Shapedas its e�ect. The second operator also has the singleprecondition Object and has Drilled as its e�ect. Thethird operator paints a steel object. It has Object andSteel as preconditions and has Painted as its e�ects.Precondition monotonicity ensure that the numericalcriticality of Painted is greater or equal to that of bothShaped and Drilled. This agrees with our intuitions,as Painted requires an extra precondition. ALPINE,by comparison, assigns Painted the lowest criticality.As we will see in a later section, this can result in alarge amount of backtracking.Note that the trivial criticality function which as-signs every precondition the same numerical critical-ity satis�es every one of these properties. This corre-sponds to no abstraction levels. We therefore maxi-mize the number of abstraction levels by treating the\greater than or equal to" relations derived from themonotonicity properties as \strictly greater than" re-lations wherever possible. There are many non-trivialfunctions which satisfy these properties. However,these properties are often su�cient to rank numeri-cal criticalities. For example, the rankings generatedby our method in the next sections follow immediatelyfrom these properties.The RESISTOR modelWe propose a criticality function which satis�es theproperties of the previous section based upon a modelof \resistance to change". This model is analogousto that of electrical resistance. It attempts to modelthe di�culty of achieving preconditions. Preconditionmonotonicity means that operator preconditions actlike resistors in series. Increasing the number of pre-conditions makes an operator harder to apply. Opera-tor monotonicity, on the other hand, means that oper-ators with the same e�ects act like resistors in parallel.Increasing the number of operators with the e�ect p re-duces the di�culy of achieving p since we have parallelpaths for achieving p. We shall refer to this as theRESISTOR model for computing criticalities.To simplify the presentation, we introduce the no-tion of the numerical criticality of an operator. Thisrepresents the di�culty of applying an operator. Aswith serial resistors, the numerical criticality of an op-erator increases with the number of preconditions. Wede�ne the numerical criticality of an operator as thesum of the numerical criticalities of its preconditions.As with electrical resistors in parallel, multiple op-erators with the same e�ect reduce the di�culty ofachieving that e�ect. We therefore de�ne the numeri-cal criticality of a precondition as the parallel sum ofthe numerical criticalities of the operators with thisprecondition as e�ects.We interpret C(p; n) as the di�culty of achieving p

with a maximum depth of n operator applications. Inthe base case, n = 0. That is, no operator applica-tions are used. The di�culty of a precondition is theconstant a0. This models the constant time databaselookup in the initial state. We therefore de�ne,C(p; 0) = a0: (1)Note that a0 always factors out of the �nal numericalcriticalities. In the step case, a precondition can eitherbe achieved using n operator applications or by beingtrue in the initial state. The di�culty of a preconditionis thus the parallel sum of the di�culty in the initialstate and of the di�culty of any operators of which itis an e�ect. That is,1C(p; n) = 1C(p; 0) + Xop2Ops(p) 1C(op; n) : (2)Finally, applying an operator at depth n is as di�cultas the serial sum of the di�culties of its preconditionsat depth n� 1. That is,C(op; n) = Xp2Pre(op) C(p; n� 1): (3)The recursive nature of these de�nitions naturallyleads to an iterative procedure for computing numeri-cal criticalities.Unsupervised preconditions are those that cannot bechanged by any operators. Previous methods have con-ventionally given them the maximum criticality. ByEquation (1), unsupervised preconditions are assignedthe numerical criticality a0 at n = 0. By Equation (2),their numerical criticality remains at a0 for all subse-quent n. Since a0 is the largest numerical criticalitypossible, unsupervised preconditions are assigned themaximum criticality as required.An ExampleTo illustrate the RESISTOR model for computing crit-icalities numerically, we use the computer hardware do-main of (Bacchus & Yang 1994). This domain has fouroperators which print �les, turn on devices, plug de-vices into power outlets, and transfer �les onto comput-ers. In Table 1, we give the numerical criticalities com-puted by the RESISTOR model for the di�erent pre-conditions in this domain. The unsupervised precon-ditions are CableCanReach, Functional, IsComputer,IsOutlet, and IsPrinter. At n = 4, the numericalcriticalities reach their limiting values. It can easilybe proved that if, as at n = 4, the numerical criticali-ties remain stable for one iteration, then they will notchange subsequently.We group these numerical criticalities together, andorder them using the less than relation. Loaded is as-signed the lowest criticality of 0, PowerOn is given acriticality of 1, PluggedIn is assigned a criticality of2, Printed is given a criticality of 3 and the unsuper-vised preconditions are given the highest criticality of

X C(X;n)=a0n = 0 n = 1 n = 2 n = 3 n =1unsupervised 1.000 1.000 1.000 1.000 1.000Printed 1.000 0.833 0.800 0.795 0.795PluggedIn 1.000 0.667 0.667 0.667 0.667PowerOn 1.000 0.667 0.625 0.625 0.625Loaded 1.000 0.667 0.625 0.619 0.619Table 1: Numerical criticalities for the computer hard-ware domain4. This is in line with our intuitions for this domain.The unsupervised preconditions cannot be changed somust be achieved in the most abstract space. Thenext hardest precondition to achieve is Printed sincewe must have a computer and printer turned on, andthe �le to print loaded on the computer. As we mustplug in a device before turning it on, PluggedIn isassigned a greater numerical criticality than PowerOn.Finally, as loading a �le onto a computer is less im-portant than getting computers and printers pluggedin and turned on, Loaded is given the lowest numericalcriticality. In a later section, we demonstrate that thisabstraction hierarchy is signi�cantly better than thatproduced by the ALPINE algorithm, and o�ers slightlysuperior performance to the hierarchy generated by theHIGHPOINT procedure on larger problems.Theoretical resultsThe RESISTOR criticality function is bounded in[0; a0] and monotonically decreasing. It is thereforeconvergent. Indeed, it typically converges very quickly.In the experiments in the next section, the change innumerical criticalities appears to decrease by at leasta constant factor at each iteration. To explore this an-alytically, we developed a simple model in which eachoperator has m preconditions and each preconditioncan be achieved by l distinct operators. This gives anand-or search tree in which m is the and-branchingand l is the or-branching. Under these assumptions,the numerical criticality of a precondition convergesrapidly, with the di�erence between successive itera-tions being O((l=m)n) for l < m, O(1=n2) for l = m,and O((m=l)n) for l > m.The RESISTOR criticality function is trivially orderindependent and symmetric. It also treats equivalentpreconditions equivalently.Theorem 1 C(p; n) is precondition equivalentProof: By induction on n. In the base case, by Equa-tion (1), all preconditions are assigned the same numer-ical criticality, a0. Equivalent preconditions thereforehave the same numerical criticality. In the step case,we unfold with Equations (2) and (3) and appeal tothe induction hypothesis.The RESISTOR criticality function also satis�esboth the monotonicity properties.

Theorem 2 C(p; n) is operator and preconditionmonotonic.Proof: (Sketch) We de�ne a notion of monotonicitywhich combines both operator and precondition mono-tonicity. The proof then uses induction on n. Thebase case follows immediately from Equation (1) sinceall preconditions have the same criticality. In the stepcase, using Equations (2) and (3) and some simple in-equality reasoning, we can again appeal to the induc-tion hypothesis.For reasons of space, full proofs for all these theoremsappear in an associated technical report.Empirical resultsTo demonstrate the empirical advantages of the RE-SISTOR model, we ran a set of four benchmark exper-iments using the ABTWEAK system (Yang, Tenen-berg, & Woods 1996), a state-of-the-art non-linearplanner combining Abstrips-style abstractions (Sac-erdoti 1973) with Tweak-style partial-order planning(Chapman 1987). In each experiment, we comparedthe quality of the abstraction hierarchies generated bythe RESISTORmodel with those built by the ALPINEand HIGHPOINT algorithms (Knoblock 1994; Bac-chus & Yang 1994). These are two of the best availableprocedures for generating abstraction hierarchies.The four experiments use standard benchmark prob-lems taken from the literature. The �rst domain ap-pears in (Knoblock 1994) and (Yang, Tenenberg, &Woods 1996). The next three are presented in (Bac-chus & Yang 1994). We either repeated exactly thesame experiments (for example, in the manufacturingdomain), or we run them in a more exhaustive man-ner (for example, in the robot-box domain). We usedtwo di�erent measurements to evaluate ABTWEAK'sperformance with the di�erent abstraction hierarchies:CPU time and the number of nodes expanded. Thelater is often a more reliable measurement of per-formance. All experiments were on a SUN Sparc10 workstation with 32Mbytes RAM running com-piled Allegro CL 4.2 under the Solaris 2 operatingsystem1.Tower of HanoiThe goal is to move a pile of three disks of di�er-ent sizes from one peg to another using a third in-termediate peg. At no time is a larger disk allowedto sit on a smaller one. The representation consistsof an unsupervised type predicate Is-peg(peg), andthree predicates On-small(peg), On-medium(peg) andOn-large(peg). ALPINE, HIGHPOINT and RESIS-TOR all produced the same abstraction hierarchy inwhich preconditions are abstracted according to theirsize. Thus, in the most abstract space, we just consider1Code used in these experiments is available from theauthors' FTP site.

the large disk. In the next level of abstraction, we con-sider both the medium and large disks. And in theground space, we consider all the disks. ALPINE gen-erates this hierarchy in 0.01s, RESISTOR in 0.06s, andHIGHPOINT in 7.79s. In (Knoblock 1990), Knoblockshows that such a hierarchy reduces a breadth �rstsearch from exponential to linear. Similar abstractionlevels are generated for towers with more disks giving,as here, an exponential reduction in search.Criticality Precondition3 Is-peg2 On-large1 On-medium0 On-smallTable 2: Criticalities generated by all methods forTower of Hanoi domain.Robot-box domainThis domain comes from (Bacchus & Yang 1994) and isa variant of the well-known ABSTRIPS robot domain(Sacerdoti 1973). The robot can either carry or pullboxes between one of six rooms. The doors connect-ing rooms may be either open or closed. Closed doorsmay be either openable or not openable. A typicalcon�guration is given in Figure 1.
Room1 Room2 Room3

Room5

robot
box

Room6
Door35

Door23

Door25

Door45

Door26

Door56 Room4

Door12Figure 1: The robot-box domain.For this domain, neither ALPINE or HIGHPOINTreturn criticalities which are order independent. Thelowest three preconditions can be permuted by reorder-ing the operators. This is because ALPINE constructsa partial order on preconditions which is then topolog-ically sorted. To compare results, we used the orderingof operators which generates the same abstraction hi-erarchy as in (Bacchus & Yang 1994).We ran experiments with both \easy" and \hard"problems. In the �rst set of experiments, all doorsare openable. HIGHPOINT then constructs the sameabstraction hierarchy as ALPINE. The criticalities aregiven in Table 3. ALPINE took 0.01s, HIGHPOINT22.32s and RESISTOR 0.18s to generate these hier-archies. We ran ABTWEAK on all 30 possible goals

of moving between di�erent rooms using these criti-calities. Table 4 shows that while RESISTOR per-forms marginally better than ALPINE/HIGHPOINT,the di�erences between the hierarchies are not signi�-cant as backtracking is never needed.ALPINE/HIGHPOINT4 ConnectsIs-BoxIs-DoorIs-RoomOpenable3 Box-In-Room2 Attached1 Loaded0 Open RESISTOR3 ConnectsIs-BoxIs-DoorIs-RoomOpenable2 Box-In-Room1 Open0 AttachedLoadedTable 3: Criticalities for the \easy" robot-box domain.plan CPU times (secs) nodes expanded sampleslen A/H RES A/H RES3 0.66 0.62 28.86 27.86 146 4.24 4.07 143.64 142.64 148 12.95 12.55 379.50 378.50 2Table 4: Mean performance on the \easy" robot-boxdomain in which doors can be unlocked.In the harder set of experiments, certain doors arelocked. HIGHPOINT increases the criticality of Openso that it is above Attached and Loaded. This reducesthe probability of the robot meeting a locked door andthus the amount of backtracking. All other criticalitiesremain the same. ALPINE and RESISTOR return thesame criticalities as before. We ran four sets of exper-iments. In each, door25 and one of door23, door26,door35 and door56 are locked. In each case, thereis just one unique path connecting any pair of rooms.For each set of experiments, we ran ABTWEAK onall 30 possible goals. In 8 out of the 120 problems,ABTWEAK exceeded the cut o� bound of 2000 nodesusing the HIGHPOINT and RESISTOR abstractionhierarchies. Using the ALPINE hierarchy, an addi-tional problem also failed. The results are given inTable 5.On this harder domain, the RESISTOR hierarchyperforms slightly better than the HIGHPOINT hi-erarchy. Both perform signi�cantly better than theALPINE hierarchy as there is less backtracking causedby meeting locked doors. The poor mean performanceof the ALPINE hierarchy was, in fact, entirely due toa small number of problems where ABTWEAK back-tracked extensively.Computer HardwareWe return to the computer hardware domain of (Bac-chus & Yang 1994) discussed in an earlier section. The

plan CPU times (secs) sampleslen ALP HIGH RES3 0.91 0.74 0.82 406 6.20 5.33 5.32 408 39.42 29.03 28.99 2410 82.58 69.64 67.45 7/8/8plan nodes expanded sampleslen ALP HIGH RES3 28.30 28.30 27.30 406 162.92 160.32 159.32 408 775.08 752.67 751.67 2410 1729.78 1654.87 1653.87 7/8/8Table 5: Mean performance on the \hard" robot-boxdomain in which two doors are locked.task is to print a �le in an environment where there area number of computers and printers. Computers andprinters may not be turned on, may not be functional,or located near to a power outlet. As in (Bacchus &Yang 1994), we ran experiments in a domain in whichat the initial situation just one computer and printerare within reach of a power outlet. The criticalitiesgenerated by the di�erent methods are given in Ta-ble 3. ALPINE took 0.01s, HIGHPOINT 15.26s andRESISTOR 0.12s to generate these hierarchies. As in(Bacchus & Yang 1994), we ran ABTWEAK on 30di�erent problems involving between 1 and 3 �les toprint, and with between 1 and 10 computers, using atime limit of 1800 seconds. The results are given inFigures 2 to 4.ALPINE4 Cable-Can-ReachFunctionalIs-ComputerIs-PrinterIs-Outlet3 Printed2 Loaded1 Power-On0 Plugged-In HIGHPOINT3 Cable-Can-ReachFunctionalIs-ComputerIs-PrinterIs-Outlet2 Printed1 Loaded0 Power-OnPlugged-InRESISTOR4 Cable-Can-ReachFunctionalIs-ComputerIs-PrinterIs-Outlet3 Printed2 Plugged-In1 Power-On0 LoadedTable 6: Criticalities for the computer hardware do-main.ALPINE performs poorly in this domain, again due

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10

C
P

U
 ti

m
e

(s
ec

s)

computers #

ALPINE
HIGHPOINT
RESISTOR

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

no
de

s
#

computers #

ALPINE
HIGHPOINT
RESISTOR

Figure 2: CPU time and nodes explored, 1 �le to print.to backtracking when devices are not plugged-in. RE-SISTOR and HIGHPOINT both require much lessbacktracking. The RESISTOR hierarchy gives slightlybetter performance, most noticeably on the largerproblems.ManufacturingWe return to the manufacturing domain of (Smith &Peot 1992; Peot & Smith 1993). The goal is to shape,drill and paint an object from stock. Recall that onlysteel objects can be painted. We assume that just oneout of the large number of objects in stock are madefrom steel. The criticalities generated by the di�erentmethods are given in Table 7. ALPINE took 0.01s,HIGHPOINT 13.33s and RESISTOR 0.68s to generatethese hierarchies.ALPINE3 ObjectSteel2 Shaped1 Drilled0 Painted HIGHPOINT1 ObjectSteel0 PaintedDrilledShaped RESISTOR2 ObjectSteel1 Painted0 ShapedDrilledTable 7: Criticalities for the manufacturing domain.ALPINE's abstraction hierarchy violates the pre-condition monotonicity property as the Painted pre-

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10

C
P

U
 ti

m
e

(s
ec

s)

computers #

ALPINE
HIGHPOINT
RESISTOR

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10
no

de
s

#
computers #

ALPINE
HIGHPOINT
RESISTOR

Figure 3: CPU time and nodes explored, 2 �les toprint.condition should not be lower than either the Shapedor Drilled preconditions. HIGHPOINT compensatesfor the low probability of an object from stock beingpaintable by collapsing together the bottom three lev-els of ALPINE's abstraction hierarchy. This reducesthe need to backtrack but gives just one level of ab-straction.RESISTOR is able to generate an additional level ofabstraction. The Shaped and Drilled preconditionsare equivalent and are placed at the bottom of the ab-straction hierarchy. The Painted precondition appearsabove them as the operator for achieving it has an ad-ditional unsupervised precondition. The RESISTORhierarchy is in line with the suggestions of Smith andPeot in (Smith & Peot 1992).As in (Bacchus & Yang 1994), we ran ABTWEAKon problems with between 100 and 200 objects in stock.Results are plotted in Figure 5. The RESISTOR hi-erarchy results in less backtracking than the ALPINEhierarchy, and performs signi�cantly better than theHIGHPOINT hierarchy due to the additional level ofabstraction. ConclusionsWe have proposed a novel method for buildingABSTRIPS-style abstractions automatically. The aimof this method is to minimize the amount of backtrack-

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9

C
P

U
 ti

m
e

(s
ec

s)

computers #

ALPINE
HIGHPOINT
RESISTOR

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 6 7 8 9

no
de

s
#

computers #

ALPINE
HIGHPOINT
RESISTOR

Figure 4: CPU time and nodes explored, 3 �les toprint.ing between abstraction levels. Unlike previous ap-proaches which reasoned about plans directly, we sim-ulate the planning process numerically. Our model isbased upon an analogy with electrical resistance. It isboth fast and simple. The simplicity of our approachallows us to guarantee various theoretical propertieshold lacking in previous approaches. In particular,the abstraction hierarchies constructed by our methodsatisfy two simple \monotonicity" properties. Theseensure that the harder preconditions are achieved inthe higher abstract levels. These monotonicity proper-ties limit the amount of backtracking required betweenabstraction levels. We have compared our methodwith those in the ALPINE and HIGHPOINT proce-dures. Using a comprehensive set of experiments, wehave demonstrated that the hierarchies constructed arebetter than those generated by ALPINE and HIGH-POINT. In addition, our method builds these hierar-chies rapidly. ReferencesBacchus, F., and Yang, Q. 1994. Downward re�ne-ment and the e�ciency of hierarchical problem solv-ing. Arti�cial Intelligence 71:43{100.Chapman, D. 1987. Planning for Conjunctive Goals.Arti�cial Intelligence 32:333{377.

0

5

10

15

20

25

30

35

40

100 120 140 160 180 200

C
P

U
 T

IM
E

 (
S

E
C

S
)

PIECES #

ALPINE
HIGHPOINT
RESISTOR

100

200

300

400

500

600

700

800

900

1000

1100

100 120 140 160 180 200
N

O
D

E
S

 #
PIECES #

ALPINE
HIGHPOINT
RESISTOR

Figure 5: CPU time and nodes explored for the man-ufacturing domain.Giunchiglia, F., and Walsh, T. 1991. Using abstrac-tion. In Proc. of the 8th Conference of the Society forthe Study of Arti�cial Intelligence and Simulation ofBehaviour. Also IRST-Technical Report 9010-08 andDAI Research Paper 515, University of Edinburgh.Knoblock, C. A. 1990. Abstracting the Tower ofHanoi. In Working Notes of AAAI-90 Workshopon Automatic Generation of Approximations and Ab-stractions, 13{23. AAAI.Knoblock, C. A. 1994. Automatically generating ab-stractions for planning. Arti�cial Intelligence 68:243{302.Peot, M., and Smith, D. 1993. Threat-RemovalStrategies for Partial-Order Planning. In ProceedingsAAAI-93.Sacerdoti, E. 1973. Planning in a Hierarchy of Ab-straction Spaces. In Proceedings of the 3rd Interna-tional Joint conference on Arti�cial Intelligence.Smith, D. E., and Peot, M. A. 1992. A Critical Lookat Knoblock's Hierarchy Mechanism. In Proc. 1st In-ternational conference Arti�cial Intelligence planningsystems (AIPS-92), 307{308.Yang, Q.; Tenenberg, J. D.; and Woods, S. 1996.On the Implementation and Evaluation of AbTweak.Computational Intelligence 12.

