
Filtering Algorithms for the NValue Constraint

Christian Bessiere1, Emmanuel Hebrard2, Brahim Hnich3, Zeynep Kiziltan4,
and Toby Walsh2

1LIRMM-CNRS
2NICTA and UNSW

34C and UCC
4University of Bologna

bessiere@lirmm.fr, {ehebrard, tw}@cse.unsw.edu.au, brahim@4c.ucc.ie,
zkiziltan@deis.unibo.it

Abstract. The constraint NValue counts the number of different val-
ues assigned to a vector of variables. Propagating generalized arc consis-
tency on this constraint is NP-hard. We show that computing even the
lower bound on the number of values is NP-hard. We therefore study
different approximation heuristics for this problem. We introduce three
new methods for computing a lower bound on the number of values. The
first two are based on the maximum independent set problem and are in-
comparable to a previous approach based on intervals. The last method
is a linear relaxation of the problem. This gives a tighter lower bound
than all other methods, but at a greater asymptotic cost.

1 Introduction

The NValue constraint counts the number of distinct values used by a vector
of variables. It is a generalization of the widely used AllDifferent constraint
[12]. It was introduced in [4] to model a musical play-list configuration problem so
that play-lists were either homogeneous (used few values) or diverse (used many).
There are many other situations where the number of values (e.g., resources) used
at the same time are limited. In such cases, a NValue constraint can aid both
modelling and solving.

Enforcing generalized arc consistency (GAC) on the NValue constraint is
NP-hard [3]. One way to deal with this intractability is to identify a tractable
decomposition or approximation method. The NValue constraint can be decom-
posed into two other global constraints: the AtMostNValue and the Atleast-

NValue constraints. Unfortunately, while enforcing GAC on the AtLeast-

NValue constraint is polynomial, we show that enforcing GAC on the At-

MostNValue constraint is also NP-hard. We will therefore focus on various
approximation methods for propagating the AtMostNValue constraint.

We introduce three new approximations. Two are based on graph theory
while the third exploit a linear relaxation encoding. We compare the level of
filtering achieved with a previous approximation method due to Beldiceanu based
on intervals that runs in O(n log(n)) [1] for finding a lower bound on N , and

linear for pruning values. We show that the two new algorithms based on graph
theory are incomparable with Beldiceanu’s, though one is strictly tighter than
the other. Both algorithms, however, have a O(n2) time complexity. We also
show that the linear relaxation method dominates all other approaches in terms
of the filtering, but with a higher computational cost. Finally, we demonstrate
how all of these methods can be used in a filtering algorithm for the NValue

constraint.

2 Formal Background

2.1 Constraint satisfaction problems

A constraint satisfaction problem (CSP) consists of a set of variables, each with a
finite domain of values, and a set of constraints that specify allowed combinations
of values for subsets of variables. We use upper case for variables, Xi, or vectors
of variables, X̄, and lower case for values, v, or assignments, v̄. The domain of a
variable Xi, D(Xi) is a set of values. A full or partial assignment v̄ = 〈v1, . . . , vm〉
of X̄ = 〈X1, . . . , Xm〉 is a vector of values such that vi ∈ D(Xi). A solution to a
CSP is a full assignment of values to the variables satisfying the constraints. The
minimum (resp. maximum) value in the domain of a variable Xi is min(Xi) (resp.
max(Xi)). The cardinality of an assignment v̄ is card(v̄), the number of distinct
values used. For instance if v̄ = 〈a, b, a, b, c〉, card(v̄) = 3. The maximum (resp.
minimum) cardinality of a vector of variables X̄, card↑(X̄) (resp. card↓(X̄)) is
the largest (resp. smallest) cardinality among all possible assignments.

Constraint solvers typically explore partial assignments enforcing a local con-
sistency property using either specialized or general purpose propagation algo-
rithms. Given a constraint C on the variables X̄ , a support for Xi = vj on C
is a partial assignment v̄ of X̄ containing Xi = vj that satisfies C. A value
vj ∈ D(Xi) without support on a constraint is arc inconsistent. A variable Xi is
generalized arc consistent (GAC) on C iff every value in D(Xi) has support on
C. A constraint C is GAC iff each constrained variable is GAC on C. A bound
support on C is a support where the interval [min(Xi), max(Xi)] is substituted
for the domain of each constrained variable Xi. A variable Xi is bound consistent
(BC) on C if min(Xi) and max(Xi) have bound support on C. A constraint is
BC iff all constrained variables are BC on C.

In line with [11], we say that a local consistency property Φ on C is as strong
as Ψ (written Φ � Ψ) iff, given any domains, if Φ holds then Ψ holds; Φ is
stronger than Ψ (written Φ � Ψ) iff Φ � Ψ but not Ψ � Φ; Φ is equivalent to Ψ
(written Φ ≡ Ψ) iff Φ � Ψ and Ψ � Φ; and that they are incomparable otherwise
(written Φ ./ Ψ).

2.2 Graph theoretic concepts

Given a family of sets F = {S1, . . . , Sn} and a graph G = (V, E) with the set of
vertices V = {v1, . . . , vn} and set of edges E, G is the intersection graph of F iff

∀i, j 〈vi, vj〉 ∈ E ↔ Si ∩ Sj 6= ∅

X1 ∈ {2, 3}
X2 ∈ {3, 4}
X3 ∈ {1, 4, 5}
X4 ∈ {5, 6}
X5 ∈ {6, 7}
X6 ∈ {2, 3, 7}

(a) domains

v2

v6

v1

v4

v5

v3

(b) GX̄

v2

v6

v1

v4

v5

v3

(c) GĪ

Fig. 1. Domains, intersection graph and interval graph.

For any graph G, there exists a family of sets F such that the intersection
graph of F is G. Thus, the class of intersection graphs is simply the class of
all undirected graphs [8]. The class of graphs obtained by the intersection of
intervals, instead of sets, is known as interval graphs.

Given a vector of variables X̄ = 〈X1, . . . , Xm〉, we use GX̄ = (V, E) for the
induced intersection graph, i.e the graph where V = {v1, . . . , vm} and ∀i, j ·
〈vi, vj〉 ∈ E ↔ D(Xi) ∩ D(Xj) 6= ∅. Similarly, we use Ī for the same vector
of variables, where all domains are seen as intervals instead, i.e., for each i,
D(Xi) = [min(Xi), max(Xi)]. GĪ is the induced interval graph, defined like GX̄ ,
but on the intervals instead. For instance, the domains in Figure (1,a) induce
the intersection graph in (1,b) and the interval graph in (1,c)

Finally, we recall that an independent set is a set of vertices with no edge
in common. The independence number α(G) of a graph G, is the number of
vertices in an independent set of maximum cardinality. A clique is the dual
concept: a set of vertices such that any pair has an edge between. A clique
cover of G is a partition of the vertices into cliques. The cardinality of the
minimum clique cover is θ(G). For instance, the interval graph of Figure (1,c) has
{{v1, v2, v3}{v4, v5, v6}} as a minimal clique cover, hence θ(GĪ) = 2. Similarly,
the intersection graph of Figure (1,b) has {v1, v3, v5} as a maximal independent
set, hence α(GX̄) = 3.

3 The NValue constraint

In this section we define the NValue constraint and we show that it can be
decomposed into two simpler constraints. Whereas one of these constraints is
polynomial to propagate using a maximum matching algorithm, the second is
NP-hard so we look at approximate methods.

Definition 1. NValue(N, 〈X1, . . . , Xm〉) holds iff N = |{Xi| 1 ≤ i ≤ m}|

Enforcing GAC on the NValue constraint is NP-hard in general [3]. We can,
however, decompose it into two simpler constraints: the AtLeastNValue and
the AtMostNValue constraints.

Definition 2. AtLeastNValue(N, 〈X1, . . . , Xm〉) holds iff N ≤ |{Xi| 1 ≤ i ≤
m}|. AtMostNValue(N, 〈X1, . . . , Xm〉) holds iff N ≥ |{Xi| 1 ≤ i ≤ m}|.

We can identify precisely when the decomposition of a NValue constraint
does not hinder propagation.

Theorem 1. If AtLeastNValue and AtMostNValue are GAC and |D(N)| 6=
2 or min(N) + 1 = max(N), then NValue is GAC.

Proof. Suppose that the decomposition is GAC. Then we have card↓(X̄) ≤
min(N) and card↑(X̄) ≥ max(N). Thus, by Lemma 1 (see Appendix), N is
GAC for NValue. Furthermore, we know that if |D(N)| > 2, or D(N) contains
a value v such that card↓(X̄) < v < card↑(X̄) then all variables in X̄ are GAC
(see Lemma 2 in Appendix). Therefore we only need to cover three cases:

– D(N) = {card↑(X̄)}. Let v be an arc inconsistent value in X̄. There is no
assignment whose cardinality is greater than card↑(X̄), therefore v is arc
inconsistent because it participates only in assignments of cardinality below
N . Hence v is arc inconsistent for AtLeastNValue, which contradicts the
hypothesis.

– D(N) = {card↓(X̄)}. Analogous to the last case.
– D(N) = {card↓(X̄), card↑(X̄)}: If card↓(X̄) + 1 = card↑(X̄) then NValue

is GAC (see Lemma 2 in Appendix). Otherwise, there is a gap between
the bounds. This is the only case where the decomposition is GAC but
NValue may not be. For instance, consider the domains: X1 ∈ {1, 2, 3}, X2 ∈
{1, 2}, X3 ∈ {1}, N ∈ {1, 3}. Whilst enforcing GAC on NValue(N, 〈X1, X2, X3〉)
will prune X1 = 2, these domains are GAC for the decomposition. ut

If the domain of N contains only card↓(X̄) and card↑(X̄), and these two
values are not consecutive, then NValue may not be GAC even though At-

MostNValue and AtLeastNValue are GAC. However, as we show in sec-
tion 7, we can make GAC on the decomposition equivalent, by performing an
extra pruning in this situation.

3.1 The AtLeastNValue constraint

We first have a brief look at the AtLeastNValue constraint. It is known [1]
that card↑(X̄) is the cardinality of the maximal matching of the bipartite graph
with a class of vertices representing the variables, another the values, and where
an edge links two vertices if and only if it corresponds to a valid assignment.
Indeed, this is the basic idea behind Régin’s algorithm for enforcing GAC on the
AllDifferent constraint [12]. We can easily derive a propagation procedure
for AtLeastNValue using the polynomial algorithm for the SoftAllDiff

constraint [10] that counts the number of variables that need to be reassigned to
satisfy the constraint. We can use this algorithm to compute card↑(X̄). More-
over, we can use this same algorithm to prune the values in X̄ that do not belong
to a maximal matching. This nearly provides us with an algorithm for enforcing
GAC on AtLeastNValue. One difference is that we do not always want to
prune the values that do not participate in a maximal matching. We shall see
how this algorithm can be used when pruning the variables in X̄ in section 7.
We refer the reader to [10] for more details about this algorithm, and we focus
on the constraint AtMostNValue for the rest of the paper.

3.2 The AtMostNValue constraint

We adapt the proof of NP-hardness for NValue [3] to also show that enforcing
GAC on an AtMostNValue constraint alone is intractable.

Theorem 2. Enforcing GAC on a AtMostNValue(N, 〈X1, . . . , Xm〉) constraint
is NP-hard, and remains so even if N is ground.

Proof. We use a reduction from 3SAT. Given a formula in k variables and
n clauses, we construct the AtMostNValue(X1, . . . , Xk+n, N) constraint in
which D(Xi) = {i,¬i} for all i ∈ [1, k], and each Xi for i > k represents one
of the n clauses. If the jth clause is x ∨ ¬y ∨ z then D(Xk+j) = {x,¬y, z}.
By construction, the variables will consume k distinct values, hence if N =
k, the constructed AtMostNValue constraint has a solution iff the original
3SAT problem has a satisfying assignment. The completeness is easy to see as
the support is a polynomial witness. Hence testing a value for support is NP-
complete, and enforcing GAC is NP-hard. ut

Note that this proof is a reduction of 3SAT into the problem of propagating
GAC on X̄ when N is ground. This means that pruning X̄ alone is NP-hard.
Indeed, even computing just the lower bound on N , given X̄ is no easier.

Theorem 3. Computing the value of card↓(X̄) is NP-hard.

Proof. Computing card↓(X̄) is equivalent to finding the cardinality of a mini-
mum hitting set of X̄ seen as a family of sets. A hitting set of a family of sets
F , is a set that intersects each member of F . Computing the cardinality of the
smallest possible hitting set is NP-hard [9]. If we have one variable Xi in X̄ for
each set Si ∈ F , and D(Xi) = Si, then card↓(X̄) is equal to the cardinality of
a minimum hitting set of F . ut

4 Existing algorithm for the AtMostNValue constraint

We first recall Beldiceanu’s algorithm, then we introduce a graph theoretic view
of his method. We shall refer to Beldiceanu’s algorithm as OI, for ordered inter-
vals. The first step is to order the domains by increasing lower bound. Then the
following procedure (algorithm 1) can be applied, the value returned (Ndistinct)
is a lower bound on card↓(X̄).

The intervals are explored one at a time, and a new group, i.e. a clique of the
interval graph, is completed when an interval is found that does not overlap with
all previous ones in the group. The time complexity is O(nlog(n)) for sorting,
and then the algorithm itself is linear, the loop visits each domain at most twice
(when this domain is distinct from the previous). Hence, the worst case time
complexity is dominated by O(nlog(n)). This algorithm is proved correct, that
is, it returns a valid lower bound, by noticing that the intervals with smallest
maximum value for each group are pairwise disjoint. Consequently, at least as
many values as groups, that is, Ndistinct, have to be used. As there was no proof
given in [1], we present one here:

Algorithm 1: OI: The interval-based algorithm introduced in [1]

Data : X̄ = [X1, . . . Xm]

Result : Ndistinct

Ndistinct ← 1; reinit ← 1; i ← 1; low ← −∞; up←∞;
while i < m do

i ← i + 1− reinit;
if reinit or (low < min(Xi)) then low ← min(Xi);
if reinit or (up > max(Xi)) then up ← max(Xi);
reinit ← (low > up);
Ndistinct ← Ndistinct + reinit;

return Ndistinct;

Proposition 1 (given in [1] without proof). Let {C1, . . . , Ck} be a partition
of the intervals, output of OI. If Ī = 〈I1, . . . , Ik〉 is the vector of intervals where
Ii is the element of Ci with least maximum value, then all elements of Ī have
empty pairwise intersections.

Proof. OI scans all intervals by increasing lower bound, partitioning into groups
on the way. When the algorithm ends, we have k groups C1, . . . , Ck. For any
group Ci, consider the interval I1 with least upper bound. This interval does not
intersect any interval in any group Cj such that j > i. Suppose it was the case,
i.e, there exists I2 ∈ Cj which intersects with I1, since the intervals are ordered
by increasing lower bound, I2 cannot be completely below any interval in Ci. It
must then be either completely above or overlapping. However, since I1 has the
least upper bound and intersects I2, all intervals in Ci must also intersect I2. It
follows that I2 should belong to Ci hence the contradiction. The set containing
the interval with least upper bound of every group is then pairwise disjoint, and
is of cardinality k. ut

Moreover, it is easy to see that, when the domains are indeed intervals, this
bound can be achieved. If, for each group, we assign all the variables of this
group to one of the common values, then we obtain an assignment of cardinality
Ndistinct. This argument is used in [1] to show that OI achieves BC on N .

Now, recall that GX̄ is the intersection graph of the variables in X̄, whereas
GĪ is the interval graph of the same variables. It is easy to see that OI computes
at once a clique cover and an independent set of GĪ . Moreover, since for any
graph α(G) ≤ θ(G), if a graph G contains an independent set and a clique cover
of cardinality n, we must conclude that n = α(G) = θ(G). Indeed, interval graphs
belong to the class of perfect graphs, for which, by definition, the independence
number is equal to the size of the minimum clique cover. Therefore, we know
that the output of OI, i.e., Ndistinct is equal to α(GĪ) and also to θ(GĪ). It can
be shown that, in this case, the cardinality of the minimum clique cover on the
interval graph is equal to the cardinality of the minimum hitting set on Ī itself.
This is due to the fact that a set of intervals that pairwise intersect always share a
common interval, any element of this interval hitting all of them. To summarize,
in the special case where the domains of all variables in X̄ are intervals (denoted
Ī), the following equality holds: α(GĪ) = θ(GĪ) = card↓(Ī)

As a consequence, the value Ndistinct is exact, hence OI achieves bound consis-
tency on N for the constraint AtMostNValue. However, considering domains

as intervals may be in some case a very crude approximation. If we consider the
intersection graph GX̄ instead of the interval graph GĪ , the relation becomes:
α(GX̄) ≤ θ(GX̄) ≤ card↓(X̄)

Any of those three quantities is a valid lower bound, though they are NP-
hard to compute. They are, on the other hand, tighter approximations that do
not consider domains as intervals. Indeed, since GX̄ has more edges than GĪ , it
follows immediately that: α(GX̄) ≥ α(GĪ) (= θ(GĪ) = card↓(Ī))

5 Three new approaches

We present two algorithms approximating α(GX̄) and a linear relaxation ap-
proximating directly the minimum hitting set problem, and hence card↓(X̄).

5.1 A greedy approach

We have seen that OI approximates the lower bound on N by computing the
exact value of α(GĪ), the independence number of the interval graph induced by
X̄. Here the idea is to compute the independence number of GX̄ , α(GX̄).

Whilst computing the exact value of α(GX̄) is intractable for unrestricted
graphs, some efficient approximation schemes exist for that problem. We use
here a very simple heuristic algorithm for computing the independence number
of a graph, referred to as “the natural greedy algorithm”. We denote it MD, for
minimum degree from now on. It consists in removing the vertices of minimum
degree as well as their neighborhood in turn. The number of iterations i is such
that i ≤ α(G). This algorithm is studied in detail in [6]. If we suppose that
the intersection graph is constructed once and maintained during search, then a
careful implementation can run in O(n+m) where n is the number of vertices and
m is the number of edges (linear in the size of the graph). However, computing
the intersection graph requires n(n + 1)/2 tests of intersection. Each of those
may require at most d equality checks, where d is the size of the domains in
X̄ . Notice that efficient data structures, such as bit vectors, are often used to
represent domains and thus allow intersection checks in almost constant time
in practice. This suggests an implementation where the graph is never actually
computed, but an intersection check is done each time we need to know if an edge
links two nodes. The worst case time complexity is then O(dn2) if intersection
is linear in the size of the sets or O(n2) if it is constant. We denote Γ (v) the
neighborhood of v, Γ (v) = {w|vw ∈ E}.

5.2 Turán’s approximation

Alternatively, we can use an even simpler approximation. Turán proposed a

lower bound of n2

2m+n
for α(G) in [13], where n is the number of vertices and m

the number of edges. Therefore assuming that m is computed once, and revised
whenever a domain changes or whenever the constraint is called again, this
formula gives a lower bound in constant time. The worst case time complexity

Algorithm 2: MD: A greedy algorithm approximating the maximum inde-
pendent set of a graph

Data : G = (V, E)

Result : Ndistinct

if G = ∅ then return 0;
choose v ∈ V such that d(v) is minimum;
return 1+MD(G(V \ (Γ (v) ∪ {v})));

is the same as MD’s (because of the initialization). However, this heuristic can be
much more efficient in practice. We refer to this method as Turan.

5.3 A linear relaxation approach

We have shown the following inequalities: α(GĪ) ≤ α(GX̄) ≤ card↓(X̄).

We have seen that the cardinality of the minimum hitting set problem where
the family of sets is formed by the domains of the variables in X̄ is equal to
the lower bound on N , that is, card↓(X̄). One difficulty is that approximation
algorithms proposed in the literature for minimum hitting set return a set which
may be too large, and so do not provide a valid lower bound. However, we
consider here a linear relaxation that can be solved in polynomial time that
gives a lower bound on the minimum hitting set cardinality, and thus, of N . We
refer to this method as LP.

Given a vector of variables X̄ = 〈X1, . . . Xm〉, let V =
⋃

v∈X̄ D(x) be the
total set of values. Then let {yv| v ∈ V } be a set of linear variables, and LP is
as follows:

min
∑

v∈V

yv subject to
∑

v∈D(Xi)

yv ≥ 1 ∀Xi ∈ X̄

where yv ≥ 0 forall v ∈ V .

The best polynomial linear program solvers based on the interior point meth-
ods run in O(v3L) where v is the number of variables and L is the number of bits
in the input. The number of variables in our linear program is nd (d = |D(Xi)|)
and we have n = |X̄| inequalities of size d. Therefore, the worst case time com-
plexity is O(n4d4). In practice, the simplex method may behave better even
though it has an exponential worst case time complexity.

6 Theoretical Analysis

We will compare local consistency properties applied to the AtMostNValue con-
straint. In our case, the AtMostNValue constraint holds iff the lower bound
returned by the propagation algorithm (consistency) does not exceed max(N).
Thus, given consistency properties Φ and Ψ , Φ � Ψ means that the lower bound
on N returned by the algorithm enforcing Φ is greater than or equal to the lower

X1 ∈ {4, 5}
X2 ∈ {3, 6}
X3 ∈ {2, 7}
X4 ∈ {1, 8}

(a) domains

I2

I1

I3

I4

(b) intervals

v1 v2

v3v4

(c) GX̄

v1 v2

v3v4

(d) GĪ

Fig. 2. Example for OI 6� MD(GX̄) and for OI 6� Turan

bound returned by the algorithm enforcing Ψ .1 We consider comparing the level
of consistency achieved by the following algorithms: OI, MD, Turan, and LP.

Note that, since only the lower bound on N is considered in this comparison,
OI is then equivalent to BC. We do not compare with generalized arc consistency
either, as this is NP-hard to enforce and all our algorithms are polynomial and
strictly weaker.

Theorem 4. MD � Turan

Proof. For a proof that MD is as strong as Turan see [6]. Moreover, it is easy to
find an example showing that MD is strictly stronger. For instance consider the
following domains: X1 ∈ {1, 2, 3, 4, 5, 6, 7, 8}, X2 ∈ {1, 2}, X3 ∈ {3, 4}, X4 ∈
{5, 6} , and X5 ∈ {7, 8}.

The induced intersection graph is as follows: v5 v1 v3

v2

v4

When applying MD, we obtain an independent set of size 4. However, Turan

returns:
⌈

n2

2m+n

⌉

=
⌈

25
13

⌉

= 2. and we deduce a lower bound of 2 for N . ut

Theorem 5. Turan ./ OI

Proof. To see that Turan is not as strong as OI, consider the example used in
the proof of Theorem 4. The domains being intervals, we know that OI computes
the exact lower bound, 4. However the Turán heuristics gives us 2.

To see that OI is not as strong as Turán, consider the domains in Figure 2. The
induced intersection graph GX̄ has 4 vertices (n = 4) and no edges (m = 0), thus
Turan returns 4. However, the interval graph GĪ induced by the same domains
is a clique and then OI returns 1. ut

Theorem 6. MD ./ OI

Proof. To see that MD 6� OI, consider the interval graph in Figure (3,a) induced
by the intervals of Figure (3,b). The exact independence number is 4 (for in-
stance {v2, v3, v8, v9} is an independent set of cardinality 4), and thus OI returns
4. However, the vertex with minimal degree is v1, and no independent set of
cardinality 4 involves v1, therefore MD is not as strong as OI.

1 We refer to the level of local consistency achieved by an algorithm A as A as well.

v3 v1 v2

v5

v7

v9

v11

v4

v6

v8

v10

(a) graph (GĪ)

I1

I2 I3

I4

I6

I8

I5

I9

I7

I11I10

(b) intervals (Ī)

Fig. 3. Example for MD 6� OI

LP

MD OI
'

≺

≺ ≺

BC

./

./

Turan

GAC

≺

Fig. 4. Relations between algorithms and consistencies on the AtMostNValue con-
straint

To see that OI 6� MD(GX̄), see Figure 2. It is easy to construct domains where
the interval graph can have arbitrarily more edges than the intersection graph.
For instance the domains in Figure 2,a induce a complete interval graph, or an
unconnected intersection graph. Therefore OI is not as strong as MD. ut

Theorem 7. LP � MD, LP � OI and LP � Turan.

Proof. We first show that the value returned by LP is greater or equal to α(GX̄).
Consider a maximum independent set A of the intersection graph. We know
that any two variables in A have no value in common. However for each variable
Xi ∈ A we have:

∑

v∈D(Xi)
yv ≥ 1. Since the domains of those variables are

disjoint, we have:
∑

v∈
S

Xi∈A
D(Xi)

yv ≥ |A| = α(GX̄)

And thus the total sum to minimize is greater than or equal to α(GX̄). However,
recall that OI, MD and Turan all approximate α(GX̄) by giving a lower bound.
Therefore LP is as strong as OI, MD and Turan. Moreover, the variables X1 ∈
{1, 2}, X2 ∈ {2, 3}, X3 ∈ {1, 3} constitute an example showing that LP is strictly
stronger, as the optimal sum for LP is 1.5, whilst α(GX̄) = 1.

ut

7 A propagation algorithm for the NValue constraint

A template for an approximate propagation algorithm for NValue is given in
Algorithm 3. In this template, one may use any of the methods described in the
previous sections. The pruning on N is straightforward (Line 1 and 2). When
we have max(N) < min(N) (Line 3), there is clearly an inconsistency, and the
algorithm fails. In the following subsections, we consider the cases of Lines 4, 5
and 6, where some filtering may be achieved. All other cases (Line 7) satisfy the
preconditions of Lemma 2 (see Appendix) and the constraint is GAC. Therefore,
either the constraint is GAC, or we are unable to deduce any inconsistency
because the lower bound lb for card↓(X̄) is not tight enough.

Algorithm 3: Algorithm for propagating the NValue constraint
Data : X̄, N

Result :

ub← card↑(X̄));
lb← approx(card↓(X̄)));

1 max(N)← min(max(N), ub);
2 min(N)← max(min(N), lb);
3 if (max(N) < min(N)) then fail;
4 case (ub = min(N) = max(N) 6= lb) : pruning from below;
5 case (lb = min(N) = max(N) 6= ub) : pruning from above;
6 case (|D(N)| = 2 and min(N) + 1 < max(N)) : pruning from within;
7 otherwise return;

7.1 Pruning from below

This pruning is triggered when card↑(X̄) = min(N) and card↓(X̄) < min(N).
In this situation, we know that some assignments may have too small cardinality,
and therefore some values may not participate in assignments of cardinality
card↑(X̄) = min(N), which is the only cardinality satisfying the constraint.
Making AtLeastNValue GAC is then sufficient to make the whole constraint
GAC as this corresponds to the first of the three possible cases discussed in the
proof of Theorem 1. In this situation, we can use a polynomial procedure for
enforcing GAC on the SoftAllDiff constraint which counts the number of
variables that have to be reassigned in order to be all different [10].

7.2 Pruning from above

This is the dual case, we know that some assignments may have too large cardi-
nality, and therefore some values may participate only in assignments of cardi-
nality above max(N) (and we assume max(N) = card↓(X̄)). This corresponds
to the second case of the proof of Theorem 1. Making AtMostNValue GAC
is then sufficient to make the whole constraint GAC. Note that here we are not
sure to achieve GAC.

In [1] (p. 6), two observations are made in order to prune X̄ which are relevant
here when using MD to compute min(N). We reformulate these observations

consistently to the graph notations we used. First, let A be a set of variables
that form an independent set of the intersection graph, and let Xi ∈ (X̄ \
A) be assigned to a value v which does not belong to any domain in A. It
follows that the minimum number of values required will be at least α(GX̄) +
1. Hence we can prune the value v from the domain of Xi when N is equal
to α(GX̄). This way of pruning the variables can be used with MD as well as
with OI. There are no further difficulties when going from interval graphs to
intersection graphs. Consequently, given an independent set A, we can propagate
the following constraint: ∀Xi ∈ X̄, ∃Xj ∈ A s.t. Xi = Xj . Second, suppose
that A′ is another distinct independent set. Thus, we have: ∀Xi ∈ X̄, ∃Xj1 ∈
A, ∃Xj2 ∈ A′ s.t. (Xi = Xj1 ∧ Xi = Xj2). Therefore, one can prune values in
X̄ by finding a set of independent sets A = {A1, . . . Ak}. The set of consistent
value V is defined as follows: ∀A ∈ A, UA =

⋃

Xi∈A D(Xi), V =
⋂

A∈A UA.
It may be difficult to compute all independent sets of cardinality equal to N .
One must therefore find a set which is as large as possible. In [1] from the
first one found with OI, each independent set that differs by only one vertex is
deduced. This can be computed in linear time, without increasing the algorithm’s
complexity. As a result this way X̄ is pruned, the algorithm described in [1]
does not enforce BC on AtMostNValue. The following domains are a counter
example: X1 ∈ {1, 2}, X2 ∈ {2, 3}, X3 ∈ {3, 4}, X4 ∈ {4, 5}, and N ∈ {2}.
Only the values 2 for X1, X2 and 4 for X3, X4 are bound consistent. However,
the independent sets considered will be {X1, X3} and {X1, X4}. Therefore, the
values that are consistent are {1, 2, 4}. This way of pruning can make holes in
domains. Therefore the level of consistency achieved on AtMostNValue is
incomparable with bound consistency. Although they are not equivalent, one
can easily derive a procedure to enforce BC from OI. To check the (say lower)
bound of a variable Xi, we assign this bound to Xi and compute N again. If
card↓(X̄) after this assignment is greater than N , this bound is not BC.

With algorithms that do not compute independent sets in order to get a lower
bound on N , like the linear relaxation method or the Turán heuristic, we are
in a different situation. However, we can simply wait until min(N) > max(N)
and fail in this case, without pruning any variable in X̄ . Alternatively we could
compute a new lower bound for each value v of each Xi, that is, O(nd) times.
We set yv = 1. and if the objective function fails to be lower than or equal to N ,
then v is arc inconsistent. Since the pruning on X̄ happens in a limited number
of situations, it may be cost effective to use this complete method.

7.3 Pruning from within

This pruning is triggered when card↓(X̄) = min(N), card↑(X̄) = max(N) and
card↓(X̄) + 1 < card↑(X̄). This is the last of the three cases in the proof of
Theorem 1. In this case AtMostNValue and AtLeastNValue can be GAC
whilst NValue is not. However, we can use a conditional constraint to do some
pruning in this particular case. The idea is, when these conditions are met, to
trigger the following constraint to perform this extra filtering:

Min = card↓(X̄) ∧ Max = card↑(X̄)∧
(AtMostNValue(Min, X̄)∨ AtLeastNValue(Max, X̄))

Min and Max are two extra variables. We have the following theorem:

Theorem 8. If D(N) = {card↓(X̄), card↑(X̄)} and card↓(X̄) + 1 < card↑(X̄)
then NValue(N, X̄) is GAC iff the decomposition and (when the conditions are
met) the conditional constraint are GAC.

Proof. (⇒) The case where D(N) = {card↓(X̄), card↑(X̄)} or card↓(X̄) + 1 <
card↑(X̄) does not hold is covered by Theorem 1. Now suppose this condi-
tion holds, and there is a value vi ∈ D(Xi) which is not GAC for NValue.
By definition, this implies that any assignment such that the ith element is
vi has a cardinality different from card↓(X̄) and from card↑(X̄), since these
values are in D(N). Moreover, there is no assignment with cardinality above
card↑(X̄) or below card↓(X̄). Therefore we deduce that any assignment v̄ in-
volving vi is such that card↓(X̄) < card(v̄) < card↑(X̄). Hence, if Min =
card↓(X̄) ∧ Max = card↑(X̄) holds, then vi would be inconsistent for both
AtMostNValue(Min, X̄) and AtLeastNValue(Max, X̄)).

(⇐) If a value vi belongs to a support, i.e., an assignment whose cardinal-
ity is either card↓(X̄) or card↑(X̄), then either AtMostNValue(Min, X̄) or
AtLeastNValue(Max, X̄)) or both are GAC. ut

Hence, we simply assign card↓(X̄) to N , then we compute B1, the set of
values inconsistent for AtMostNValue. Similarly, we assign card↑(X̄) to N
and compute B2, the set of values inconsistent for AtLeastNValue, In both
cases, we use the methods described in section 7.1 and 7.2. Once this is done, we
restore the domain of N , and prune all values in B1 ∩ B2. Notice that B1 may
be underestimated, hence we do not achieve GAC.

8 Related work

Two algorithms, on the same line as OI, yet achieving BC, have been introduced
in [2]. In this technical report, the authors also extend the constraint to deal
with weights on values. Observe that filtering on the weighted version of the
constraint can easily be done with the linear relaxation method. Indeed, the
weights on values can be represented as coefficients in the linear equations.

The maximum independent set is a well known problem in graph theory and
a number of approximation algorithms have been proposed. We used two simple
and intuitive algorithms for the sake of simplicity and because MD is successful in
practice. However, algorithms with better approximation ratio exist, for instance
see [7]. Any such algorithm may replace MD into the propagation algorithm.

We have seen that the linear programming approach is always stronger, even
than a complete method for finding a maximum independent set. It is difficult to
identify where the linear relaxation for the minimum hitting was first introduced,
as it is such a simple model. It is certainly given in [5]. One weakness of the linear
programming approach is that it is difficult to deduce which values to prune when
min(N) = max(N).

9 Conclusion

Propagating generalized arc consistency on the NValue constraint is NP-hard.
In order to filter inconsistent values, one has to obtain tight bounds on the
number of distinct values used in assignments. Whilst the upper bound can
be obtained in polynomial time with a maximal matching procedure, the lower
bound alone is NP-hard to compute. Therefore, our focus is on methods which
achieve lesser levels of consistency. A procedure proposed by Beldiceanu consid-
ers domains as intervals, which allows the independence number of the induced
interval graph to be computed in polynomial time. The independence number
of this graph is a valid lower bound on the number of distinct values. We in-
troduce three new methods for approximating this lower bound. The first two
approximate the independence number of the intersection graph. However, these
algorithms have a quadratic worst case time complexity, and do not guarantee
a tighter lower bound. The last and most promising approach is to use a linear
relaxation of the minimum hitting set problem. The cardinality of the minimum
hitting set is a tight lower bound on the number of distinct values. This al-
ways finds a tighter lower bound than the approaches based on the maximum
independent set problem. In our future work, we will compare these methods
experimentally.

ACKNOWLEDGEMENTS

Brahim Hnich is currently supported by Science Foundation Ireland under Grant
No. 00/PI.1/C075.

Appendix: conditions when NValue is GAC

In order to show when enforcing GAC on the decomposition of the NValue

constraint enforces GAC on NValue, we used two lemmas. These identify when
the variables in the NValue constraint are GAC. First, N is GAC iff its bounds
are between card↓(X̄) and card↑(X̄).

Lemma 1. Any value in D(N) is GAC for NValue as long as it is lower than
or equal to card↑(X̄) and greater than or equal to card↓(X̄).

Proof. Let S be any assignment of X̄ . Consider assigning X̄ as in S, one variable
at a time. Let X̄k be X̄ at step k, that is, with k ground variables. Hence, since
X̄ involves m values, X̄m corresponds to Sol At a step k, the value of card↓(X̄k)
(resp. card↑(X̄k)) increases (resp. decreases) by at most one with respect to step
k − 1. Moreover, when every variable is assigned, card↓(X̄m) =card↑(X̄m) =
card(S). Therefore, for any value p between card↓(X̄0) and card↑(X̄0), there
exists k such that either card↓(X̄k) = p or card↑(X̄k) = p. Consequently p has
a support for a sub-domain X̄k and is thus GAC. ut

Second, the variables in X̄ are GAC if either D(N) = [card↓(X̄), card↑(X̄)]
or there exists at least one value lower than card↑(X̄) and greater than card↑(X̄).

Lemma 2. If either D(N) = [card↓(X̄), card↑(X̄)] or card↓(X̄)+1 < card↑(X̄)
and [card↓(X̄) + 1, card↑(X̄) − 1] ∩ D(N) 6= ∅ then X̄ is GAC.

Proof. We first show the first part of the disjunction. Recall that card↓(X̄) (resp.
card↑(X̄)) is the cardinality of the smallest (resp. largest) possible assignment.
Therefore, if the domain of N is equal to the interval [card↓(X̄), card↑(X̄)] it
means that all assignments of X̄ have a cardinality in D(N).

For the second part, we use again the argument that assigning a single vari-
able can affect the bounds by at most one. In other words, for all Xi ∈ X̄,
a value v ∈ D(Xi) (without loss of generality) belongs to an assignment of
cardinality either card↓(X̄), card↓(X̄) + 1, card↑(X̄) or card↑(X̄) − 1. More-
over, let X̄Xi=v be X̄ where the domain of Xi is reduced to {v}. We have
card↓(X̄Xi=v) ≤ card↓(X̄) + 1 and card↑(X̄Xi=v) ≥ card↑(X̄) − 1. Hence, by
assumption D(N)∩ [card↓(X̄Xi=v), card↑(X̄Xi=v)] 6= ∅, and by applying Lemma
1, we know that there exists a tuple satisfying NValue with Xi = v. ut

References

1. N. Beldiceanu. Pruning for the minimum constraint family and for the Number of
Distinct Values constraint family. In Proceedings CP-01, 2001.

2. N. Beldiceanu, M. Carlsson, and S. Thiel. Cost-Filtering Algorithms for the two
sides of the Sum of Weights of Distinct Values Constraint. SICS technical report,
2002.

3. C. Bessiere, E. Hebrard, B. Hnich, and T. Walsh. The complexity of global con-
straints. In Proceedings AAAI-04, 2004.

4. P. Roy F. Pachet. Automatic generation of music programs. In Proceedings CP-99,
1999.

5. S. Shahar G. Even, D. Rawitz. Hitting sets when the vc-dimension is small, (sub-
mitted to a journal publication) 2004.

6. M. Halldórsson and J. Radhakrishnan. Greed is good: Approximating independent
sets in sparse and bounded-degree graphs. In Proceedings STOC-94, pages 439–448,
1994.

7. V. Th. Paschos M. Demange. Improved approximations for maximum independent
set via approximation chains. Appl. Math. Lett., 10:105–110, 1997.

8. E. Marzewski. Sur deux propriétés des classes s’ensembles. Fund. Math., 33:303–
307, 1945.

9. D.S. Johnson M.R. Garey. Computers and Intractability: A Guide to the Theory
of NP -completeness. W.H. Freeman and Company, 1979.

10. T. Petit, J.C. Regin, and C. Bessiere. Specific filtering algorithms for over-
constrained problems. In Proceedings CP-01, 451-463.

11. R. Debruyne C. Bessiere. Some practicable filtering techniques for the constraint
satisfaction problem. In Proceedings IJCAI-97, 1997.

12. J.C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proceed-
ings AAAI-94, pages 362–367, 1994.

13. P. Turán. On an extremal problem in graph theory. In (in Hungarian), Mat. Fiz.
Lapok, pages 48:436–452, 1941.

