
The Complexity of Reasoning with Global

Constraints

Christian Bessiere
LIRMM, CNRS/U. Montpellier

Montpellier, France
bessiere@lirmm.fr

Emmanuel Hebrard
4C and UCC
Cork, Ireland

e.hebrard@4c.ucc.ie

Brahim Hnich
Izmir University of Economics

Izmir, Turkey
brahim.hnich@ieu.edu.tr

Toby Walsh
NICTA and UNSW
Sydney, Australia

tw@cse.unsw.edu.au

September 11, 2006

Abstract

Constraint propagation is one of the techniques central to the suc-
cess of constraint programming. To reduce search, fast algorithms asso-
ciated with each constraint prune the domains of variables. With global
(or non-binary) constraints, the cost of such propagation may be much
greater than the quadratic cost for binary constraints. We therefore study
the computational complexity of reasoning with global constraints. We
first characterise a number of important questions related to constraint
propagation. We show that such questions are intractable in general, and
identify dependencies between the tractability and intractability of the
different questions. We then demonstrate how the tools of computational
complexity can be used in the design and analysis of specific global con-
straints. In particular, we illustrate how computational complexity can
be used to determine when a lesser level of local consistency should be
enforced, when constraints can be safely generalized, when decomposing
constraints will reduce the amount of pruning, and when combining con-
straints is tractable.

1 Introduction

Constraint programming is a very successful technology for solving many kinds
of combinatorial problems arising in industrial applications, such as scheduling,
resource allocation, vehicle routing, and product configuration [38]. One of its
key features is constraint propagation where values in the domains of variables
are removed which will lead to a constraint violation. Constraint propagation

1

can prune large parts of the search space, and is vital for solving combinatorially
challenging problems. The notion of local consistency provides a formal way to
characterise the amount of work done by constraint propagation. The most
common level of local consistency, called generalised arc consistency (GAC),
specifies that all values inconsistent with a constraint are pruned.

Constraint propagation on binary (or bounded arity) constraints is polyno-
mial. However, constraint toolkits support an increasing number of global (or
non-binary) constraints since such constraints are central to the success of con-
straint programming. See, for example, [28, 29, 8, 31, 5, 18]. Global constraints
specify patterns that occur in many problems, and use constraint propagation
algorithms that exploit their precise semantics. They permit users to model
problems compactly and solvers to prune the search space effectively. They
often allow efficient propagation. For instance, we often have sets of variables
which must take different values (e.g. activities in a scheduling problem requir-
ing the same resource must all be assigned different times). Most constraint
solvers therefore provide a global ’AllDifferent’ constraint which is propa-
gated efficiently and effectively [22, 28]. In many problems, the arity of such
global constraints can grow with the problem size. For example, in the Golomb
ruler problem (prob006 in CSPLib), the size of the AllDifferent constraint
grows quadratically with the number of ticks on the ruler. Similarly, in the bal-
anced incomplete block design (prob028 in CSPLib), the size of the intersection
constraint between rows grows linearly with the number of blocks. Such global
constraints may therefore exhibit complexities far beyond the quadratic cost for
propagating binary constraints.

What then are the limits of reasoning with global constraints? In this pa-
per, we show how the basic tools of computational complexity can be used to
uncover many of the basic limits. We characterise the different reasoning tasks
related to constraint propagation. For example, “is this value consistent with
this constraint?” or “do there exist values consistent with this constraint?”.
We identify dependencies between the tractability and intractability of these
different questions. We show that all of them are intractable in general. We
therefore need to focus on specific constraints like the AllDifferent constraint
which are tractable. We then show how these same tools of computational com-
plexity can be used to analyse specific global constraints proposed in the past
like the number of values constraint [25], as well as to help design new global
constraints.

Computational complexity provides a methodology to decide when a lesser
level of propagation should be enforced or when decomposing a constraint hin-
ders propagation. It also tells us whether a new global constraint designed as
a combination of elementary constraints or as a generalisation of an existing
tractable constraint will itself be tractable.

The rest of the paper is organised as follows. Section 2 presents the techni-
cal background necessary to read the subsequent sections. Section 3 contains a
theoretical study of generalised arc consistency, the central notion of local con-
sistency used when speaking of constraint propagation. In Section 4, we show
how the tools of computational complexity can be used to analyse different types

2

of global constraints. An extension to meta-constraints (constraints that must
be satisfied a given number of times) is presented in Section 5. Finally Section
6 discusses related work and Section 7 concludes the paper.

2 Theoretical Background

A constraint satisfaction problem (CSP) consists of a set of variables, each
with a finite domain of values, and a set of constraints that specify allowed
combinations of values for subsets of variables. We will denote variables with
upper case letters and values with lower case. We will assume that the domain of
a variable is given extensionally, but that a constraint C is given intensionally
by a function of the form fC : D(X1) × . . . × D(Xn) 7→ {true, false} where
D(Xi) are the domains of the variables in the scope var(C) = (X1, . . . , Xn) of
the constraint C. We say that D is a domain on var(C). We cannot permit an
arbitrary sort of function. For example, suppose fC(3, 1, 5, 2, 3, 1, . . .) returns
true iff the 1in3-3SAT problem, x3∨x1∨x5, x2∨x3∨x1, . . . is satisfiable. Testing
if an assignment satisfies this non-binary constraint is then NP-complete, and
finding a satisfying assignment is PSPACE-complete. As a second example,
suppose domains are integers of size m and fC(X1, X2, X3, . . .) is the function
that halts iff X1 + X2 ∗ m + X3 ∗ m2 + . . . is the Gödel number of a halting
Turing machine. Even testing if an assignment satisfies such a constraint is
undecidable. We therefore insist that fC is computable in polynomial time.

Constraint toolkits usually contain a library of predefined constraint types
with a particular semantics that can be applied to sets of variables with varying
arities and domains. A constraint is only an instance of a constraint type on
given variables and domains. For instance, AllDifferent is a constraint type.
AllDifferent(X1, .., X3) with D(X1) = D(X2) = {1, 2}, D(X3) = {1, 2, 3} is
an instance of constraint of the type AllDifferent. When there is no ambiguity,
we will use the terms ’constraint’ or ’constraint type’ indifferently.

A solution to a CSP is an assignment of values to the variables satisfying
the constraints. To find such solutions, we often use tree search algorithms
that construct partial assignments and enforce a local consistency to prune the
search space. Enforcing a local consistency is traditionally called constraint
propagation. One of the most commonly used local consistencies is generalised
arc consistency. A constraint C is generalised arc consistent (GAC) iff, when
a variable in the scope of C is assigned any value in its domain, there exists
an assignment to the other variables in C such that C is satisfied [24]. This
satisfying assignment is called support for the value. On binary constraints
(those involving just two variables), generalised arc consistency is called arc
consistency (AC).

Since this paper makes significant use of computational complexity theory,
we very briefly recall the basic tools for showing intractability. P is the class
of decision problems that can be solved by a deterministic Turing machine in
polynomial time, and NP is the class of decision problems that can be solved
by a non-deterministic Turing machine in polynomial time. As in [19], a trans-

3

formation from a decision problem Q1 ∈ NP to a decision problem Q2 ∈ NP is
a function ϕ that polynomially rewrites any input x of Q1 into an input ϕ(x)
of Q2 such that Q2(ϕ(x)) answers “yes” if and only if Q1(x) answers “yes”. If
Q1 is NP-complete, this transformation into Q2 permits us to deduce that Q2

is also NP-complete. A reduction from a problem Q1 to a problem Q2 (not
necessarily decision problems) is a program that solves Q1 in polynomial time
under the condition that the program can call an oracle that solves Q2 at most
a constant number of times. If Q1 is NP-complete, this reduction to Q2 permits
to deduce that Q2 is NP-hard. Any NP-complete problem is thus NP-hard. By
transitivity of the reductions, if Q1 is an NP-hard problem, its reduction to Q2

permits us to deduce that Q2 is NP-hard. We will use intractability as a general
term to denote any NP-hard problem, i.e., those which cannot be solved in poly-
nomial time unless P=NP. In the following, we assume P6= NP. A problem in
coNP is simply a problem in NP with the answers “yes” and “no” reversed. For
instance, 3Sat, the problem of deciding if a set of ternary clauses is satisfiable,
is in NP. Hence, un3Sat, the problem of deciding if a set of ternary clauses is
unsatisfiable, is in coNP. The DP complexity class contains problems which are
the conjunction of a problem in NP and one in coNP [26]. A problem Q is in DP

if there exist a NP problem Q1 and a coNP one Q2 such that Q answers “yes”
iff Q1 and Q2 answer “yes”. If Q1 is NP-complete and Q2 is coNP-complete,
then Q is DP -complete. The class DP is also known as the second level of the
Boolean hierarchy, BH2. A typical example of a DP -complete decision problem
is the Exact Traveling Salesperson Problem where we ask if k is the
length of the shortest tour.

3 Complexity of Generalised Arc Consistency

There are different questions that may arise when we consider enforcing gener-
alised arc consistency. We can ask whether a value belongs to a consistent tuple
or whether a constraint is generalised arc consistent. Some of the questions are
more of an academic nature while others are at the heart of propagation algo-
rithms. In this section, we formally characterise five questions related to GAC.
We study the complexity of GAC reasoning on global constraints by showing
intractability of two of these five questions. Finally, we show some dependencies
between the intractability of the questions, from which we conclude that all five
questions are intractable in general.

3.1 Questions related to GAC

We characterise five different questions related to reasoning about generalized
arc consistency. These questions can be adapted to any other local consistency
as long as it rules out values in domains (e.g., bounds consistency, singleton arc
consistency, etc.) and not non-unary tuples of values (e.g., path consistency,
relational-k-consistency, etc.)

In the following, Problem(C) represents the class of questions defined by

4

Problem on constraints of the type C. Problem(C) will be written Problem

when it is not confusing or when there is no restriction to a particular type of
constraints. Note also that we use the notation Problem[data] to refer to the
instance of Problem(C) with the input ’data’.

The first question we consider is at the core of all generic arc consistency
algorithms. This is the question which is generally asked for all values one by
one.

GACSupport(C)
Instance. A constraint C of type C, a domain D on var(C), and a
value v for variable X in var(C)
Question. Does value v for X have a support on C in D?

The second question has both practical and theoretical importance. If en-
forcing GAC on a particular global constraint is very expensive, we may first test
whether it is necessary or not to launch the propagation algorithm (i.e., whether
the constraint is already GAC). On a more academic level, this question is also
commonly asked to compare different levels of local consistency.

IsItGAC(C)
Instance. A constraint C of type C, a domain D on var(C)
Question. Does GACSupport[C, D, X, v] answer “yes” for each
variable X ∈ var(C) and each value v ∈ D(X)?

The third question can be used to decide if we do not need to backtrack
at a given node in the search tree. Note that D′ ⊆ D stands for: ∀Xi ∈
var(C), D′(Xi) ⊆ D(Xi).

NoGACWipeOut(C)
Instance. A constraint C of type C, a domain D on var(C)
Question. Is there any non empty D′ ⊆ D on which IsItGAC[C, D′]
answers “yes”?

An algorithm like GAC-Schema [8] removes values from the initial domain
of variables till we have the (unique) maximal generalised arc consistent subdo-
main. That is, the subdomain that is GAC and any larger subdomain is not
GAC. The following question characterises this “maximality” problem:

maxGAC(C)
Instance. A constraint C of type C, a domain D0 on var(C), and
a subdomain D ⊆ D0

Question. Is it the case that IsItGAC[C, D] answers “yes” and
there does not exist any domain D′, D ⊂ D′ ⊆ D0, on which
IsItGAC[C, D′] answers “yes”?

We finally consider the problem of returning the domain that a GAC algo-
rithm computes. This is not a decision problem as it computes something other
than “yes” or “no”.

5

GACDomain(C)
Instance. A constraint C of type C, a domain D0 on var(C)
Output. The domain D such that maxGAC[C, D0, D] answers
“yes”

The next subsection shows the intractability of two of the above questions.

3.2 Intractability of GAC reasoning

We consider two representative decision problems at the heart of reasoning
with global constraints. We will show later that their intractability implies
intractability of the three others. The first is GACSupport, the problem of
deciding if a value for a variable has support on a constraint. In general, this is
NP-complete to decide.

Observation 1 GACSupport is NP-complete.

Proof. Clearly it is in NP as a support is a polynomial witness which can be
checked (by our definition of constraint) in polynomial time. To show complete-
ness, we transform the satisfiability of the Boolean formula ϕ into the problem
of determining if a particular value has support. We simply construct the global
constraint C involving the variables of ϕ plus an additional new variable X , and
defined by fC = (X → ϕ). If X = true has support then ϕ is satisfiable. 2

The second decision problem we consider is IsItGAC. Given a constraint
and domains for its variables, this is the problem of deciding if these domains
are GAC. This is again a NP-complete problem.

Observation 2 IsItGAC is NP-complete.

Proof. Clearly it is again in NP as a support for each value is a polynomial
witness which can be checked in polynomial time since there are nd values
involved where n is the number of variables and d the size of the largest domain.
To show completeness, we transform 3Col, the problem of deciding whether a
graph is 3-colorable into the problem of deciding if a particular domain is GAC
for a given constraint. We introduce a variable for each vertex with domain
{r, g, b}. We then define a global constraint as follows. For each pair (xi, xj)
of vertices with an edge between in the graph, we permit pairs of values that
are different (i.e., the set {(r, g), (r, b), (g, r), (g, b), (b, r), (b, g)}). For each
pair (xi, xj) of vertices with no edge between in the graph, we permit any
pair of values (i.e., the set {r, g, b} × {r, g, b}). Since values are completely
interchangeable, r, g and b are GAC for a variable iff the graph is 3-colorable.
Hence, {r, g, b} is a GAC domain for each variable iff the graph is 3-colorable.
2

We have proven that two of the questions related to generalised arc con-
sistency are intractable in general. In the following, we see that there are de-
pendencies between the intractability of the five questions. This permits us to
deduce that all five questions are in fact intractable in general.

6

3.3 Intractability relationships

The five problems defined in Section 3.1 are not independent. Knowledge about
intractability of one of them can give information on intractability of others. We
identify here the dependencies between intractability of the different questions.

Lemma 1 GACSupport(C) is NP-hard iff NoGACWipeOut(C) is NP-hard.

Proof. (⇒) GACSupport(C) can be transformed in NoGACWipeOut(C):
Given C ∈ C, GACSupport[C, D, X, v] is solved by calling NoGACWipe-

Out[C, D|D(X)={v}].
(⇐) NoGACWipeOut[C, D] can be reduced to GACSupport by calling

GACSupport[C, D, X, v] for each value v in D(X) for one of the X in var(C).
GAC leads to a wipe out iff none of these values has a support. 2

Lemma 2 GACSupport(C) is NP-hard iff GACDomain(C) is NP-hard.

Proof. (⇒) GACSupport(C) can be reduced to GACDomain(C) since GAC-

Support[C, D, X, v] answers “yes” iff GACDomain[C, D|D(X)={v}] doesn’t re-
turn an empty domain.

(⇐) GACDomain[C, D] can be reduced to GACSupport by performing
a polynomial number of calls to GACSupport[C, D, X, v], one for each v ∈
D(X), X ∈ var(C). When the answer is “no” the value v is removed from
D(X), otherwise it is kept. The domain obtained at the end of this process
represents the output of GACDomain. 2

Corollary 1 NoGACWipeOut(C) is NP-hard iff GACDomain(C) is NP-
hard.

Lemma 3 If maxGAC(C) is NP-hard then GACSupport(C) is NP-hard.

Proof. maxGAC[C, D0, D] can be reduced to GACSupport. We perform
a polynomial number of calls to GACSupport[C, D0, X, v], one for each v ∈
D0(X), X ∈ var(C). When the answer is “yes” the value v is added to a
(initially empty) set D′(X). maxGAC answers “yes” if and only if the domain
D′ obtained at the end of the process is equal to D. 2

Lemma 4 If IsItGAC(C) is NP-hard then maxGAC(C) is NP-hard.

Proof. IsItGAC[C, D] can easily be transformed into maxGAC[C, D, D]. 2

Corollary 2 If IsItGAC(C) is NP-hard then GACSupport(C) is NP-hard.

It is worth noting that whilst intractability of IsItGAC implies that of
maxGAC, this last question may be outside NP. In fact, maxGAC is DP -
complete.

7

GACSupport NoGACWipeOut

GACDomain

maxGAC

IsItGAC

Q1 Q2: if Q1 is NP−hard then Q2 is NP−hard

Figure 1: Summary of dependencies between intractable problems

Theorem 1 MaxGAC is DP -complete.

Proof. A problem Q is DP -complete if there exist Q1 and Q2 such that Q1 is
NP-complete, Q2 is coNP-complete, and Q answers “yes” iff Q1 and Q2 answer
“yes”. We use 3Col and Un3Col as Q1 and Q2. We suppose without loss of
generality that Q1 and Q2 both involve the same set X of vertices. Ei is the
set of edges in Qi.

We introduce a variable for each vertex with domain {r1, g1, b1, r2, g2, b2}.
We then define a global constraint as follows. For each pair (xi, xj) of vertices
with an edge between in both Q1 and Q2, we permit pairs of values that are
different but have the same subscript (i.e., the set {(r1, g1), (r1, b1), (g1, r1),
(g1, b1), (b1, r1), (b1, g1), (r2, g2), (r2, b2), (g2, r2), (g2, b2), (b2, r2), (b2, g2)}).
For each pair (xi, xj) of vertices with an edge between in Q1 and not in Q2, we
permit pairs of values that are different for the subscript 1, and any combination
for subscript 2 (i.e., the set {(r1, g1), (r1, b1), (g1, r1), (g1, b1), (b1, r1), (b1, g1)} ∪
{r2, g2, b2}×{r2, g2, b2}). Similarly, for each pair (xi, xj) of vertices with an edge
between in Q2 and not in Q1, we permit pairs of values that are different for the
subscript 2, and any combination for subscript 1. Finally, for each pair (xi, xj)
of vertices with no edge between in Q1 or in Q2, we permit any pairs of values
with the same subscript (i.e., the set {r1, g1, b1} × {r1, g1, b1} ∪ {r2, g2, b2} ×
{r2, g2, b2}). By construction, ri, gi and bi are GAC iff (X, Ei) is 3-colorable.
Hence, {r1, g1, b1} is the maximal GAC subdomain for each variable iff (X, E1)
is 3-colorable, and (X, E2) is not 3-colorable. 2

A summary of the dependencies proved in Lemmas 1–4 and Corollary 1 is
given in Fig. 1. Note that since each arrow from question A to question B in
Fig. 1 means that A can be rewritten as a polynomial number of calls to B, we
immediately have that tractability of B implies tractability of A. (See Fig. 2
for tractability dependencies of the five questions.)

Reasoning with global constraints is thus not tractable in general. Global
constraints which are used in practice are therefore usually part of that special
subset for which constraint propagation is polynomial. For example, GAC on
an n-ary AllDifferent constraint can be enforced in O(n

3

2 d) time [28]. In the
rest of this paper, we show how we can further use the tools of computational
complexity in the design and analysis of specific global constraints.

8

GACSupport NoGACWipeOut

GACDomain

maxGAC

IsItGAC

if tail in P then head in P

Figure 2: Summary of the dependencies between tractable problems

4 Using Intractability Results

The tools of computational complexity can also be used to analyse existing
global constraints for which no polynomial algorithm is known, or can help
us in designing new global constraints for specific purposes. To prove that a
constraint type C is intractable, we generally transform/reduce some known NP-
complete/NP-hard problem to the existence of a satisfying assignment for C, i.e.,
the NoGACWipeOut(C) problem. Thanks to the dependency results shown
above, we can then deduce intractability of GACSupport and GACDomain.
For the more academic questions, IsItGAC and maxGAC, the complexity
cannot be deduced from our dependencies since they are ’exact’ problems (a
“no” answer brings little information). Finally, we sometimes do not need the
full expressive power of a constraint type to prove its intractability. For example,
we may use only a fixed value for one of the variables involved in the constraint.
In this case, the constraint is also intractable if we use its full expressive power.

We can derive several kinds of information about global constraints by using
computational complexity results. For example, on existing global constraints
for which no polynomial algorithm is known for a given level of local consistency,
proving intractability tells us that no such algorithm exists, and that we should
look to enforce a lesser level of consistency. On constraints that decompose into
simpler constraints which have polynomial propagation algorithms, intractabil-
ity results not only tell us that this decomposition hinders propagation, but that
there cannot exist any decomposition on which we achieve GAC in polynomial
time. We also sometimes want to use an already existing global constraint in a
form more general than its original definition. A proof of intractability tells us
that generalisation makes the constraint impossible to propagate in polynomial
time.

The remainder of this section gives examples of existing and new global
constraints that we analyse with these tools of computational complexity.

4.1 Local consistency

Computational complexity results can indicate what level of local consistency
to enforce on a constraint. If achieving a given local consistency on a constraint

9

is NP-hard, then enforcing a lower level of consistency may be advisable. For
example, the number of values constraint, NValue(X1, . . . , Xn, N) [25, 3] ensures
that N distinct values are used by the n finite domain variables Xi. Note that
N can itself be an integer variable. The AllDifferent constraint is a special
case of the NValue constraint in which N = n. The NValue constraint is useful
for reasoning about resources. For example, if the values are workers assigned to
a particular shift, we may have a NValue constraint on the number of workers
that a set of shifts can involve. Whilst there exists an O(n2.5) algorithm for
enforcing GAC on the AllDifferent constraint [28], enforcing GAC on the
NValue constraint is intractable in general.

Theorem 2 Enforcing GAC on a NValue(X1, . . . , Xn, N) constraint is NP-
hard, and remains so even if N is ground and different to n.

Proof. We use a transformation from 3Sat to NoGACWipeOut(NValue).
Given a 3Sat problem in n variables (labelled from 1 to n) and m clauses, we
construct the constraint NValue([X1, . . . , Xn+m], N) in which D(Xi) = {i,−i}
for all i ∈ [1, n], and each Xi for i > n represents one of the m clauses. If the
jth clause is x∨¬y∨ z then D(Xn+j) = {x,−y, z}. The constructed constraint
where D(N) = {n} has a solution iff the original 3Sat problem has a satisfying
assignment. Hence deciding if enforcing GAC on NValue does not lead to a
domain wipe out is NP-complete, and enforcing GAC is itself NP-hard. 2

If we want to maintain a reasonable cost for propagation, we therefore prob-
ably have to enforce a lower level of consistency. For instance, there exists a
polynomial algorithm for enforcing bound consistency on the NValue constraint
[7].

As a second example, let us take the Common constraint, Common(N, M,
[X1, . . . , Xn], [Y1, . . . , Ym]) introduced in [1], that ensures that N = |{i | ∃j, Xi =
Yj}| and M = |{j | ∃i, Xi = Yj}|. That is, N is the number of variables in
the Xi that take values in the Yj , and M is the number of variables in the Yj

that take values in the Xi. The AllDifferent constraint is again a special case
of the Common constraint in which the Yj enumerate all the values j in the Xi,
Yj = {j} and M = n.

Theorem 3 Enforcing GAC on Common(N, M, [X1, . . . , Xn], [Y1, . . . , Ym]) is NP-
hard.

Proof. In Theorem 8, it is shown that enforcing GAC on Among(N, [X1, . . . , Xn],
[D1, . . . , Dm]) is NP-hard, where the constraint holds iff N = |{i | ∃j, Xi = Dj}|.
Deciding if enforcing GAC on such an Among constraint does not lead to a
domain wipe out is equivalent to deciding if enforcing GAC on Common(N, M,
[X1, . . . , Xn], [D1, . . . , Dm]) with D(M) = {0, . . . , n} does not lead to a domain
wipe out. As a result, enforcing GAC on Common is itself NP-hard. 2

10

4.2 Decomposing constraints

Computational complexity results can tell us more than just what level of local
consistency to enforce. It can also indicate properties that any possible decom-
position of a constraint must possess. We say that a decomposition of a global
constraint is GAC-poly-time if we can enforce GAC on the decomposition in
time polynomial in the size of the original constraint and domains. The follow-
ing lemma tells us when such decomposition hinders constraint propagation.

Lemma 5 If enforcing GAC on a constraint C is NP-hard, then there does not
exist any GAC-poly-time decomposition of C that achieves GAC on C.

Proof. By definition, enforcing GAC on a GAC-poly-time decomposition is
polynomial. Hence, if GAC on the decomposition was equivalent to GAC on
the original constraint, then P would equal NP. 2

Consider a constraint that ensures two sequences of variables are disjoint (i.e.
have no value in common). For example, two sequences of tasks sharing the same
resource might be required to be disjoint in time. The Disjoint([X1, . . . , Xn],
[Y1, . . . , Ym]) constraint introduced in [1] ensures Xi 6= Yj for any i and j.
This constraint has a very simple and natural decomposition into the set of
all binary constraints Xi 6= Yj , i ∈ [1, n], j ∈ [1..m]. Unfortunately, enforcing
AC on this decomposition into binary constraints does not achieve GAC on the
corresponding Disjoint constraint. Consider X1, Y1 ∈ {1, 2}, X2, Y2 ∈ {1, 3},
and Y3 ∈ {2, 3}. The decomposition into binary constraints is already AC.
However, enforcing GAC on Disjoint([X1, X2], [Y1, Y2, Y3]) prunes 3 from X2

and 1 from both Y1 and Y2.
Moreover, we prove here that we cannot expect any decomposition to achieve

GAC on such a constraint.

Theorem 4 GAC on any GAC-poly-time decomposition of the Disjoint con-
straint is strictly weaker than GAC on the undecomposed constraint.

Proof. We show that enforcing GAC on a Disjoint constraint is NP-hard, and
then appeal to Lemma 5. We reduce 3Sat to NoGACWipeOut(Disjoint).
Consider a formula ϕ with n variables and m clauses. We let Xi ∈ {i,−i} and
Yj ∈ {x,−y, z} where the jth clause in ϕ is x∨¬y∨z. If ϕ has a model then the
Disjoint constraint has a satisfying assignment in which the Xi take the literals
false in this model and the Yj take the literal satisfying the jth clause. Hence,
deciding if enforcing GAC does not lead to a domain wipe out on Disjoint is
NP-complete, and enforcing GAC is itself NP-hard. 2

As another example, Sadler and Gervet introduce the AtMost1 constraint
[32]. This ensures that n set variables of a fixed cardinality c intersect in at most
one value. To fit this within the theoretical framework presented in this paper,
we consider the characteristic function representation for each set variable (i.e.
a vector of 0/1 decision variables). Enforcing GAC on such a representation is
equivalent to enforcing bounds consistency on the upper and lower bounds of

11

the set variables [39]. The AtMost1 constraint can be decomposed into pairwise
intersection and cardinality constraints. That is, it can be decomposed into
|Xi ∩ Xj | ≤ 1 for i < j and |Xi| = c for all i. On the characteristic function
representation, this is

∑
k Xik ·Xjk ≤ 1 and

∑
k Xik = c, which are both GAC-

poly-time. Such decomposition hinders constraint propagation.

Theorem 5 GAC on any GAC-poly-time decomposition of the AtMost1 con-
straint is strictly weaker than GAC on the undecomposed constraint.

Proof. We show that enforcing GAC on an AtMost1 constraint is NP-hard, and
appeal to Lemma 5. To show that enforcing GAC on the AtMost1 constraint
is NP-hard, we consider the case when the cardinality c = 2. For c > 2, we
can use a similar construction as in the c = 2 reduction but add c − 2 distinct
values to each set. The proof uses a reduction from 3Sat. For each clause σ, we
introduce a set variable, Xσ . Suppose σ = xi∨¬xj∨xk , then Xσ has the domain
{mσ} ⊆ Xσ ⊆ {mσ, iσ ,¬jσ , kσ}. If the intersection and cardinality constraint
is satisfied, Xσ takes the value {mσ, iσ}, {mσ ,¬jσ}, or {mσ, kσ}. The first case
corresponds to xi being true (which satisfies σ), the second to ¬xj being true,
and the third to xk being true.

We use an additional (at most quadratically many) set variables to ensure
that contradictory assignments are not made to satisfy other clauses. Suppose
we satisfy σ by assigning xi to true. That is, Xσ = {mσ , iσ}. Consider any other
clause, τ which contains ¬xi. We construct two set variables, Yστi and Zστi with
domains {mσ} ⊆ Yστi ⊆ {mσ, iσ,¬iτ} and {¬iτ} ⊆ Zστi ⊆ {mσ, mτ ,¬iτ}.
Since Xσ = {mσ, iσ}, then Yστi = {mσ,¬iτ} and Zστi = {mτ ,¬iτ}. Hence,
Xτ 6= {mτ ,¬iτ}. That is, τ cannot be satisfied by ¬xi being assigned true.
Some other literal in τ has to satisfy the clause.

The constructed set variables thus have a solution which satisfies the inter-
section and cardinality constraints iff the original 3Sat problem is satisfiable.
Hence deciding if enforcing GAC on AtMost1 does not lead to a domain wipe
out is NP-complete, and enforcing GAC is itself NP-hard. 2

A similar result can be given for the Distinct constraint introduced in [32].
This constraint ensures that n set variables of a fixed cardinality intersect in
at least one value. Again, a GAC-poly-time decomposition of such a constraint
hinders constraint propagation.

4.3 Combining constraints

Global constraints specify patterns that reoccur in many problems. However,
there may only be a limited number of common constraints which repeatedly
occur in problems. One strategy for developing new global constraints is to
identify conjunctions of constraints that often occur together, and developing
constraint propagation algorithm for their combination. For example, [31] pro-
pose a propagation algorithm for a constraint which combines together sum and
difference constraints. As a second example, [10] combine together a chain of

12

lexicographic ordering constraints. As a third example, [21] combine together a
lexicographic ordering and two sum constraints.

We can use results from computational complexity to determine when we
should not combine together constraints. For example, scalar product con-
straints occur in many problems like the balanced incomplete block design,
template design and social golfers problems [40]. Often such problems have
scalar product constraints between all pairs of rows in a 2-dimensional array
of Boolean decision variables. We can enforce GAC on a scalar product con-
straint between two rows in linear time. Should we consider combining together
all the row scalar product constraints into one large global constraint? Such a
ScalarProduct constraint would ensure that ∀i < j

∑
k Xik · Xjk = p. The

following result shows that enforcing GAC on such a composition of constraints
is intractable.

Theorem 6 Enforcing GAC on a ScalarProduct constraint is NP-hard, even
when restricted to 0/1 variables.

Proof. We consider the case when the scalar product p = 1. For p > 1, we
use a reduction that adds p − 1 additional columns to the array, each column
containing variables that must take the value 1.

We reduce 1in3-3SAT on positive formulae (which is NP-complete [19]) to
deciding if enforcing GAC does not lead to a domain wipe out on a ScalarProduct
constraint over 0/1 variables. Given a 1in3-3SAT problem in n variables and m
clauses, we construct a ScalarProduct constraint with 4m+1 rows and 3m+n
columns. The first row of the array, where all variables have 0/1 domain, rep-
resents the model which satisfies the 1in3-3SAT problem. There is a column
for each occurrence of a literal in a clause. That is, the (3(j − 1) + k)th column
represents the kth literal in the jth clause. This is assigned 1 in the first row
iff the corresponding literal is true. There is also a column for the negation of
each literal. That is, the (3m + i)th column represents the negation of the ith
literal. This is assigned 1 in the first row iff the corresponding literal is false.

The remaining rows are divided into two types. First, there is a row for
each clause. In the (1 + j)th row, representing the jth clause, the columns
3(j− 1)+1, 3(j− 1)+2, 3(j− 1)+3 corresponding to literals in the clause have
value 1. The other columns have the value 0. The scalar product constraint
between a row representing a clause and the row representing the model ensures
that only one of the literals in the clause is true. Second, there are rows for
each occurrence of a positive literal to ensure that the row representing the
model does not assign both a literal and its negation to true. That is, if the ith
variable of the formula appears as the kth literal in the jth clause, then, in the
(1 + m + 3(j − 1) + k)th row, the columns 3(j − 1) + k and 3m + i have value
1. The other columns have the value 0.

The 1in3-3SAT problem has a model iff the constructed array has a solu-
tion. Hence deciding if enforcing GAC does not lead to a domain wipe out on
ScalarProduct is NP-complete, and enforcing GAC is NP-hard. 2

Special cases of the ScalarProduct constraint are tractable. For instance, if

13

the scalar product is zero and variables are 0/1 then the constraint is equivalent
to the pairwise Disjoint constraint on set variables, which is tractable [39].

4.4 Generalising constraints

Another way in which tools of computational complexity can help is when we
generalise existing global constraints. We might have a global constraint with a
polynomial propagation algorithm, but want to use it in a more general manner.
For example, we might want to replace a given constant parameter with a vari-
able or to repeat the same variable several times in the scope of the constraint.

4.4.1 Constant parameter becoming a variable

The global cardinality constraint, Gcc([X1, . . . , Xn], [O1, . . . , Om]), ensures that
Oj = |{i | Xi = j} for all j. That is, the value j occurs Oj times in the variables
Xi. The special case of this constraint where Oj are fixed intervals was presented
in [29] together with a polynomial propagation algorithm enforcing GAC on the
Xi. The AllDifferent constraint is a special case of the Gcc constraint in
which Oj = [0, 1]. However, to enforce GAC on the more general form of the
Gcc constraint where the Oj are integer variables is NP-hard.

Theorem 7 ([27]) Enforcing GAC on a Gcc([X1, . . . , Xn], [O1, . . . , Om]) where
the Oj are integer variables is NP-hard.

A second example is the Among constraint. The Among(N, [X1, . . . , Xn],
[d1, . . . , dm]) constraint, introduced in CHIP [5] ensures that N = |{i / ∃j, Xi =
dj}|. That is, N variables in Xi take values in [d1, . . . , dm]. The Among constraint
is a generalisation of the AtMost and AtLeast constraints. Enforcing GAC is
polynomial on the Among constraint. A generalisation of this constraint is to let
the dj be integer variables Dj instead of constants. In this case, enforcing GAC
becomes intractable.

Theorem 8 Enforcing GAC on Among(N, [X1, . . . , Xn], [D1, . . . , Dm]) is NP-
hard.

Proof. We again use a transformation from 3Sat. Given a 3Sat problem in
n variables (labelled from 1 to n) and m clauses, we construct the Among con-
straint, Among(N, [X1, . . . , Xm], [D1, . . . , Dn]) in which D(N) = {m}, D(Di) =
{i,−i}, and each Xj represents one of the m clauses. If the jth clause is x∨¬y∨z
then D(Xj) = {x,−y, z}. The constructed among constraint has a solution iff
the original 3Sat problem has a model. Hence deciding if enforcing GAC does
not lead to a domain wipe out is NP-complete, and enforcing GAC is itself
NP-hard. 2

14

4.4.2 Repeating variables

In the constraint Gcc([X1, . . . , Xn], [O1, . . . , Om]), the number of occurrences Oj

for a value j is a fixed interval [lj ..uj]. In addition, we assume that no variables
in the sequence [X1, . . . , Xn] are repeated. However, there are problems in
which we would like to have a gcc constraint with the same variable occurring
several times in [X1, . . . , Xn], or equivalently, some variables that must take
the same value. For example, in shift rostering, we might have constraints on
the number of shifts worked by each individual, as well as the requirement that
the same person works consecutive weekends. This can be modelled with a Gcc

with repeated variables. Unfortunately, achieving arc consistency (GAC) on
Gcc with repeated variables is intractable.

Theorem 9 Enforcing GAC on a Gcc([X1, . . . , Xn], [O1, . . . , Om]) where vari-
ables in [X1, . . . , Xn] can be repeated is NP-hard even if the Oj are fixed inter-
vals.

Proof. We transform 3Sat into NoGACWipeOut(Gcc). Let ϕ = {c1, . . . , cm}
be a 3CNF on the Boolean variables x1, . . . , xn. We build the constraint Gcc(Y,
[O−n, . . . , O−1, O1, . . . , On]) where:

1. Y = [Yc1
, . . . , Ycm

, Y
(1)
l1

, . . . , Y
(m)
l1

, Y
(1)
l2

, . . . , Y
(m)
ln

)], where Y
(1)
li

, . . . , Y
(m)
li

are m copies of the same variable Yli with D(Yli) = {i,−i} and D(Ycj
) =

{j1,−j2, j3} if cj = xj1 ∨ ¬xj2 ∨ xj3 ,

2. Oi = [0, m], ∀i ∈ [−n,−1] ∪ [1, n],

Consider a model of ϕ. If xik
is one of the variables in clause ci that make

ci true in the model, assign Yci
with ik if xik

is true, and −ik otherwise. For
every i, assign Yli with i if xi is false and −i otherwise. This assignment is a
solution for Gcc.

Consider now a solution for Gcc. Then xi set to true iff Yli = −i is a model
of ϕ. The m occurrences of each Yli and the capacities Oj in the Gcc ensure
that none of the Yck

can take −i if Yli = −i or i if Yli = i.
The constructed Gcc constraint with repeated variables has a solution iff the

original 3Sat problem has a model. Hence deciding if enforcing GAC does not
lead to a domain wipe out is NP-complete, and enforcing GAC is itself NP-hard.
2

We see that computational complexity can tell us when we will need to
enforce a lesser level of consistency on the generalisation of an existing global
constraint.

5 Meta-Constraints

Computational complexity can also be used to study “meta-constraints” that
combine together other constraints. We will show that even when the constraints
being combined are tractable to propagate, the meta-constraint itself might not

15

be tractable to propagate. For example, the Card constraint [36] is provided
by many constraint toolkits. It ensures that N constraints from a given set are
satisfied, where N is an integer decision variable. The most general form of the
constraint is: Card(N, [C1, . . . , Cm]) where Ci are themselves constraints (not
necessarily all of the same arity), and N = |{i | Ci is satisfied}|. The cardinality
constraint can be used to implement conjunction, (C1 ∧ C2 is equivalent to
Card(2, [C1, C2])), disjunction, (C1∨C2 is equivalent to Card(N, [C1, C2]) where
N ≥ 1), negation, (¬C1 is equivalent to Card(0, [C1])). It has had numerous
applications in a wide range of domains including car-sequencing, disjunctive
scheduling, Hamiltonian path and digital signal processor scheduling [37].

It is obvious that Card(N, [C1, . . . , Cm]) is tractable if the constraints Ci

have bounded arity and do not share any variable. However, only a limited
form of consistency is enforced on a Card constraint (see [23]), and it is easy to
show why this is necessary in general.

Theorem 10 Enforcing GAC on the Card(N, [C1, . . . , Cm]) constraint is NP-
hard, and remains so even if all the constraints Ci are identical and binary and
no variable is repeated more than three times.

Proof. We use a reduction from the special case of 3SAT in which at most
three clauses contain a variable or its negation. (This is still NP-complete.)
Each Boolean variable x is represented by a CSP variable X with domain
{0, 1}. Each clause σ is represented by three CSP variables, Uσ, Vσ and Wσ ,
and five binary constraints posted on these variables. The domain of Uσ is a
strict subset of {8, . . . , 15}, of Vσ is a strict subset of {16, . . . , 23} and of Wσ is a
strict subset of {24, . . . , 31}. The domain values serve two purposes. First, the
bottom three bits indicate the truth values taken by the variables that satisfy
the clause. We therefore have to delete one value from each domain. This is the
assignment of truth values which does not satisfy the clause. For example, if σ
is x ∨ ¬y ∨ z then the only assignment to X , Y and Z, which does not satisfy
the clause is 0, 1, 0. We therefore delete the value 26 from Wσ as 26 mod8 is 2
(or 010 in binary). Similarly, we delete the value 18 from Vσ as 18 mod8 is 2,
and 10 from Uσ. Second, the top two bits of the values of Uσ, Vσ and Wσ point
to one of the three positions in the clause. We add three binary constraints to
the cardinality constraint: C(Uσ , X), C(Vσ , Y) and C(Wσ , Z).

We also need to ensure that Uσ, Vσ and Wσ take consistent values. We
therefore add two binary constraints: C(Uσ , Vσ), and C(Vσ , Wσ). Finally, we
define C(X, Y) as follows. If Y ∈ {0, 1}, there are three cases. If 8 ≤ X ≤ 15
then C is satisfied iff (X mod8) div 4 = Y (i.e., the third bit of X agrees with
Y). If 16 ≤ X ≤ 23 then C is satisfied iff (X mod 4) div 2 = Y (i.e., the second
bit of X agrees with Y). If 24 ≤ X ≤ 31 then C is satisfied iff X mod 2 = Y
(i.e., the first bit of X agrees with Y). Otherwise Y ≥ 8 and C is satisfied iff
X mod 8 = Y mod 8.

The constructed cardinality constraint has a solution iff there is an assign-
ment to the Boolean variables that satisfies all of the clauses. Hence enforcing
GAC is NP-hard. 2

16

A more restricted, but nevertheless very useful form of the cardinality con-
straint is the cardinality path constraint [4]. The most general form of the
constraint is: Cardpath(N, [X1, . . . , Xm], C) where C is a constraint of arity k,
and N = |{i ∈ 1..m − k + 1 | C(Xi, . . . , Xi+k−1) is satisfied}|. This “slides” a
constraint of fixed arity down a sequence of variables and ensures that it holds
N times, where N is itself an integer decision variable. This constraint can be
used to implement the change constraint, (which counts the number of changes
of value in a sequence), smooth constraint (which limits the size of changes of
value along a sequence), number of rests constraint (which counts the num-
ber of two day or more rests in a sequence), and sliding sum constraints. In
[4], a greedy algorithm is given for propagating the cardinality path constraint.
However, even for binary constraints, the algorithm fails to prune all possible
values. In [6], an algorithm is proposed that achieves GAC when no variable
is repeated in the sequence [X1, . . . , Xm] and C has arity k. This takes a time
which is polynomial in m but exponential in k. If k is bounded (e.g. k = 2),
this is polynomial. The algorithm uses dynamic programming technique that
slides along the values of the variables the number of times C can be satisfied
in a tuple involving the given value. After two passes of this sliding process, the
values from N that never appear in the counters can be pruned, as well as the
values that are not labelled by any value in the domain of N . As soon as we
allow repetitions of variables in the sequence, it is not hard to show that enforc-
ing GAC on Cardpath is intractable. As with Gcc, this is another example of
constraint that changes from polynomial to intractable when we allow repeated
variables.

Theorem 11 Enforcing GAC on Cardpath(N, [X1, . . . , Xm], C) where variables
in the sequence [X1, . . . , Xm] can be repeated is NP-hard even if C is binary.

Proof. We use a reduction from 3Col. We assume without loss of generality
that the graph is connected. Each node in the graph is represented by a CSP
variable. The domain of each variable is the set of three colours. We then
construct a sequence of variables X1, . . . , Xm such that if there is an edge (i, j)
in the graph then there is at least one position in the sequence with Xi next
to Xj . To do this, we pick any node at which to start. We then pick any edge
in the graph not yet in the sequence and find a path from our starting node
that passes through this edge. We add this path to our sequence. We repeat
until all edges are in the sequence. Finally, we set N = m − 1 and C to be the
binary not-equals constraint. The constructed cardinality path constraint has a
solution iff there is a proper colouring of the graph. Hence deciding if enforcing
GAC does not lead to a domain wipe out is NP-complete, and enforcing GAC
is itself NP-hard. 2

It is less easy to see that enforcing GAC on Cardpath(N, [X1, . . . , Xm], C)
is intractable when the sequence of variables [X1, . . . , Xm] does not contain any
repetition and GAC can be enforced on C in polynomial time.

Theorem 12 Enforcing GAC on Cardpath(N, [X1, . . . , Xm], C) is NP-hard even

17

when enforcing GAC on C is polynomial and no variable is repeated in the se-
quence.

Proof. We transform Max2sat into NoGACWipeOut(Cardpath). Max2-

sat is the problem of deciding whether there exists an assignment of n Boolean
variables violating at most k clauses in a 2sat formula with m clauses. The
idea is to build a sequence of variables, alternating n Boolean variables with
two variables representing one of the binary clauses, and then again n Boolean
variables and so on until all clauses are represented. The sliding constraint C
guarantees that in each alternation, the assignment of the n Boolean variables
on the left of the two clause-variables is equal to the assignment on the right
(i.e. the same assignment is used down the sequence), and that the binary
clause sandwiched in the middle is satisfied by this assignment. To prevent
violation of a clause being confused with a change in the assignment, we need
k + 1 dummy variables in each alternation. A change in the assignment then
violates k+1 times the constraint C. (k is the bound of the Max2sat problem.)
So, the whole sequence is composed of m alternations, each with k + 1 dummy
variables plus n Boolean variables plus two clause-variables, plus some additional
dummy variables at the very end of the sequence to guarantee that the last
clause is checked. The domain of the dummy variables is {n + 1}, that of
Boolean variables is {0, 1}. If cj = xi1 ∨¬xi2 , the first clause-variable in the jth
alternation has domain {i1} and the second has domain {−i2}. The constraint
C, of arity 2(k + 1) + 2n + 4 (two alternations), is built to be satisfied in the
three following cases: if neither its first variable nor its (k + 1 + n + 2)th is a
dummy (k + 1 + n + 2 is the length of an alternation); if its first variable is a
dummy and the two assignments of n Boolean variables are the same; finally
if the first variable is not a dummy, the (k + 1 + n + 2)th variable is, and the
clause represented by the two variables in positions n + 1 and n + 2 is satisfied
by the assignment. Enforcing GAC on C is clearly polynomial.

There remains to set the domain of N to the interval from the total number
of occurrences of C in the sequence (all C satisfied) to this number less k. This
ensures that C is violated at most k times. As a change in the assignment to the
Boolean variables costs at least k+1 violations, we are guaranteed that the same
assignment ’slides down’ the sequence. Thus Cardpath has a satisfying tuple if
and only if there exists an assignment of the Boolean variables of the Max2sat

formula that violates at most k binary clauses. Therefore, deciding if enforcing
GAC does not lead to a domain wipe out is NP-complete, and enforcing GAC
is itself NP-hard. 2

We have seen that Cardpath is tractable when C has a fixed arity, and we
do not allow repetitions of variables in the sequence. However, as soon as we
relax either one of these restrictions, propagation becomes NP-hard. We may
therefore need to enforce a lesser level of local consistency such as in [4].

18

6 Related Work

Analysis of tractability and intractability is not new in constraint programming.
Identifying properties under which a constraint satisfaction problem is tractable
has been studied for a long time. For example, Freuder [17], Dechter and Pearl
[13, 14] or Gottlob et al [20] gave increasingly general conditions on the struc-
ture of the underlying (hyper)graph to obtain a backtrack-free resolution of a
problem. van Beek and Dechter [35] and Deville et al [15] presented conditions
on the semantics of the individual constraints that make the problem tractable.
Finally, Cohen et al [12] showed that when the constraints composing a problem
are defined as disjunctions of other constraints of specified types, then the whole
problem is tractable. However, these lines of research are concerned with a con-
straint satisfaction problem as a whole, and do not say much about individual
particular constraints.

For constraints of bounded arity, asymptotic analysis has been extensively
used to study the complexity of constraint propagation both in general and
for constraints with a particular semantics. For example, the GAC-Schema
algorithm of [8] has an O(dn) time complexity on constraints of arity n and
domains of size d, whilst the GAC algorithm of [28] for the n-ary AllDifferent

constraint has O(n
3

2 d) time complexity. These are upper bounds on the cost of
GAC in general or on specific constraints. By comparison, we have characterised
here conditions under which no polynomial algorithm for GAC can be designed
for a given constraint type.

For global constraints like the Cummulative and Cycle constraints, there are
very immediate reductions from the bin packing and Hamiltonian circuit which
demonstrate that reasoning with these constraints is intractable in general. It
is therefore perhaps not surprising that there has been little comment in the
past about their intractability. However, as we show here, there are many
other global constraints proposed in the past like NValue and AtMost1 where a
reduction is less immediate, but the constraint is intractable nevertheless.

In many constraint problems, the goal is not only to satisfy all the con-
straints, but also to minimise (or maximise) an objective function. Constraint
propagation can be enhanced in these problems by cost-based filtering where we
also remove values that are proven sub-optimal. Optimisation constraints, that
combine a regular constraint of the problem with a constraint on the maximal
value the objective function can take have been advocated in [11]. GAC on
such a combined constraint will not only prune the values having no support on
the regular constraint, but also the values that do not extend to any satisfying
assignment of the constraint improving the given bound. However, as in the
case of combining constraints (see Section 4.3), such compositions have to be
handled with care. The optimisation version of a constraint for which enforcing
GAC is intractable obviously remains intractable (e.g., [33]). However, the op-
timisation version of a constraint for which GAC is polynomial either remains
tractable (e.g., [16, 30]) or may become intractable. An example of the latter
situation is the shortest path constraint, which is the optimisation version of
the path constraint [34].

19

Beldiceanu has proposed a general framework for describing many global
constraints in terms of graph properties on structured networks of simple el-
ementary constraints [2]. It is an interesting open question if we can identify
properties or elementary constraints within this framework which guarantee
that a global constraint is computationally (in)tractable. Finally, computa-
tional complexity can help us classify the “globality” of constraints [9]. Indeed,
NP-hardness of enforcing GAC is a sufficient condition for a constraint to be
operationally GAC-global wrt GAC-poly-time decompositions.

7 Conclusions

We have studied the computational complexity of reasoning with global con-
straints. We have considered a number of important questions related to con-
straint propagation. For example, “Does this value have support?”, or ‘Is this
problem generalised arc-consistent?”. We identified dependencies between the
tractability and intractability of these questions for finite domain variables and
we have shown that these questions are intractable in general. We have then
demonstrated how the same tools of computational complexity can be used in
the design and analysis of specific global constraints. In particular, we have illus-
trated how computational complexity can be used to determine when a lesser
level of local consistency should be enforced, when decomposing constraints
will reduce propagation, when constraints can be combined tractably and when
generalisation leads to intractability. We showed that a wide range of global
constraints, both existing and new, are intractable. In particular, the NValue

and AtMost1 constraints, the global cardinality constraint with repeated vari-
ables and the Common constraint, are proven here to be intractable. We have
also shown how the same tools can be used to study meta-constraints like the
Cardpath constraint. In the future, we plan an extensive study of the computa-
tional complexity of global constraints beyond finite domain variables (e.g. on
set and multiset variables).

Aknowledgements

The second and fourth author are members of the Knowledge Representa-
tion and Reasoning Programme at National ICT Australia. NICTA is funded
through the Australian Government’s Backing Australia’s Ability initiative, in
part through the Australian Research Council. The third author is supported
by Science Foundation Ireland. We thank Marie-Christine Lagasquie for some
advice about reducibility notions.

References

[1] N. Beldiceanu. Global constraints as graph properties on a structured net-
work of elementary constraints of the same type. Technical report, Swedish
Institute of Computer Science, 2000. SICS Technical Report T2000/01.

20

[2] N Beldiceanu. Global constraints as graph properties on a structured net-
work of elementary constraints of the same type. In Proceedings of the
Sixth International Conference on Principles and Practice of Constraint
Programming (CP’00), LNCS 1894, Springer–Verlag, pages 52–66, Singa-
pore, 2000.

[3] N. Beldiceanu. Pruning for the minimum constraint family and for the num-
ber of distinct values constraint family. In Proceedings of the Seventh Inter-
national Conference on Principles and Practice of Constraint Programming
(CP’01), LNCS 2239, Springer–Verlag, pages 211–224, Singapore, 2001.

[4] N. Beldiceanu and M. Carlsson. Revisiting the cardinality operator and
introducing cardinality-path constraint family. In Proceedings ICLP’01,
pages 59–73, 2001.

[5] N. Beldiceanu and E. Contegean. Introducing global constraints in CHIP.
Mathematical Computer Modelling, 20(12):97–123, 1994.

[6] C. Bessiere. Complexity of the cardpath constraint. Technical Re-
port TR-05036, LIRMM (CNRS / University of Montpellier), Montpellier,
France, January 2005.

[7] C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. Filtering
algorithms for the NValue constraint. In Proceedings CPAIOR’05, Prague,
Czech Republic, 2005.

[8] C. Bessiere and J.C. Régin. Arc consistency for general constraint networks:
preliminary results. In Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence (IJCAI’97), pages 398–404, Nagoya,
Japan, 1997.

[9] C. Bessiere and P. Van Hentenryck. To be or not to be ... a global con-
straint. In Proceedings of the Ninth International Conference on Principles
and Practice of Constraint Programming (CP’03), LNCS 2833, Springer–
Verlag, pages 789–794, Kinsale, Ireland, 2003. Short paper.

[10] M. Carlsson and N. Beldiceanu. Arc-consistency for a chain of lexicographic
ordering constraints. Technical report T2002-18, Swedish Institute of Com-
puter Science, 2002. ftp://ftp.sics.se/pub/SICS-reports/Reports/SICS-T–
2002-18–SE.ps.Z.

[11] Y. Caseau and F. Laburthe. Solving various weighted matching problems
with constraints. In Proceedings of the Third International Conference on
Principles and Practice of Constraint Programming (CP’97), LNCS 1330,
Springer–Verlag, pages 17–31, Linz, Austria, 1997.

[12] D.A. Cohen, P. Jeavons, and M. Koubarakis. Tractable disjunctive con-
straints. In Proceedings of the Third International Conference on Principles
and Practice of Constraint Programming (CP’97), LNCS 1330, Springer–
Verlag, pages 478–490, Linz, Austria, 1997.

21

[13] R. Dechter and J. Pearl. Network-based heuristics for constraint-
satisfaction problems. Artificial Intelligence, 34:1–38, 1988.

[14] R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial
Intelligence, 38:353–366, 1989.

[15] Y. Deville, O. Barette, and P. Van Hentenryck. Constraint satisfaction over
connected row convex constraints. In Proceedings IJCAI’97, pages 405–410,
Nagoya, Japan, 1997.

[16] F. Focacci, A. Lodi, and M. Milano. Optimization-oriented global con-
straints. Constraints, 7:351–365, 2002.

[17] E.C. Freuder. A sufficient condition for backtrack-free search. Journal of
the ACM, 29(1):24–32, Jan. 1982.

[18] A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh. Global con-
straints for lexicographic orderings. In Proceedings of the Eighth Interna-
tional Conference on Principles and Practice of Constraint Programming
(CP’02), LNCS 2470, Springer–Verlag, Ithaca NY, 2002.

[19] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to
NP-Completeness. Freeman, San Francisco CA, 1979.

[20] G. Gottlob, N. Leone, and F. Scarcello. A comparison of structural csp de-
composition methods. In Proceedings IJCAI’99, pages 394–399, Stockholm,
Sweden, 1999.

[21] B. Hnich, Z. Kiziltan, and T. Walsh. Combining symmetry breaking with
other constraints: lexicographic ordering with sums. In Proceedings of the
8th International Symposium on the Artificial Intelligence and Mathemat-
ics, 2004.

[22] D.E. Knuth and A. Raghunathan. The problem of compatible representa-
tives. SIAM Journal of Discrete Mathematics, 5(3):422–427, 1992.

[23] O. Lhomme. Arc-consistency filtering algorithms for logical combinations
of constraints. In Proceedings CPAIOR’04, pages 209–224, Nice, France,
2004.

[24] R. Mohr and G. Masini. Good old discrete relaxation. In Proceedings
ECAI’88, pages 651–656, Munchen, FRG, 1988.

[25] F. Pachet and P. Roy. Automatic generation of music programs. In Pro-
ceedings of the Fifth International Conference on Principles and Practice
of Constraint Programming (CP’99), LNCS 1713, Springer–Verlag, pages
331–345, Alexandria VA, 1999.

[26] C.H. Papadimitriou and M. Yannakakis. The complexity of facets (and
some facets of complexity). J. Comput. System Sci., 28:244–259, 1984.

22

[27] C. Quimper. Enforcing domain consistency on the extended global car-
dinality constraint is NP-hard. Technical Report CS-2003-39, School of
Computer Science, University of Waterloo, 2003.

[28] J.C. Régin. A filtering algorithm for constraints of difference in CSPs. In
Proceedings AAAI’94, pages 362–367, Seattle WA, 1994.

[29] J.C. Régin. Generalized arc consistency for global cardinality constraint.
In Proceedings AAAI’96, pages 209–215, Portland OR, 1996.

[30] J.C. Régin. Cost-based arc consistency for global cardinality constraints.
Constraints, 7:387–405, 2002.

[31] J.C. Régin and M. Rueher. A global constraint combining a sum constraint
and difference constraint. In Proceedings of the Sixth International Con-
ference on Principles and Practice of Constraint Programming (CP’00),
LNCS 1894, Springer–Verlag, pages 384–395, Singapore, 2000.

[32] A. Sadler and C. Gervet. Global reasoning on sets. In Proceedings of
Workshop on Modelling and Problem Formulation (FORMUL’01), 2001.
held alongside CP-01.

[33] M. Sellmann. Approximated consistency for knapsack constraints. In Pro-
ceedings of the Ninth International Conference on Principles and Practice
of Constraint Programming (CP’03), LNCS 2833, Springer–Verlag, pages
679–693, Kinsale, Ireland, 2003.

[34] M. Sellmann. Cost-based filtering for shorter path constraints. In Pro-
ceedings of the Ninth International Conference on Principles and Practice
of Constraint Programming (CP’03), LNCS 2833, Springer–Verlag, pages
694–708, Kinsale, Ireland, 2003.

[35] P. van Beek and R. Dechter. On the minimality and global consistency of
row-convex constraint networks. Journal of the ACM, 42(3):543–561, 1995.

[36] P. Van Hentenryck and Y. Deville. The cardinality operator: a new logical
connective for constraint logic programming. In Proceedings ICLP’91, pages
745–759, 1991.

[37] P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, implementation
and evaluation of the constraint language cc(fd). Journal of Logic Program-
ming, 37(1–3):139–164, 1998.

[38] M. Wallace. Practical applications of constraint programming. Constraints,
1:139–168, September 1996.

[39] T. Walsh. Consistency and propagation with multiset constraints: a for-
mal viewpoint. In Proceedings of the Ninth International Conference on
Principles and Practice of Constraint Programming (CP’03), LNCS 2833,
Springer–Verlag, pages 724–738, Kinsale, Ireland, 2003.

23

[40] T. Walsh. Constraint patterns. In Proceedings of the Ninth Interna-
tional Conference on Principles and Practice of Constraint Programming
(CP’03), LNCS 2833, Springer–Verlag, Kinsale, Ireland, 2003.

24

