The AllDifferent Constraint with Precedences*

Christian Bessiere!, Nina Narodytska?, Claude-Guy Quimper® and Toby Walsh?

1 CNRS/LIRMM, Montpellier, email: bessiere @lirmm.fr
2 NICTA and University of NSW, Sydney, email: {nina.narodytska,toby.walsh} @nicta.com.au
3 Université Laval, Québec, email: claude-guy.quimper @ift.ulaval.ca

Abstract. We propose ALLDIFFPREC, a new global constraint that combines
together an ALLDIFFERENT constraint with precedence constraints that strictly
order given pairs of variables. We identify a number of applications for this global
constraint including instruction scheduling and symmetry breaking. We give an
efficient propagation algorithm that enforces bounds consistency on this global
constraint. We show how to implement this propagator using a decomposition
that extends the bounds consistency enforcing decomposition proposed for the
ALLDIFFERENT constraint. Finally, we prove that enforcing domain consistency
on this global constraint is NP-hard in general.

1 Introduction

One of the important features of constraint programming are global constraints. These
capture common modelling patterns (e.g. “these jobs need to be processed on the same
machine so must take place at different times”). In addition, efficient propagation algo-
rithms are associated with global constraints for pruning the search space (e.g. “these 5
jobs have only 4 time slots between them so, by a pigeonhole argument, the problem is
infeasible”). One of the oldest and most useful global constraints is the ALLDIFFERENT
constraint [1]. This specifies that a set of variables takes all different values. Several
algorithms have been proposed for propagating this constraint (e.g. [2—6]). Such propa-
gators can have a significant impact on our ability to solve problems (see, for instance,
[7D). It is not hard to provide pathological problems on which some of these propa-
gation algorithms provide exponential savings. A number of hybrid frameworks have
been proposed to combine the benefits of such propagation algorithms and OR methods
like integer linear programming (see, for instance, [8]). In addition, the convex hull of
a number of global constraints has been studied in detail (see, for instance, [9]).

In this paper, we consider a modelling pattern [10] that occurs in many problems
involving ALLDIFFERENT constraints. In addition to the constraint that no pair of vari-
ables can take the same value, we may also have a constraint that certain pairs of vari-
ables are ordered (e.g. “these two jobs need to be processed on the same machine so
must take place at different times, but the first job must be processed before the sec-
ond”). We propose a new global constraint, ALLDIFFPREC that captures this pattern.
This global constraint is a specialization of the general framework that combines several

* Supported by the Australian Government’s Department of Broadband, Communications and
the Digital Economy and the ARC.

CUMULATIVE and precedence constraints [11, 12]. Reasoning about such combinations
of global constraints may achieve additional pruning. In this work we propose an effi-
cient propagation algorithm for the ALLDIFFPREC constraint. However, we also prove
that propagating the constraint completely is computationally intractable.

2 Formal background

A constraint satisfaction problem (CSP) consists of a set of variables, each with a do-
main of possible values, and a set of constraints specifying allowed values for subsets
of variables. A solution is an assignment of values to the variables satisfying the con-
straints. We write D(X) for the domain of the variable X. Domains can be ordered
(e.g. integers). In this case, we write min(X) and maz(X) for the minimum and max-
imum elements in D(X). The scope of a constraint is the set of variables to which it is
applied. A global constraint is one in which the number of variables is not fixed. For
instance, the global constraint ALLDIFFERENT([X1,...,X,,]) ensures X; # X, for
1 < < j < n. By comparison, the binary constraint, X; # X is not global.

When solving a CSP, we often use propagation algorithms to prune the search space
by enforcing properties like domain, bounds or range consistency. A support on a con-
straint C' is an assignment of all variables in the scope of C to values in their domain
such that C is satisfied. A variable-value X; = v is consistent on C' iff it belongs to
a support of C. A constraint C' is domain consistent (DC) iff every value in the do-
main of every variable in the scope of C' is consistent on C. A bound support on C' is
an assignment of all variables in the scope of C' to values between their minimum and
maximum values (respectively called lower and upper bound) such that C'is satisfied. A
variable-value X; = v is bounds consistent on C'iff it belongs to a bound support of C.
A constraint C' is bounds consistent (BC) iff the lower and upper bounds of every vari-
able in the scope of C' are bounds consistent on C. Range consistency is stronger than
BC but is weaker than DC. A constraint C' is range consistent (RC) iff iff every value
in the domain of every variable in the scope of C' is bounds consistent on C. A CSP
is DC/RC/BC! iff each constraint is DC/RC/BC'. Generic algorithms exists for en-
forcing such local consistency properties. For global constraints like ALLDIFFERENT,
specialized methods have also been developed which offer computational efficiencies.
For example, a bounds consistency propagator for ALLDIFFERENT is based on the no-
tion of Hall interval. A Hall interval is an interval of h domain values that completely
contains the domains of h variables. Clearly, variables whose domains are contained
within the Hall interval consume all the values in the Hall interval, whilst any other
variables must find their support outside the Hall interval.

We will compare local consistency properties applied to logically equivalent con-
straints. As in [13], we say that a local consistency property & on the set of con-
straints .S is stronger than ¥ on the logically equivalent set 7" iff, given any domains,
@ removes all values ¥ removes, and sometimes more. For example, domain con-
sistency on ALLDIFFERENT([X1,..., X},]) is stronger than domain consistency on
{X; # X; | 1 < i < j < n}. In other words, decomposition of the global
ALLDIFFERENT constraint into binary not-equals constraints hinders propagation.

3 Some examples

To motivate the introduction of this global constraint, we give some examples of models
where we have one or more sets of variables which take all-different values, as well as
certain pairs of these variables which are ordered.

3.1 Exam time-tabling

Suppose we are time-tabling exams. A straight forward model has variables for exams,
and values which are the possible times for these exams. In such a model, we may have
temporal precedences (e.g. part 1 of the physics exam must be before part 2) as well
as ALLDIFFERENT constraints on those sets of exams with students in common (e.g.
all physics, maths, and chemistry exams must occur at different times since there are
students that need to sit all three exams).

3.2 Scheduling

Suppose we are scheduling a single machine with unit-time tasks, subject to precedence
constraints and release and due times [14]. A straight forward model has variables for
the tasks, and values which are the possible times that we execute each task. In such a
model, we have an ALLDIFFPREC constraint on variables whose domains are the appro-
priate intervals. For example, consider scheduling instructions in a block (a straight-line
sequence of code with a single entry and exit point) on one processor where all instruc-
tions take the same time to execute. Such a schedule is subject to a number of different
types of precedence constraints. For instance, instruction A must execute before B if:

Read-after-write dependency: B reads a register written by A4;
Write-after-write dependency: 5 writes a register also written by A;
Write-after-read dependency: I3 writes a register that A reads.

Such dependencies give rise to precedence constraints between the instructions.

3.3 Breaking value symmetry

Many constraint models contain value symmetry. Puget has proposed a general method
for breaking any number of value symmetries in polynomial time [15, 16]. This method
introduces variables Z; to represent the index of the first occurrence of each value:

Xi:j:ngi, Zj:’i:>Xi:j

Value symmetry on the X; is transformed into variable symmetry on the Z;. This vari-
able symmetry is easy to break. We simply need to post precedence constraints on the
Z;. Depending on the value symmetry, we need different precedence constraints.

Consider, for example, finding a graceful labelling of a graph. A graceful labelling
is a labelling of the vertices of a graph with distinct integers O to e such that the e edges
(which are labelled with the absolute differences of the labels of the two connected
vertices) are also distinct. Graceful labellings have applications in radio astronomy,
communication networks, X-ray crystallography, coding theory and elsewhere. Here is
the graceful labelling of the graph K35 X Ps:

A straight forward model for graceful labelling a graph has variables for the vertex
labels, and values which are integers O to e. This model has a simple value symmetry
as we can map every value ¢ onto e — 4. In [16], Puget breaks this value symmetry for
K3 x P, with the following ordering constraints:

Zo < 21, Lo < L3, Loy < Zy, Zog < ZLs, L1 < Zo

Note that all the Z; take different values as each integer first occurs in the graph at
a different index. Hence, we have a sequence of variables on which there is both an
ALLDIFFERENT and precedence constraints.

4 ALLDIFFPREC

Motivated by such examples, we propose the global constraint:
ALLDIFFPREC([X1, ..., Xp], E)

Where E is a set containing pairs of variable indices. This ensures X; # X; for any
1<i<j<nand X; < X forany (j, k) € E. Without loss of generality, we assume
that £/ does not contain cycles. If it does, the constraint is trivially unsatisfiable. It is not
hard to see that decomposition of this global constraint into separate ALLDIFFERENT
and binary ordering constraints can hinder propagation.

Lemma 1 Domain consistency on the constraint ALLDIFFPREC([X7, ..., X,], E) is
stronger than domain consistency on the decomposition into ALLDIFFERENT([X7,

.., Xy]) and the binary ordering constraints, X; < X, for (i,j) € E. Bounds con-
sistency on ALLDIFFPREC([X1, ..., X,], E) is stronger than bounds consistency on
the decomposition, whilst range consistency on ALLDIFFPREC([X1,...,X,], E) is
stronger than range consistency on the decomposition.

Proof: Consider ALLDIFFPREC([X1, X2, X3],{(1,3),(2,3)}) with D(X;) =
D(X3) = {1,2,3} and D(X3) = {2,3,4}. Then the decomposition into
ALLDIFFERENT([X1, X2, X3]) and the binary ordering constraints, X; < Xs, and
Xy < Xs is domain consistent. Hence, it is also range and bounds consistent. How-
ever, enforcing bounds consistency directly on the global ALLDIFFPREC constraint will
prune 2 from the domain of X3 since this assignment has no bound support. Similarly,
enforcing range or domain consistency will prune 2 from the domain of X3. O

A simple greedy method will find a bound support for the ALLDIFFPREC con-
straint. This method is an adaptation of the greedy method to build a bound support of
the ALLDIFFERENT constraint. For simplicity, we suppose that E contains the transi-
tive closure of the precedence constraints. In fact, this step is not required but makes

our argument easier. First, we need to preprocess variables domains so that they re-
spect the precedence constraints X; < Xj, (4,5) € E: min(X;) < min(X;) and
max(X,) < max(X;). However, we notice that it is sufficient to enforce a weaker
condition on bounds of variables X; and X; such that min(X;) < min(X;) and
max(X;) < max(Xj). If these conditions on variables domains are satisfied then we
say that domains are preprocessed. Second, we construct a satisfying assignment as
follows. We process all values in the increasing order. When processing a value v, we
assign v to the variable with the smallest upper bound, u that has not yet been assigned
and that contains v in its domain. Suppose, there exists a set of variables that have the
upper bound u, so that X' = {X, | D(X;) = [v,u]}. To construct a solution for
ALLDIFFERENT, we would break these ties arbitrarily. In this case, however, we select
a variable that is not successor of any variable in the set X’. Such a variable always
exists, as the transitive closure of the precedence graph does not contain cycles. By the
correctness of the original algorithm the resulting assignment is a solution. In addition
to satisfying the ALLDIFFERENT constraint, this solution also satisfies the precedence
constraints. Indeed, for the constraint X; < X, the upper bound of D(X;) is necessar-
ily smaller than or equal to the upper bound of D(X;). In the case of equality, we tie
break in favor of X;. Therefore, a value is assigned to X; before a value gets assigned
to X; . Since we process values in increasing order, we obtain X; < X as required.

Example 1 Consider ALLDIFFPREC([X1, X2, X3, X4],{(1,3),(2,3), (1,4),(2,4)})
with D(X1) = D(X2) = {1,2,3,4,5}, D(X3) = {1,2,3} and D(X4) = {2,3,4}.
First, we preprocess domains to ensure that min(X;) < min(X;) and max(X;) <
max(X,), ¢ € {1,2}, j € {3,4}. This gives D(X1) = D(X2) = D(X3) = {1,2,3},
D(X4) = {2,3,4}. As in the greedy algorithm, we consider the first value 1. This value
is contained in domains of variables X1, X2 and X3. As max(X;) = max(Xs) =
max(Xs) = 3, by tie breaking we select variables that are not successors of any
other variables among variables { X1, X2, X3}. There are two such variables: X, and
Xo. We break this tie arbitrarily and set X1 to 1. The new domains are D(X1) = 1,
D(X3) = D(X3) = {2,3}, D(X4) = {2, 3,4}. The next value we consider is 2. Again,
there exist two variables that contain this value, and they have the same upper bounds.
By tie-breaking, we select Xo. Finally, we assign X3 and X4 to 3 and 4 respectively.

We can design a filtering algorithm based on this satisfiability test. By successively
reducing a variable domain in halves with a binary search we can filter the lower and
upper bounds of a variable domain with O(logd) tests where d is the cardinality of the
domain. Consider, for example, a variable X with the domain D(X) = [I,u]. We are
looking for a support for min(X). At the first step we temporally fix the domain of X to
the first half so that D(X) = [I, (u — 1)/2] and run the bounds disentailment detection
algorithm. If this algorithm fails, we halved the search and repeat with the other half.
If this algorithm does not fail, we know that there is a value in [I, (u — 1) /2] that has a
bounds support. Hence, we continue with the binary search within this half. As each test
takes O(n) time and there are n variables to prune, the total running time is O (n2logd).
In the rest of this paper, we improve on this using sophisticated algorithmic ideas.

5 Bounds consistency

We present an algorithm that enforces bounds consistency on the ALLDIFFPREC con-
straint. First, we consider an assignment X; = v and a partial filtering that this assign-
ment causes. We call this filtering direct pruning caused by the assignment X; = v
or, in short, direct pruning of X; = v. Informally, direct pruning works as follows.
If X; takes v then the value v becomes unavailable for the other variables due to the
ALLDIFFERENT constraint. Hence, we remove v from the domains of variables that
have v as their lower bound or upper bound. Due to precedence constraints, we in-
crease the lower bounds of successors of X; to v + 1 and decrease the upper bounds
of predecessors of X; to v — 1. Note that direct pruning does not enforce bounds con-
sistency on either ALLDIFFPREC or the single ALLDIFFERENT constraint. However,
direct pruning is sufficient to detect bounds inconsistency as we show below.

Let P(i) and S(i) be the sets of variables that precede and succeed X;, re-
spectively. We denote the domains obtained after direct pruning of X; = v as
D¥#(X4),...,D¥(X,),so thatforall j = 1,...,n:

DiP(X;) = D(X;) \ {v} if j # i,v € {min(X;), max(X;)} (1)

DI (X;) =vif j =1,)
DYP(X;) = D(X;) \ [v,maz(X;)] if j € P(i), (3)
DIP(X;) = D(X;) \ [min(X;),v] if j € S(i). “4)

These bounds could be pruned further but we will first analyze the properties that
this simple filtering offers.

Example 2 Consider ~ ALLDIFFPREC([X1, X2, X3],{(1,2)}) constraint with
D(X1) = {1,2}, D(X2) = {2,3}, D(X3) = {1,2,3}. For example, an as-
signment X1 = 2 results in the domains: DI (X,) = {2}, D¥(X5) = {3} and
DI (X3) = {1,2, 3}. We point out again that we can continue pruning as values 2 and
3 have to be removed from Dgp (X3). However, direct pruning of X1 = 2 is sufficient

for our purpose. Consider another example. An assignment X3 = 1 results in the
domains: DI (X,) = {2}, DI (X5) = {2,3} and DI (X5) = {1}.

Our algorithm is based on the following lemma.

Lemma 2 Let ALLDIFFERENT and precedence constraints be bounds consistent over
variables X, X; = v, v € {min(X;), max(X;)} be an assignment of a variable X; to
its bound and DI (X,), ..., DI¥(X,,) be the domains after direct pruning of X; = v.
Then, X; = v is bounds consistent iff ALLDIFFERENT([X1, ..., X,]), where domains
of variables X are DI (X,),...,D¥(X,,), has a solution.

Proof: Suppose ALLDIFFERENT and the precedence constraints are bounds consis-
tent. As precedence constraints are bounds consistent, we know that for all (i, j) € E,
X; < Xj, min(X;) < min(X;) and max(X;) < max(X;). Consider direct pruning
of X; = v. Note, direct pruning of X; = v preserves the property of domains being

preprocessed. The pruning can only create equality of lower bounds or upper bounds
for some precedence constraints. The assignment X3 = 1 demonstrates this situation
in Example 2. Direct pruning of X3 = 1 forces lower bounds of X; and X5, that are in
the precedence relation, to be equal.

As domains D (X,),...,D¥(X,) are preprocessed, we know that the greedy
algorithm (Section 4) will find a solution of ALLDIFFERENT on the domains
DI (Xy),...,DWP(X,,) that also satisfies the precedence constraints if a solution ex-
ists. This solution is a support for X; = v. a

Based on Lemma 2 we prove that we can enforce bounds consistency on the
ALLDIFFPREC constraint in O(n?). However, we start with a simpler and less effi-
cient algorithm to explain the idea . We show how to improve this algorithm in the next
section. Given Lemma 2, the most straightforward algorithm to enforce bounds con-
sistency for X; = v is to assign X; to v, perform the direct pruning, run the greedy
algorithm and, if it fails, prune v. Interestingly enough, to detect bounds disentailment
we do not have to run a greedy algorithm for each pair X; = v. If the ALLDIFFERENT
constraint and the precedence constraints are bounds consistent, we show that it is suf-
ficient to check that a set of conditions (5)-(10) holds for each interval of values. If
these conditions are satisfied then the pair X; = v is bounds consistent. Hence, for each
pair X; = v, 1 < i < n,v € D(X;), and for each interval we enforce the following
conditions. We assume that U ;D(X;) = [1,d]. For X;, 1 < i < n,v € D(X;)
and for all intervals [v,v + k] and [v — p,v], k € [max(X;) —v + 1,d — v] and
p € [v—min(X;) + 1,v — 1], the following conditions have to be satisfied:

Bi s = {7 € S()|D(X;) € [1,v+ k]}| (5)

D} iy = i ¢ S@HID(X;) € [v,0+ K]} (6)

Bl ok T Dy piny <k (7
B, _,q=Wjie€ PW)D(X;)C [v—p,d}| 8)

D, _,., ={i ¢ P@H)D(X;)C [v—p,ol} ©)

vpd+ Diopy <D (10)

Note that we actually do not have to consider all possible intervals. For every
variable-value pair X; = v we consider all intervals [v, u], v € [max(X;) + 1,d] and
all intervals [[,v], I € [1,min(X;) — 1]. The parameter k (p) is used to slide between
intervals [v, u], v € [max(X;) + 1,d] ([,v], ! € [1,min(X;) — 1]). Equations (5)—(7)
make sure that the number of variables that fall into an interval [v, u], after the assign-
ment X; to v, is less than or equal to the length of the interval minus 1. Symmetrically,
Equations (8)—(10) ensure that the same condition is satisfied for all intervals [I, v]. If
there exists an interval [v, u]([l, v]) that violates the condition for a pair X; = v then
this interval is removed from D(X;).

Example 3 Consider ALLDIFFPREC([X1, X2, X3, X4, X5],{(1,2),(1,3)}). Do-
mains of the variables are D(X;) = [1,5], D(X3) = D(X3) = [2,6] and
D(X4) = D(X5) = [3,6]. Consider a variable-value pair X1 = 3. By the direct prun-
ing we get the following domains: DI (X,) = 3, D (X)) = [4,6], DI (X3) = [4,6],

DIP(X,) = [4,6] and DI (X5) = [4,6]. The interval [4,6] is a violated Hall interval
as it contains four variables. We show that Equations (5)—(6) detect that the interval
[3, 6] has to be pruned from D(X1).

Consider the pair X1 = 3 and the interval [v,v + k|, where v = 3, k = 3. We
get that Bi s = |{j € {2,3}/D(X;) C [1,6]}] = 2 D3¢ = [{j € {4,5})|D(X;) C
[3,6]}| = 2and B{ 4+ D3 g = 4 which is greater than k = 3. Hence, the interval [3, 6]
has to be removed from D (X}).

Theorem 1. Consider the ALLDIFFERENT|[X1, . .., X,,] constraint and a set of prece-
dence constraints X; < X;. Enforcing conditions (5)—(10) together with bounds con-
sistency on the ALLDIFFERENT constraint and the precedence constraints is equivalent
to enforcing bounds consistency on the ALLDIFFPREC constraint.

Proof: Suppose conditions (5)—(10) are fulfilled, ALLDIFFERENT and precedence
constraints are bounds consistent and the ALLDIFFPREC constraint is not bounds
consistent. Let an assignment of a variable X; to its bound max(X;) be an un-
supported bound. We denote max(X;) v to simplify notations. We recall that we
denoted the domains after direct pruning of X; = v D¥(X;),...,D¥(X,). By
Lemma 2 the ALLDIFFERENT([X7, ..., X,]) constraint where domains of variables
X are D (X),..., D (X,,) fails. Hence, there exists a violated Hall interval [/, u]
such that |D(X;) C [l,u]}| > u —1+ 1.

Note that direct pruning of X; = v does not cause the pruning of variables in P (i),
as all precedence constraints are bounds consistent on the original domains. Next we
consider several cases depending on the relative position of the value v and the violated
Hall interval on the line. Note that the interval [/, u] was not a violated Hall interval
before the assignment X; = v. However, due to direct pruning of X; = v a number of
additional variables domains can be forced to be inside [I, u]. Hence, we analyze these
additional variables and show that conditions (5)—(10) prevent the creation of a violated
Hall interval.

Case 1. Suppose v € [I,u]. As [I, u] is a violated Hall interval, we have that

{7 € SOIDP(X;) C [Lull} + {7 ¢ SOIDP(X;) S [Lul} > u—1,

Note that the number of additional variables that fall into the interval [I, u] after setting
X, to v consists only of variables that succeed X;, such that D(X;) C [1,u]. Hence,
{7 ¢ SOHIDIF(X;) € [Lul = I{j ¢ SH)DX;) < [Lul}l. {5 ¢ SOIDPX;) <
[l ul}] = {7 € S@)IP(X;) € [1,u]}] and

{7 € SGIDX;) € [Lul} + {5 & SOIDX;) € [Lul} > u—1,

which violate conditions (5)—(7) forv =l and k = u — [.

Case 2. Suppose v ¢ [l,u]. If v > u+ 1 orv < [— 1, the assignment X; = v does
not force any extra variables to fall into the interval [, u|. Hence, the interval [I, u] is
a violated Hall interval before the assignment. This contradicts that ALLDIFFERENT is
bounds consistent.

Case 3. Suppose v = u + 1. In this case the assignment X; = v does not force any
additional variables among successors to fall into [[, u], as DI (X;) C [u + 2,d]. Note

that there are no successors that are contained in the interval [1, v], because precedence
constraints are bounds consistent. Therefore, |{j € S(¢)|D(X;) C [l,v]}| = 0. Hence,
the only additional variables that fall into [/, u] are variables that do not have a prece-
dence relation with X; and v = max(X;) = u + 1, so |{j|j ¢ S(i),D¥(X;) C
Lul} = {4li ¢ S(i),D(X;) C [l,u+ 1]}|. As [l,u] is a violated Hall interval, we
have

{315 ¢ S(0), D(X;) C [Lu+ 10} = [{jl5 & S(), DyP(X;) C (Ll > u—1+1.

This contradicts Equation (10) |{j € S(i)|D(X;) € [Lu + 1} + {jlj ¢
S(i),D(X;) C [l,u+ 1]} < (u+ 1) — [as the first term equals O in the equation
by the argument above.

Case 4. Suppose v = [— 1. In this case the set of additional variables that fall into
the interval [I, u] consists of two subsets of variables. The first set contains variables
that succeed X;, such that D(X;) C [I',u], I’ < v and DI¥(X;) C [l,u]. The
second set contains the variables that do not have precedence relation with X; and
v = maz(X;) = | — 1. Consider the interval [l — 1,u]. As conditions (5)—(7) are
satisfied for the interval [l — 1, u], we get that

{7 € SOIDX;) € [Lul [+ i ¢ SOIDX;) Sl =1ul} <u—(1-1),
On the other hand, as the [, u] is violated we have
{7 € SOIDP(X;) C [Lul}l + {7 ¢ SGIDY(X;) S [ul}l > u—1+1,

We know that |{j ¢ S(i)|D(X;) € [l = Lul}| = [{jlj ¢ S(i), DPP(X;) C [, ul}
and [{j € S(?)|D(X;) C 1, u]}| [{j € S(i)|D(X;) C [l,u]}| by the construction
of the direct pruning. This leads to a contradiction between the last two inequalities.

Therefore, the interval [/, u] cannot be a violated Hall interval. Similarly, we can
prove the same result for the minimum value of X ;.

The reverse direction is trivial. a

Theorem 1 proves that conditions (5)—(10) together with bounds consistency on the
ALLDIFFERENT constraint and the precedence constraints are necessary and sufficient
conditions to enforce bounds consistency on the ALLDIFFPREC constraint. The time
complexity of enforcing these conditions in O(nd?), as for each variable we check
O(d?) intervals. This time complexity can be reduced by making an observation, that
we do not need to check intervals of length greater than n as conditions are trivially
satisfied for such intervals. This reduces the complexity to O(n2d).

We make an observation that helps to further reduce the time complexity of enforc-
ing these conditions. We denote L the set of all minimum values in variables domains
L = U {min(D(X;))} and U the set of all maximum values in variables domains
U = Ule{max D(X;))}. Let [I,u] be an interval that violates the conditions. We
denote c;,, the amount of violation in this interval: ¢;,, = B}, + D} , — (u —1).

Observation 1 Let X; be a variable and [v,v + k], v € D(X;) be an interval that
violates conditions (5)—(7). Then there exists a violated interval [l,u) such that [l,u] C
[v,v+ k], l,bue LUU and ¢, > 1 — 0.

Algorithm 1: PruneUpperBounds(X7y, ..., X,)

1 Sort variables such that max(D(X;)) < max(D(Xiy1));

2 foric 1..ndo

3 Create a disjoint set data structure 7" with the integers 1..d;

4 b — max(D(X1)) + 1;

5 Invariant: b is the smallest value such that there are exactly as many available values
in the open-interval [b, max(D(X;)) + 1) as there are successors of X; that have
been processed.;

6 for X in non-decreasing order of upper bound do

7 if 7 & S(¢) then

8 S « Find(min(D(X};)),T);

9 v« min(S);

10 Union(v, max(S) + 1, T);

1 if j > 1 then

12 for k € 1.. max(D(X;)) — max(D(X;_1)) do

13 L b «— max(Find(b,T)) + 1;

14 if Find(v,T) = Find(b,T) Vv > bV j € S(i) then
15 L b «— min(Find(b —1,T));

16 max(D(X;)) < min(max(D(X;)),b—1);

Proof: Consider a violated interval [v, v+ k]. In this case Bi,v et Di)v 4, > k. There
exists an interval [[, u] C [v,v + k] such that [, € L UU . We take the largest interval
[, u]. Note that such an interval always exists as the interval [max(X;), max(X;)] is
contained inside the interval [v, v + k]. The interval [, u] also violates the conditions,
because it contains the same variables. So, we have B , + Dj, > u — I. We note
that Dli,u = Df)’v 4 as there are no lower bounds in the interval [v,[). Similarly, there
are no upper bounds in the interval (u,v + k]. Hence, Biu = Bi)v 4 Therefore,
tu+ Dj, >k The value ¢, is greater than k —u +1 > v+k—v—u+1>
v—sz—u—l—l—le—vasugv—i—k.
O
Observation 1 shows that it is sufficient to check intervals [v,v + k|, {v,v + k} €
LUU. We can infer all pruning from these intervals. Let [I, u], [, u € LUU be an interval
that violates conditions (5)—(7) for a variable X; and c; ,, be the violation cost. Then we
remove the interval [l — (¢, — 1), u] from D(X;), as any interval between [l — (¢, —
1), u] and [l, u] is a violated interval. A dual observation holds for conditions (8)—(10).
This reduces the time complexity of checking (5)—(10) to O(n?).

6 Faster bounds consistency algorithm

Observation 1 allows us to construct a faster algorithm to enforce conditions (5)—(10).
First, we observe that the conditions can be checked for each variable independently.
Consider a variable X;. We sort all variables X;, 7 = 1,...,n in a non-decreasing

order of their upper bounds. When processing a variable X, j ¢ S (i), we assign X to
the smallest value that has not been taken. When processing a variable X, j € S(i), we
store information about the number of successors that we have seen so far. We perform
pruning if we find an interval [I,u] such that the number of available values in this
interval equals the number of successors in the interval [1, u]. We use a disjoint set data
structure to perform counting operations in O(d) time.

Algorithm 1 shows a pseudocode of our algorithm. We denote 1" a disjoint set data
structure. The function Find(vy, T') returns the set that contains the value v; . The func-
tion Union(v1, v, T') joins the values v; and v9 into a single set. We use a disjoint set
union data structure [22] that allows to perform Find and Union in O(1) time.

Theorem 1 Algorithm 1 enforces conditions (5)—(7) in O(nd) time.

Proof: Enforcing conditions (5)—(7) on the ith variable corresponds to the ¢th loop
(line 2). Hence, we can consider each run independently.

We denote I; a set of values that are taken by non-successors of X; after the variable
X is processed. The algorithm maintains a pointer b that stores the minimum value
such that the number of available values in the interval [b, max(X;) + 1) is equal to
Bi_’mm (X)) after the variable X is processed.

Invariant. We prove the invariant for the pointer b by induction. The invariant holds
at step 7 = 0. Note that the first variable can not be a successor of X;. Indeed, b =
maxz(X1) + 1 and the interval [max(X;) + 1, max(X;) + 1) is empty. Let us assume
that the invariant holds after processing the variable X;_;.

Suppose the next variable to process is X;. After we assigned X to a value, we
move b forward to capture a possible increase of the upper bound from max(X,;_1) to
max(X;) (line 13) and, then, backward if either X; is a successor of X; or X, is a
non-successor and X; takes a value v such that b < v (line 15). Note, that when we
move b, we ignore values in I;. To point this out we call steps of b available-value-steps.
Thanks to a disjoint set union data structure we can jump over values in I; in O(1) per
step [22].

Moving forward. We move the pointer b on max(X;) — max(X,_1) available-
value-steps forward. We denote b’ a new value of b. The line 13 ensures that the number
of available values in the interval [b', max(X;) + 1) equals to the number of available
values in the interval [b, max(X;_1) + 1). This operation preserves the invariant by the
induction hypothesis.

Moving backward. We consider two cases.

Case 1. X is a successor of X;. In this case, we move b’ one available-value-step
backward to capture that X; is a successor (line 15). This preserves the invariant.

Case 2. X is not a successor of X;. Suppose v and b’ are in the same set, so
that Find(v,T) = Find(b,T). Then we move b’ to the minimum element in this
set. This step does not change the number of available values between the pointer b’
and max(X ;). However, it makes sure that b’ stores the minimum possible value. This
preserves the invariant.

Suppose v and b’ are in different sets. If v > b’ then we move b’ one available-
value-step backward, as v took one of the available values in [b’, max(X;) + 1). This
preserves the invariant. If v < b’ then the invariant holds by the induction hypothesis.
Hence, the new value of b preserves the invariant.

|0 O 00 @ |-
1@ @ @ B 5[0
8 d @ @ @ e
10 D @ 18 & -
SRR TN ®
10 ek ek ek |8 |

Fig. 1. Algorithm 1 enforces conditions (5)—(7) on the variable X;.

Note that the length of the interval [b, max(X;) + 1) equals the sum of Bimax(X,)
and Dy max(x,) due to the invariant. This means that the interval [b, max(X;) + 1)
violates conditions (5)—(7), as the sum B{,max(Xj) + Db,max(xj) has to be less than or
equal to the length of the interval [b, max(X ;) + 1) minus 1.

Soundness. Suppose we pruned an interval [b — 1, max(X)] from D(X;) after the
processing of the variable X ;. This pruning is sound because the interval [b, max(X;)+
1) violates conditions (5)—(7).

Completeness. Suppose there exists an interval [/, u] that violates conditions (5)-
(7), so that Biu + D} > u — . However, the algorithm does not prune the upper
bound of X; to I — 1. Suppose that I € L, u € U. As the pointer b preserves the
invariant, there are exactly B} ,, available values between [I,u + 1). Hence b points to [
and max(X;) <1— 1. '

Suppose that [¢ L, u € U. We consider the step when the last pruning of the
variable X; occurs. Suppose we processed the variable X; at this step. The pointer b
stores max(X;) + 1. As b does not move backward in the following steps, we conclude
that neither successors nor non-successors with domains that are contained inside the
interval [b,d] occur. Hence, B, + Dj, = Bi, + D}, x, 11 max(X;) < u,
u € U, < max(X;). Hence [l, u] is not a violated interval.

Complexity. At each iteration of the loop (line 2) the pointer b moves O(d)
times forward and O(n) times backward. Due to a disjoint set data structure the total
cost of the operations is O(d), the functions Union(vy,vs,T) and Find(vy,T) take
O(1) [22]. The total time complexity is O(nd). 0

We can construct a similar algorithm to Algorithm 1 to enforce conditions (8)—(10)
and prune lower bounds.

Example 4 Consider ALLDIFFPREC([X1, X2, X3, X4, X5],{(1,2),(1,3)}) for Ex-
ample 3. We show how our algorithm works on this example.

We represent values in the disjoint set data structure 'T" with circles. We use rectan-
gles to denote sets of joint values. Initially, all values are in disjoint sets. If a variable

X takes a value v we put the label X; in the vth circle. Figure 6 shows five steps of the
algorithm when processing the variable X, (line 2, 1 = 1).

Consider the first step. We set v = 1 as min(Xy) is 1. We join the values 1 and 2 into
a single set (line 10). The pointer b is set to max(X1)+1 = 6. Consider the second step.
We process the variable Xo which is a successor of X1. As max(X3) — max(X;) =1
we move b one available-value-step forward, b = 7. However, as X5 is a successor,
we move b available-value-step backward. Hence, b = 6. Consider the third step. We
process X3 which is a successor of X1. As max(X3) —max(Xs) = 0 we do not move b
forward. However, as X3 is a successor, we move b available-value-step backward, b is
set to 5. Consider the fourth step. We process X4 which is a non-successor of X1. The
value min(Xy) is 3. Hence, v = 3 and join 3 and 4 into a single set. Consider the fifth
step. We process the variable X5 which is a non-successor of X1. The value min(Xs)
is 4, as the value 3 is taken by X4. As values 3 and 4 are in the same set, we do not
move v and join {3,4} and 5 into a set. Note that v and b are in the same set and we
move b to the minimum element in this set. Hence, b = 3 and we prune [3, 5] from X;.

The complexity of the algorithm can be reduced to O(n?). Let L be the set of
domain lower bounds sorted in increasing order and let /;_; and [; be two consecutive
values in that ordering. Following [6], we initialize the disjoint set data structures with
only the elements in L. We assign a counter ¢; to each element /; initialized to the value
l; —1;—1. Line 10 of the algorithm can be modified to decrement the counter of max(.5).
The algorithm calls the function Union only if the counter of max(.S) is decremented to
zero. The algorithm preserves its correctness and since there are at most n elements in
L, the factor d in the complexity of the algorithm is replaced by n resulting in a running
time complexity of O(n?).

7 Bounds consistency decomposition

We present a decomposition of the ALLDIFFPREC constraint. For 1 < ¢ < n, 1 <
| <u < dandu — [< n, we introduce Boolean variables B;; and A;;, and post the
following constraints:

Aiy =1 <= (Bjg—1) =0A B, =1) (12)
ZAM < u—1l+1 (13)
> Ajiat ZAJZU— Ly < u—l (14)
JES(7) J¢S(7)
ZAle‘i' ZAjlu_ 1_) < u—1 (]5)
JEP(i) JEP(i)
VieS@i), X < X; (16)

VjEP(i),Xj < X; (17)

Theorem 2. Enforcing bounds consistency on constraints (11) and (17) enforces
bounds consistency on the corresponding ALLDIFFPREC constraint in O(n?d?) down
a branch of the search tree.

Proof: Constraints (11)—(13) enforce bounds consistency on the ALLDIFFERENT
constraint. Constraints (16)—(17) enforce bounds consistency on the precedence con-
straints. Finally, conditions (8)—(10) are captured by constraints (14) and (15). By The-
orem 1, enforcing BC on ALLDIFFERENT, precedence constraints and enforcing con-
ditions (8)—(10) is sufficient to enforce bounds consistency on the ALLDIFFPREC con-
straint. The time complexity is dominated by O(nd?) linear inequality constraints (14)—
(15). It takes O(n) time to propagate a linear inequality constraint over O(n) Boolean
variables down a branch of the search tree. Hence, the total complexity is O(n?d?). O

Note that the time complexity of decomposition contains a factor d that we cannot
reduce as in the case of the conditions (5)—(10). As we compute the time complexity
down a branch of a search tree we have to consider all possible O(d?) tight intervals
that might emerge during the search.

8 Domain consistency

Whilst enforcing bounds consistency on the ALLDIFFPREC constraint takes just low or-
der polynomial time, enforcing domain consistency is intractable in general (assuming
P # NP).

Theorem 2 Enforcing domain consistency on ALLDIFFPREC([X1,...,X,], E) is
NP-hard.

Proof: We give a reduction from 3-SAT. Suppose we have a 3-SAT problem in N vari-
ables and M clauses. We consider an ALLDIFFPREC constraint on 2N + 3M variables.
The first 2V variables represent a truth assignment. The next 3M variables represent
the literals which satisfy each of the clauses. For 1 < ¢ < N, the variables X5;_1 and
Xo; have domains {i, N + M + i}. Xo;,_1 = i corresponds to the case in which we
have a truth assignment that assigns x; to false whilst X5; = i corresponds to the case in
which we have a truth assignment that assigns x; to true. The all different constraint en-
sures that only one of X5; 1 and X9, can be assigned to 7. Hence one of these two cases
must hold. For 1 < ¢ < M, the variables X y3;,_2, Xn+3;—1 and Xy 3; represent the
three literals in each clause. The values assigned to these variables will ensure that the
truth assignment satisfies at least one literal in each clause. The domains of X 3,2,
Xnisi—1 and Xnyg; are {N +i, 2N+ M +2i, 2N + M +2i— 1, }. N 4 will be the
value used to indicate that the corresponding literal satisfies the clause. For each literal
in a clause, we add an edge to E to ensure that there is an ordering constraint between
one of the first 2NV variables in the truth assignment section and the corresponding vari-
able in the clause section. For example, suppose the ith clause is x; V =xy, V x; then we
add 3 edges to E to ensure: Xo; < Xny3i—2, Xop—1 < Xn43i—1, and Xoj < Xpn3;.
The all different constraint ensures one of X n43;_2, Xny3i—1 and Xy43; takes the
smallest value N + ¢, and the ordering constraint then checks that the corresponding

literal is set to true. By construction, the ALLDIFFPREC constraint has support iff there
is a satisfying assignment to the original 3-SAT problem. O

Note that the proof uses a DAG defined by F that is flat, and does not contain
any chains. Hence, enforcing domain consistency on ALLDIFFPREC remains NP-hard
without chains of precedences. Note also that SAT remains NP-hard even if each clause
has at most 3 literals, and each literal or negated literal occurs at most three times.
Hence, a similar reduction shows that enforcing domain consistency on ALLDIFFPREC
remains NP-hard even if the degree of nodes in F is at most 3 (that is, we have at most
3 precedence constraints on any variable).

9 Other related work

There have been many studies on propagation algorithms for a single ALLDIFFERENT
constraint. A domain consistency algorithm that runs in O(n?®) was introduced in [2].
A range consistency algorithm was then proposed in [3] that runs in time O(n?). The
focus was moved from range consistency to bound consistency with [4], who proposed
a bounds consistency algorithm that runs in O(n log n). This was later improved further
in [17] and then in [6].

Decompositions that achieve bounds consistency have been given for a number of
global constraints. Relevant to this work, similar decompositions have been given for a
single ALLDIFFERENT constraint [18], as well as for overlapping ALLDIFFERENT con-
straints [19]. These decompositions have the property that enforcing bound consistency
on the decomposition achieves bounds consistency on the original global constraint.

A number of global constraints have been combined together and specialized propa-
gators developed to deal with these conjunctions. For example, a global lexicographical
ordering and sum constraint have been combined together [20]. As a second example,
a generic method has been proposed for propagating combinations of the global lexi-
cographical ordering and a family of globals including the REGULAR and SEQUENCE
constraints [21].

10 Conclusions

We have proposed a new global constraint that combines together an ALLDIFFERENT
constraint with precedence constraints that strictly order given pairs of variables. We
gave an efficient propagation algorithm that enforces bounds consistency on this global
constraint in O(n?) time, and showed how this propagator can be simulated with a sim-
ple decomposition extends the bounds consistency enforcing decomposition proposed
for the ALLDIFFERENT constraint. Finally, we proved that enforcing domain consis-
tency on this global constraint is NP-hard in general. There are many interesting future
directions. We could, for example, study the convex hull of the ALLDIFFPREC con-
straint. Other interesting future work includes studying the combination of precedence
constraints with generalizations of the ALLDIFFERENT constraint including the global
cardinality constraint and the inter-distance constraint.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

Lauriere, J.L.: ALICE: a language and a program for stating and solving combinatorial
problems. artificial intelligence. Artificial Intelligence 10 (1978) 29-127

Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: Proceedings of
the 12th National Conference on Al, Association for Advancement of Artificial Intelligence
(1994) 362-367

. Leconte, M.: A bounds-based reduction scheme for constraints of difference. In: Proceedings

of Second International Workshop on Constraint-based Reasoning (Constraint-96). (1996)

. Puget, J.: A fast algorithm for the bound consistency of alldiff constraints. In: 15th National

Conference on Artificial Intelligence, Association for Advancement of Artificial Intelligence
(1998) 359-366

. Mehlhorn, K., Thiel, S.: Faster algorithms for bound-consistency of the sortedness and the

alldifferent constraint. Sixth International Conference on Principles and Practice of Con-
straint Programming (2000)

. Lopez-Ortiz, A., Quimper, C., Tromp, J., van Beek, P.: A fast and simple algorithm for

bounds consistency of the alldifferent constraint. In: Proceedings of the 18th International
Conference on Al, International Joint Conference on Artificial Intelligence (2003)

. Stergiou, K., Walsh, T.: The difference all-difference makes. In: Proceedings of 16th IJCAI,

International Joint Conference on Artificial Intelligence (1999)

. Milano, M., Ottosson, G., Refalo, P., Thorsteinsson, E.: The role of integer programming

techniques in constraint programming’s global constraints. INFORMS Journal on Comput-
ing 14 (2002) 387402

. Williams, H., Yan, H.: Representations of the all different predicate of constraint satisfaction

in integer programming. INFORMS Journal on Computing 13 (2001) 96-103

Walsh, T.: Constraint patterns. In Rossi, F., ed.: 9th International Conference on Principles
and Practices of Constraint Programming (CP-2003), Springer (2003)

Beldiceanu, N., Bourreau, E., David Rivreau Helmut Simonis Solving Resource-constrained
Project Scheduling Problems with CHIP. 5th International Workshop on Project Manage-
ment and Scheduling (PMS’96), Poznan. (1996) 35-38.

Simonis, H.: Building Industrial Applications with Constraint Programming. Constraints
in Computational Logics: Theory and Applications, International Summer School, CCL’99,
Springer (2001)

Debruyne, R., Bessiere, C.: Some practicable filtering techniques for the constraint satisfac-
tion problem. In: Proceedings of the 15th IICAI, International Joint Conference on Artificial
Intelligence (1997) 412-417

Garey, M., Johnson, D., Simons, B., Tarjan, R.: Scheduling unit-time tasks with arbitrary
release times and deadlines. SIAM J. Comput. 10 (1981) 256-269

Puget, J.F.: Breaking all value symmetries in surjection problems. In van Beek, P., ed.:
Proceedings of 11th International Conference on Principles and Practice of Constraint Pro-
gramming (CP2005), Springer (2005)

Puget, J.F.: Symmetry in injective problems. Constraint Programming Letters 3 (2007) 1-20
Mehlhorn, K., Thiel, S.: Faster algorithms for bound-consistency of the sortedness and the
alldifferent constraint. In: CP *02: Proceedings of the 6th International Conference on Prin-
ciples and Practice of Constraint Programming, Springer-Verlag (2000) 306-319

Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C.G., Walsh, T.: Decompositions
of all different, global cardinality and related constraints. In: Proceedings of 21st IJCAI,
International Joint Conference on Artificial Intelligence (2009) 419-424

Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C.G., Walsh, T.: Propagating con-
junctions of alldifferent constraints. In Fox, M., Poole, D., eds.: Proc. of the Twenty-Fourth
AAAI Conference on Artificial Intelligence (AAAI 2010), AAAI Press (2010)

20.

21.

22.

Hnich, B., Kiziltan, Z., Walsh, T.: Combining symmetry breaking with other constraints:
lexicographic ordering with sums. In: Proceedings of the 8th International Symposium on
the Artificial Intelligence and Mathematics. (2004)

Katsirelos, G., Narodytska, N., Walsh, T.: Combining symmetry breaking and global con-
straints. In Oddi, A., Fages, F., Rossi, F., eds.: Recent Advances in Constraints, 13th Annual
ERCIM International Workshop on Constraint Solving and Constraint Logic Programming
(CSCLP 2008). Volume 5655 of Lecture Notes in Computer Science., Springer (2009) 84-98
Gabow, H. and Tarjan, R.: A linear-time algorithm for a special case of disjoint set union.
Proceedings of the fifteenth annual ACM symposium on Theory of computing (STOC ’83).,
ACM(1983) 246-251

