
Handbook of Knowledge Representation
Edited by B. Porter, V. Lifschitz and F. van Harmelen
© 2007 Elsevier B.V. All rights reserved

1

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

Chapter 4

Constraint Programming

Francesca Rossi, Peter van Beek, Toby Walsh

4.1 Introduction

Constraint programming is a powerful paradigm for solving combinatorial search
problems that draws on a wide range of techniques from artificial intelligence, op-
erations research, algorithms, graph theory and elsewhere. The basic idea in constraint
programming is that the user states the constraints and a general purpose constraint
solver is used to solve them. Constraints are just relations, and a constraint satisfaction
problem (CSP) states which relations should hold among the given decision variables.
More formally, a constraint satisfaction problem consists of a set of variables, each
with some domain of values, and a set of relations on subsets of these variables. For
example, in scheduling exams at an university, the decision variables might be the
times and locations of the different exams, and the constraints might be on the capac-
ity of each examination room (e.g., we cannot schedule more students to sit exams
in a given room at any one time than the room’s capacity) and on the exams sched-
uled at the same time (e.g., we cannot schedule two exams at the same time if they
share students in common). Constraint solvers take a real-world problem like this rep-
resented in terms of decision variables and constraints, and find an assignment to all
the variables that satisfies the constraints. Extensions of this framework may involve,
for example, finding optimal solutions according to one or more optimization criterion
(e.g., minimizing the number of days over which exams need to be scheduled), finding
all solutions, replacing (some or all) constraints with preferences, and considering a
distributed setting where constraints are distributed among several agents.

Constraint solvers search the solution space systematically, as with backtracking or
branch and bound algorithms, or use forms of local search which may be incomplete.
Systematic method often interleave search (see Section 4.3) and inference, where in-
ference consists of propagating the information contained in one constraint to the
neighboring constraints (see Section 4.2). Such inference reduces the parts of the
search space that need to be visited. Special propagation procedures can be devised
to suit specific constraints (called global constraints), which occur often in real life.
Such global constraints are an important component in the success of constraint pro-

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 1
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



2 4. Constraint Programming

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

gramming. They provide common patterns to help users model real-world problems.
They also help make search for a solution more efficient and more effective.

While constraint problems are in general NP-complete, there are important classes
which can be solved polynomially (see Section 4.4). They are identified by the connec-
tivity structure among the variables sharing constraints, or by the language to define
the constraints. For example, constraint problems where the connectivity graph has the
form of a tree are polynomial to solve.

While defining a set of constraints may seem a simple way to model a real-world
problem, finding a good model that works well with a chosen solver is not easy.
A poorly chosen model may be very hard to solve. Moreover, solvers can be designed
to take advantage of the features of the model such as symmetry to save time in finding
a solution (see Section 4.5). Another problem with modeling real-world problems is
that many are over-constrained. We may need to specify preferences rather than con-
straints. Soft constraints (see Section 4.6) provide a formalism to do this, as well as
techniques to find an optimal solution according to the specified preferences. Many of
the constraint solving methods like constraint propagation can be adapted to be used
with soft constraints.

A constraint solver can be implemented in any language. However, there are lan-
guages especially designed to represent constraint relations and the chosen search
strategy. These languages are logic-based, imperative, object-oriented, or rule-based.
Languages based on logic programming (see Section 4.7) are well suited for a tight in-
tegration between the language and constraints since they are based on similar notions:
relations and (backtracking) search.

Constraint solvers can also be extended to deal with relations over more than just
finite (or enumerated) domains. For example, relations over the reals are useful to
model many real-world problems (see Section 4.8). Another extension is to multi-
agent systems. We may have several agents, each of which has their own constraints.
Since agents may want to keep their knowledge private, or their knowledge is so large
and dynamic that it does not make sense to collect it in a centralized site, distributed
constraint programming has been developed (see Section 4.9).

This chapter necessarily covers some of the issues that are central to constraint
programming somewhat superficially. A deeper treatment of these and many other
issues can be found in the various books on constraint programming that have been
written [5, 35, 53, 98, 70, 135–137].

4.2 Constraint Propagation

One of the most important concepts in the theory and practice of constraint program-
ming is that of local consistency. A local inconsistency is an instantiation of some
of the variables that satisfies the relevant constraints but cannot be extended to one
or more additional variables and so cannot be part of any solution. If we are using
a backtracking search to find a solution, such an inconsistency can be the reason
for many deadends in the search and cause much futile search effort. This insight
has led to: (a) the definition of conditions that characterize the level of local consis-
tency of a CSP (e.g., [49, 95, 104]), (b) the development of constraint propagation
algorithms—algorithms which enforce these levels of local consistency by removing
inconsistencies from a CSP (e.g., [95, 104]), and (c) effective backtracking algorithms

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 2
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



F. Rossi, P. van Beek, T. Walsh 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

for finding solutions to CSPs that maintain a level of local consistency during the
search (e.g., [30, 54, 68]). In this section, we survey definitions of local consistency
and constraint propagation algorithms. Backtracking algorithms integrated with con-
straint propagation are the topic of a subsequent section.

4.2.1 Local Consistency

Currently, arc consistency [95, 96] is the most important local consistency in prac-
tice and has received the most attention. Given a constraint, a value for a variable in
the constraint is said to have a support if there exists values for the other variables
in the constraint such that the constraint is satisfied. A constraint is arc consistent or
if every value in the domains of the variables of the constraint has a support. A con-
straint can be made arc consistent by repeatedly removing unsupported values from the
domains of its variables. Removing unsupported values is often referred to as prun-
ing the domains. For constraints involving more than two variables, arc consistency
is often referred to as hyper arc consistency or generalized arc consistency. For ex-
ample, let the domains of variables x and y be {0, 1, 2} and consider the constraint
x + y = 1. Enforcing arc consistency on this constraint would prune the domains of
both variables to just {0, 1}. The values pruned from the domains of the variables are
locally inconsistent—they do not belong to any set of assignments that satisfies the
constraint—and so cannot be part of any solution to the entire CSP. Enforcing arc con-
sistency on a CSP requires us to iterate over the domain value removal step until we
reach a fixed point. Algorithms for enforcing arc consistency have been extensively
studied and refined (see, e.g., [95, 11] and references therein). An optimal algorithm
for an arbitrary constraint has O(rdr) worst case time complexity, where r is the arity
of the constraint and d is the size of the domains of the variables [103].

In general, there is a trade-off between the cost of the constraint propagation per-
formed at each node in the search tree, and the amount of pruning. One way to reduce
the cost of constraint propagation, is to consider more restricted local consistencies.
One important example is bounds consistency. Suppose that the domains of the vari-
ables are large and ordered and that the domains of the variables are represented by
intervals (the minimum and the maximum value in the domain). With bounds consis-
tency, instead of asking that each value in the domain has a support in the constraint,
we only ask that the minimum value and the maximum value each have a support
in the constraint. Although bounds consistency is weaker than arc consistency, it has
been shown to be useful for arithmetic constraints and global constraints as it can
sometimes be enforced more efficiently (see below).

For some types of problems, like temporal constraints, it may be worth enforcing
even stronger levels of local consistency than path consistency [95]. A problem involv-
ing binary constraints (that is, relations over just two variables) is path consistent if
every consistent pair of values for two variables can be extended to any third variables.
To make a problem path consistent, we may have to add additional binary constraints
to rule out consistent pairs of values which cannot be extended.

4.2.2 Global Constraints

Although global constraints are an important aspect of constraint programming, there
is no clear definition of what is and is not a global constraint. A global constraint is

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 3
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



4 4. Constraint Programming

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

a constraint over some sequence of variables. Global constraints also usually come
with a constraint propagation algorithm that does more pruning or performs prun-
ing cheaper than if we try to express the global constraint using smaller relations.
The canonical example of a global constraint is the all-different constraint. An
all-different constraint over a set of variables states that the variables must be
pairwise different. The all-different constraint is widely used in practice and
because of its importance is offered as a built-in constraint in most, if not all, ma-
jor commercial and research-based constraint programming systems. Starting with the
first global constraints in the CHIP constraint programming system [2], hundreds of
global constraints have been proposed and implemented (see, e.g., [7]).

The power of global constraints is two-fold. First, global constraints ease the task
of modeling an application as a CSP. Second, special purpose constraint propagation
algorithms can be designed which take advantage of the semantics of the constraint
and are therefore much more efficient. As an example, recall that enforcing arc con-
sistency on an arbitrary has O(rdr) worst case time complexity, where r is the arity
of the constraint and d is the size of the domains of the variables. In contrast, the
all-different constraint can be made arc consistent in O(r2d) time in the worst
case [116], and can be made bounds consistent in O(r) time [100].

Other examples of widely applicable global constraints are the global cardinality
constraint (gcc) [117] and the cumulative constraint [2]. A gcc over a set of
variables and values states that the number of variables instantiating to a value must
be between a given upper and lower bound, where the bounds can be different for
each value. A cumulative constraint over a set of variables representing the time
where different tasks are performed ensures that the tasks are ordered such that the
capacity of some resource used at any one time is not exceeded. Both of these types
of constraint commonly occur in rostering, timetabling, sequencing, and scheduling
applications.

4.3 Search

The main algorithmic technique for solving constraint satisfaction problems is search.
A search algorithm for solving a CSP can be either complete or incomplete. Complete,
or systematic algorithms, come with a guarantee that a solution will be found if one ex-
ists, and can be used to show that a CSP does not have a solution and to find a provably
optimal solution. Incomplete, or non-systematic algorithms, cannot be used to show a
CSP does not have a solution or to find a provably optimal solution. However, such
algorithms are often effective at finding a solution if one exists and can be used to find
an approximation to an optimal solution. In this section, we survey backtracking and
local search algorithms for solving CSPs, as well as hybrid methods that draw upon
ideas from both artificial intelligence (AI) and operations research (OR). Backtracking
search algorithms are, in general, examples of systematic complete algorithms. Local
search algorithms are examples of incomplete algorithms.

4.3.1 Backtracking Search

A backtracking search for a solution to a CSP can be seen as performing a depth-first
traversal of a search tree. This search tree is generated as the search progresses. At a

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 4
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



F. Rossi, P. van Beek, T. Walsh 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

node in the search tree, an uninstantiated variable is selected and the node is extended
where the branches out of the node represent alternative choices that may have to be
examined in order to find a solution. The method of extending a node in the search
tree is often called a branching strategy. Let x be the variable selected at a node. The
two most common branching strategies are to instantiate x in turn to each value in its
domain or to generate two branches, x = a and x �= a, for some value a in the domain
of x. The constraints are used to check whether a node may possibly lead to a solution
of the CSP and to prune subtrees containing no solutions.

Since the first uses of backtracking algorithms in computing [29, 65], many tech-
niques for improving the efficiency of a backtracking search algorithm have been
suggested and evaluated. Some of the most important techniques include constraint
propagation, nogood recording, backjumping, heuristics for variable and value order-
ing, and randomization and restart strategies. The best combinations of these tech-
niques result in robust backtracking algorithms that can now routinely solve large, and
combinatorially challenging instances that are of practical importance.

Constraint propagation during search

An important technique for improving efficiency is to maintain a level of local con-
sistency during the backtracking search by performing constraint propagation at each
node in the search tree. This has two important benefits. First, removing inconsis-
tencies during search can dramatically prune the search tree by removing many dead
ends and by simplifying the remaining subproblem. In some cases, a variable will
have an empty domain after constraint propagation; i.e., no value satisfies the unary
constraints over that variable. In this case, backtracking can be initiated as there is no
solution along this branch of the search tree. In other cases, the variables will have
their domains reduced. If a domain is reduced to a single value, the value of the vari-
able is forced and it does not need to be branched on in the future. Thus, it can be
much easier to find a solution to a CSP after constraint propagation or to show that the
CSP does not have a solution. Second, some of the most important variable ordering
heuristics make use of the information gathered by constraint propagation to make ef-
fective variable ordering decisions. As a result of these benefits, it is now standard for
a backtracking algorithm to incorporate some form of constraint propagation.

The idea of incorporating some form of constraint propagation into a backtrack-
ing algorithm arose from several directions. Davis and Putnam [30] propose unit
propagation, a form of constraint propagation specialized to SAT. McGregor [99]
and Haralick and Elliott proposed the forward checking backtracking algorithm [68]
which makes the constraints involving the most recently instantiated variable arc con-
sistent. Gaschnig [54] suggests maintaining arc consistency on all constraints during
backtracking search and gives the first explicit algorithm containing this idea. Mack-
worth [95] generalizes Gaschnig’s proposal to backtracking algorithms that interleave
case-analysis with constraint propagation.

Nogood recording

One of the most effective techniques known for improving the performance of back-
tracking search on a CSP is to add implied constraints or nogoods. A constraint is
implied if the set of solutions to the CSP is the same with and without the constraint.

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 5
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



6 4. Constraint Programming

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

A nogood is a special type of implied constraint, a set of assignments for some subset
of variables which do not lead to a solution. Adding the “right” implied constraints to
a CSP can mean that many deadends are removed from the search tree and other dead-
ends are discovered after much less search effort. Three main techniques for adding
implied constraints have been investigated. One technique is to add implied constraints
by hand during the modeling phase. A second technique is to automatically add im-
plied constraints by applying a constraint propagation algorithm. Both of the above
techniques rule out local inconsistencies or deadends before they are encountered dur-
ing the search. A third technique is to automatically add implied constraints after a
local inconsistency or deadend is encountered in the search. The basis of this tech-
nique is the concept of a nogood—a set of assignments that is not consistent with any
solution.

Once a nogood for a deadend is discovered, it can be ruled out by adding a con-
straint. The technique, first informally described by Stallman and Sussman [130], is
often referred to as nogood or constraint recording. The hope is that the added con-
straints will prune the search space in the future. Dechter [31] provides the first formal
account of discovering and recording nogoods. Ginsberg’s [61] dynamic backtracking
algorithm performs nogood recording coupled with a strategy for deleting nogoods
in order to use only a polynomial amount of space. Schiex and Verfaillie [125] pro-
vide the first formal account of nogood recording within an algorithm that performs
constraint propagation.

Backjumping

Upon discovering a deadend in the search, a backtracking algorithm must uninstantiate
some previously instantiated variable. In the standard form of backtracking—called
chronological backtracking—the most recently instantiated variable becomes unin-
stantiated. However, backtracking chronologically may not address the reason for
the deadend. In backjumping, the algorithm backtracks to and retracts the decision
which bears some responsibility for the deadend. The idea is to (sometimes implic-
itly) record nogoods or explanations for failures in the search. The algorithms then
reason about these nogoods to determine the highest point in the search tree that can
safely be jumped to without missing any solutions. Stallman and Sussman [130] were
the first to informally propose a non-chronological backtracking algorithm—called
dependency-directed backtracking—that discovered and maintained nogoods in order
to backjump. The first explicit backjumping algorithm was given by Gaschnig [55].
Subsequent generalizations of Gaschnig’s algorithm include Dechter’s [32] graph-
based backjumping algorithm and Prosser’s [113] conflict-directed backjumping al-
gorithm.

Variable and value ordering heuristics

When solving a CSP using backtracking search, a sequence of decisions must be made
as to which variable to branch on or instantiate next and which value to give to the
variable. These decisions are referred to as the variable and the value ordering. It
has been shown that for many problems, the choice of variable and value ordering
can be crucial to effectively solving the problem (e.g., [58, 62, 68]). When solving a
CSP using backtracking search interleaved with constraint propagation, the domains

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 6
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



F. Rossi, P. van Beek, T. Walsh 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

of the unassigned variables are pruned using the constraints and the current set of
branching constraints. Many of the most important variable ordering heuristics are
based on choosing the variable with the smallest number of values remaining in its
domain (e.g., [65, 15, 10]). The principle being followed in the design of many value
ordering heuristics is to choose next the value that is most likely to succeed or be a
part of a solution (e.g., [37, 56]).

Randomization and restart strategies

It has been widely observed that backtracking algorithms can be brittle on some in-
stances. Seemingly small changes to a variable or value ordering heuristic, such as a
change in the ordering of tie-breaking schemes, can lead to great differences in running
time. An explanation for this phenomenon is that ordering heuristics make mistakes.
Depending on the number of mistakes and how early in the search the mistakes are
made (and therefore how costly they may be to correct), there can be a large variabil-
ity in performance between different heuristics. A technique called randomization and
restarts has been proposed for taking advantage of this variability (see, e.g., [69, 66,
144]). A restart strategy S = (t1, t2, t3, . . .) is an infinite sequence where each ti is ei-
ther a positive integer or infinity. The idea is that a randomized backtracking algorithm
is run for t1 steps. If no solution is found within that cutoff, the algorithm is restarted
and run for t2 steps, and so on until a solution is found.

4.3.2 Local Search

In backtracking search, the nodes in the search tree represent partial sets of assign-
ments to the variables in the CSP. In contrast, a local search for a solution to a CSP
can be seen as performing a walk in a directed graph where the nodes represent com-
plete assignments; i.e., every variable has been assigned a value from its domain. Each
node is labeled with a cost value given by a cost function and the edges out of a node
are given by a neighborhood function. The search graph is generated as the search
progresses. At a node in the search graph, a neighbor or adjacent node is selected
and the algorithm “moves” to that node, searching for a node of lowest cost. The basic
framework applies to both satisfaction and optimization problems and can handle both
hard (must be satisfied) and soft (desirable if satisfied) constraints (see, e.g., [73]). For
satisfaction problems, a standard cost function is the number of constraints that are not
satisfied. For optimization problems, the cost function is the measure of solution qual-
ity given by the problem. For example, in the Traveling Salesperson Problem (TSP),
the cost of a node is the cost of the tour given by the set of assignments associated
with the node.

Four important choices must be made when designing an effective local search
algorithm. First is the choice of how to start search by selecting a starting node in the
graph. One can randomly pick a complete set of assignments or attempt to construct a
“good” starting point. Second is the choice of neighborhood. Example neighborhoods
include picking a single variable/value assignment and assigning the variable a new
value from its domain and picking a pair of variables/value assignments and swapping
the values of the variables. The former neighborhood has been shown to work well
in SAT and n-queens problems and the latter in TSP problems. Third is the choice
of “move” or selection of adjacent node. In the popular min-conflicts heuristic [102],

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 7
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



8 4. Constraint Programming

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

a variable x is chosen that appears in a constraint that is not satisfied. A new value is
then chosen for x that minimizes the number of constraints that are not satisfied. In
the successful GSAT algorithm for SAT problems [127], a best-improvement move is
performed. A variable x is chosen and its value is flipped (true to false or vice versa)
that leads to the largest reduction in the cost function—the number of clauses that are
not satisfied. Fourth is the choice of stopping criteria for the algorithm. The stopping
criteria is usually some combination of an upper bound on the maximum number of
moves or iterations, a test whether a solution of low enough cost has been found, and
a test whether the number of iterations since the last (big enough) improvement is too
large.

The simplest local search algorithms continually make moves in the graph until all
moves to neighbors would result in an increase in the cost function. The final node
then represents the solution to the CSP. However, note that the solution may only
be a local minima (relative to its neighbors) but not globally optimal. As well, if we
are solving a satisfaction problem, the final node may not actually satisfy all of the
constraints. Several techniques have been developed for improving the efficiency and
the quality of the solutions found by local search. The most important of these include:
multi-starts where the algorithm is restarted with different starting solutions and the
best solution found from all runs is reported and threshold accepting algorithms that
sometimes move to worse cost neighbors to escape local minima such as simulated
annealing [83] and tabu search [63]. In simulated annealing, worse cost neighbors are
moved to with a probability that is gradually decreased over time. In tabu search, a
move is made to a neighbor with the best cost, even if it is worse than the cost of
the current node. However, to prevent cycling, a history of the recently visited nodes
called a tabu list is kept and a move to a node is blocked if it appears on the tabu list.

4.3.3 Hybrid Methods

Hybrid methods combine together two or more solution techniques. Whilst there exist
interesting hybrids of systematic and local search methods, some of the most promis-
ing hybrid methods combine together AI and OR techniques like backtracking and
linear programming. Linear programming (LP) is one of the most powerful techniques
to have emerged out of OR. In fact, if a problem can be modeled by linear inequali-
ties over continuous variables, then LP is almost certainly a better method to solve it
than CP.

One of the most popular approaches to bring linear programming into CP is to
create a relaxation of (some parts of) the CP problem that is linear. Relaxation may
be both dropping the integrality requirement on some of the decision variables or on
the tightness of the constraints. Linear relaxations have been proposed for a number
of global constraints including the all different, circuit and cumulative
constraints [72]. Such relaxations can then be given to a LP solver. The LP solution can
be used in a number of ways to prune domains and guide search. For example, it can
tighten bounds on a variable (e.g., the variable representing the optimization cost). We
may also be able to prune domains by using reduced costs or Lagrange multipliers. In
addition, the continuous LP solution may by chance be integral (and thus be a solution
to the original CP model). Even if the LP solution is not integral, we can use it to guide
search (e.g., branching on the most non-integral variable). One of the advantages of

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 8
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



F. Rossi, P. van Beek, T. Walsh 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

using a linear relaxation is that the LP solver takes a more global view than a CP solver
which just makes “local” inferences.

Two other well-known OR techniques that have been combined with CP are branch
and price and Bender’s decomposition. With branch and price, CP can be used to per-
form the column generation, identifying variables to add dynamically to the search.
With Bender’s decomposition, CP can be used to perform the row generation, gener-
ating new constraints (nogoods) to add to the model. Hybrid methods like these have
permitted us to solve problems beyond the reach of either CP or OR alone. For ex-
ample, a CP based branch and price hybrid was the first to solve the 8-team traveling
tournament problem to optimality [43].

4.4 Tractability

Constraint satisfaction is NP-complete and thus intractable in general. It is easy to
see how to reduce a problem like graph 3-coloring or propositional satisfiability to a
CSP. Considerable effort has therefore been invested in identifying restricted classes of
constraint satisfaction problems which are tractable. For Boolean problems where the
decision variables have just one of two possible values, Schaefer’s dichotomy theo-
rem gives an elegant characterization of the six tractable classes of relations [121]:
those that are satisfied by only true assignments; those that are satisfied by only
false assignments; Horn clauses; co-Horn clauses (i.e., at most one negated variable);
2-CNF clauses; and affine relations. It appears considerably more difficult to charac-
terize tractable classes for non-Booleans domains. Research has typically broken the
problem into two parts: tractable languages (where the relations are fixed but they can
be combined in any way), and tractable constraint graphs (where the constraint graph
is restricted but any sort of relation can be used).

4.4.1 Tractable Constraint Languages

We first restrict ourselves to instances of constraint satisfaction problems which can
be built using some limited language of constraint relations. For example, we might
consider the class of constraint satisfaction problems built from just the not-equals
relation. For k-valued variables, this gives k-coloring problems. Hence, the problem
class is tractable iff k � 2.

Some examples

We consider some examples of tractable constraint languages. Zero/one/all (or ZOA)
constraints are binary constraints in which each value is supported by zero, one or all
values [25]. Such constraints are useful in scene labeling and other problems. ZOA
constraints are tractable [25] and can, in fact, be solved in O(e(d + n)) where e is the
number of constraints, d is the domain size and n is the number of variables [149].
This results generalizes the result that 2-SAT is linear since every binary relation on a
Boolean domain is a ZOA constraint. Similarly, this result generalizes the result that
functional binary constraints are tractable. The ZOA constraint language is maximal in
the sense that, if we add any relation to the language which is not ZOA, the language
becomes NP-complete [25].

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 9
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



10 4. Constraint Programming

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

Another tractable constraint language is that of connected row-convex constraints
[105]. A binary constraint C over the ordered domain D can be represented by a 0/1
matrix Mij where Mij = 1 iff C(i, j) holds. Such a matrix is row-convex iff the non-
zero entries in each row are consecutive, and connected row-convex iff it is row-convex
and, after removing empty rows, it is connected (non-zero entries in consecutive rows
are adjacent). Finally a constraint is connected row-convex iff the associated 0/1 ma-
trix and its transpose are connected row-convex. Connected row-convex constraints
include monotone relations. They can be solved without backtracking using a path-
consistency algorithm. If a constraint problem is path-consistent and only contains
row-convex constraints (not just connected row-convex constraints), then it can be
solved in polynomial time [133]. Row-convexity is not enough on its own to guaran-
tee tractability as enforcing path-consistency may destroy row-convexity.

A third example is the language of max-closed constraints. Specialized solvers
have been developed for such constraints in a number of industrial scheduling tools.
A constraint is max-closed iff for all pairs of satisfying assignments, if we take the
maximum of each assignment, we obtain a satisfying assignment. Similarly a con-
straint is min-closed iff for all pairs of satisfying assignments, if we take the minimum
of each assignment, we obtain a satisfying assignment. All unary constraints are max-
closed and min-closed. Arithmetic constraints like aX = bY + c, and

∑
i aiXi � b

are also max-closed and min-closed. Max-closed constraints can be solved in quadratic
time using a pairwise-consistency algorithm [82].

Constraint tightness

Some of the simplest possible tractability results come from looking at the constraint
tightness. For example, Dechter shows that for a problem with domains of size d and
constraints of arity at most k, enforcing strong (d(r − 1) + 1)-consistency guarantees
global consistency [33]. We can then construct a solution without backtracking by
repeatedly assigning a variable and making the resulting subproblem globally consis-
tent. Dechter’s result is tight since certain types of constraints (e.g., binary inequality
constraints in graph coloring) require exactly this level of local consistency.

Stronger results can be obtained by looking more closely at the constraints. For
example, a k-ary constraint is m-tight iff given any assignment for k − 1 of the vari-
ables, there are at most m consistent values for the remaining variable. Dechter and
van Beek prove that if all relations are m-tight and the network is strongly relational
(m + 1)-consistent, then it is globally consistent [134]. A complementary result holds
for constraint looseness. If constraints are sufficiently loose, we can guarantee that the
network must have a certain level of local consistency.

Algebraic results

Jeavons et al. have given a powerful algebraic treatment of tractability of constraint
languages using relational clones, and polymorphisms on these cones [79–81]. For
example, they show how to construct a so-called “indicator” problem that determines
whether a constraint language over finite domains is NP-complete or tractable. They
are also able to show that the search problem (where we want to find a solution) is no
harder than the corresponding decision problem (where we want to just determine if a
solution exists or not).

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 10
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



F. Rossi, P. van Beek, T. Walsh 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

Dichotomy results

As we explained, for Boolean domains, Schaefer’s result completely characterizes the
tractable constraint languages. For three valued variables, Bulatov has provided a more
complex but nevertheless complete dichotomy result [16]. Bulatov also has given a
cubic time algorithm for identifying these tractable cases. It remains an open question
if a similar dichotomy result holds for constraint languages over any finite domain.

Infinite domains

Many (but not all) of the tractability results continue to hold if variable domains are
infinite. For example, Allen’s interval algebra introduces binary relations and composi-
tions of such relations over time intervals [3]. This can be viewed as a binary constraint
problem over intervals on the real line. Linear Horn is an important tractable class for
temporal reasoning. It properly includes the point algebra, and ORD-Horn constraints.
A constraint over an infinite ordered set is linear Horn when it is equivalent to a finite
disjunction of linear disequalities and at most one weak linear inequality. For example,
(X − Y � Z) ∨ (X + Y + Z �= 0) is linear Horn [88, 84].

4.4.2 Tractable Constraint Graphs

We now consider tractability results where we permit any sort of relation but restrict
the constraint graph in some way. Most of these results concern tree or tree-like struc-
tures. We need to distinguish between three types of constraint graph: the primal
constraint graph has a node for each variable and edges between variables in the
same constraint, the dual constraint graph has a node for each constraint and edges
between constraints sharing variables, and the constraint hypergraph has a node for
each variable and a hyperedge between all the variables in each constraint.

Mackworth gave one of the first tractability results for constraint satisfaction prob-
lems: a binary constraint networks whose primal graph is a tree can be solved in linear
time [97]. More generally, a constraint problem can be solved in a time that is expo-
nential in the induced width of the primal graph for a given variable ordering using
a join-tree clustering or (for space efficiency) a variable elimination algorithm. The
induced width is the maximum number of parents to any node in the induced graph
(in which we add edges between any two parents that are both connected to the same
child). For non-binary constraints, we tend to obtain tighter results by considering the
constraint hypergraph [67]. For example, an acyclic non-binary constraint problem
will have high tree-width, even though it can be solved in quadratic time. Indeed, re-
sults based on hypertree width have been proven to strongly dominate those based on
cycle cutset width, biconnected width, and hinge width [67].

4.5 Modeling

Constraint programming is, in some respects, one of the purest realizations of the
dream of declarative programming: you state the constraints and the computer solves
them using one of a handful of standard methods like the maintaining arc consistency
backtracking search procedure. In reality, constraint programming falls short of this
dream. There are usually many logically equivalent ways to model a problem. The

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 11
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



12 4. Constraint Programming

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

model we use is often critical as to whether or not the problem can be solved. Whilst
modeling a problem so it can be successfully solved using constraint programming is
an art, a number of key lessons have started to be identified.

4.5.1 CP ∨ ¬ CP

We must first decide if constraint programming is a suitable technology in which to
model our problem, or whether we should consider some other approach like math-
ematical programming or simulation. It is often hard to answer this question as the
problem we are trying to solve is often not well defined. The constraints of the prob-
lem may not have been explicitly identified. We may therefore have to extract the
problem constraints from the user in order to build a model. To compound matters, for
economic and other reasons, problems are nearly always over-constrained. We must
therefore also identify the often conflicting objectives (price, speed, weight, . . .) that
need to be considered. We must then decide which constraints to consider as hard,
which constraints to compile into the search strategy and heuristics, and which con-
straints to ignore.

Real world combinatorial search problems are typically much too large to solve
exactly. Problem decomposition is therefore a vital aspect of modeling. We have to
decide how to divide the problem up and where to make simplifying approximations.
For example, in a production planning problem, we might ignore how the availability
of operators but focus first on scheduling the machines. Having decided on a produc-
tion schedule for the machines, we can then attempt to minimize the labor costs.

Another key concern in modeling a problem is stability. How much variability is
there between instances of the problem? How stable is the solution method to small
changes? Is the problem very dynamic? What happens if (a small amount of) the data
changes? Do solutions need to be robust to small changes? Many such questions need
to be answered before we can be sure that constraint programming is indeed a suitable
technology.

4.5.2 Viewpoints

Having decided to use constraint programming, we then need to decide the variables,
their possible domains and the constraints that apply to these variables. The concept
of viewpoint [57, 19] is often useful at this point. There are typically several differ-
ent viewpoints that we can have of a problem. For example, if we are scheduling the
next World Cup, are we assigning games to time slots, or time slots to games? Dif-
ferent models can be built corresponding to each of these viewpoints. We might have
variables representing the games with their values being time slots, or we might have
variables representing the time slots with their values being games.

A good rule of thumb is to choose the viewpoint which permits the constraints to
be expressed easily. The hope is that the constraint solver will then be able to reason
with the constraints effectively. In some cases, it is best to use multiple viewpoints and
to maintain consistency between them with channeling constraints [19]. One common
viewpoint is a matrix model in which the decision variables form a matrix or array [48,
47]. For example, we might need to decide which factory processes which order. This
can be modeled with an 0/1 matrix Oij which is 1 iff order i is processed in factory j .

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 12
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



F. Rossi, P. van Beek, T. Walsh 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

The constraint that every order is processed then becomes the constraint that every
row sums to 1.

To help specify the constraints, we might introduce auxiliary variables. For exam-
ple, in the Golomb ruler problem (prob006 in CSPLib.org), we wish to mark ticks on
an integer ruler so that all the distances between ticks are unique. The problem has
applications in radio-astronomy and elsewhere. One viewpoint is to have a variable
for each tick, whose value is the position on the ruler. To specify the constraint that
all the distances between ticks are unique, we can an introduce auxiliary variable Dij

for the distance between the ith and j th tick [128]. We can then post a global all-
different constraint on these auxiliary variables. It may be helpful to permit the
constraint solver to branch on the auxiliary variables. It can also be useful to add im-
plied (or redundant) constraints to help the constraint solver prune the search space.
For example, in the Golomb ruler problem, we can add the implied constraint that
Dij < Dik for j < k [128]. This will help reduce search.

4.5.3 Symmetry

A vital aspect of modeling is dealing with symmetry. Symmetry occurs naturally in
many problems (e.g., if we have two identical machines to schedule, or two identical
jobs to process). Symmetry can also be introduced when we model a problem (e.g., if
we name the elements in a set, we introduce the possibility of permuting their order).
We must deal with symmetry or we will waste much time visiting symmetric solutions,
as well as parts of the search tree which are symmetric to already visited parts. One
simple but highly effective mechanism to deal with symmetry is to add constraints
which eliminate symmetric solutions [27]. Alternatively, we can modify the search
procedure to avoid visiting symmetric states [44, 59, 118, 126].

Two common types of symmetry are variable symmetries (which act just on vari-
ables), and value symmetries (which act just on values) [21]. With variable symme-
tries, there are a number of well understood symmetry breaking methods. For example,
many problems can be naturally modeled using a matrix model in which the rows
and columns of the matrix are symmetric and can be freely permuted. We can break
such symmetry by lexicographically ordering the rows and columns [47]. Efficient
constraint propagation algorithms have therefore been developed for such ordering
constraints [51, 17]. Similarly, with value symmetries, there are a number of well un-
derstood symmetry breaking methods. For example, if all values are interchangeable,
we can break symmetry by posting some simple precedence constraints [92]. Alterna-
tively, we can turn value symmetry into variable symmetry [47, 93, 114] and then use
one of the standard methods for breaking variable symmetry.

4.6 Soft Constraints and Optimization

It is often the case that, after having listed the desired constraints among the decision
variables, there is no way to satisfy them all. That is, the problem is over-constrained.
Even when all the constraints can be satisfied, and there are several solutions, such
solutions appear equally good, and there is no way to discriminate among them. These
scenarios often occur when constraints are used to formalize desired properties rather
than requirements that cannot be violated. Such desired properties should rather be

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 13
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



14 4. Constraint Programming

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

considered as preferences, whose violation should be avoided as far as possible. Soft
constraints provide one way to model such preferences.

4.6.1 Modeling Soft Constraints

There are many classes of soft constraints. The first one that was introduced concerns
the so-called fuzzy constraints and it is based on fuzzy set theory [42, 41]. A fuzzy
constraint is not a set (of allowed tuples of values to variables), but rather a fuzzy
set [42], where each element has a graded degree of membership. For each assign-
ment of values to its variables, we do not have to say whether it belongs to the set or
not, but how much it does so. This allows us to represent the fact that a combination of
values for the variables of the constraint is partially permitted. We can also say that the
membership degree of an assignment gives us the preference for that assignment. In
fuzzy constraints, preferences are between 0 and 1, with 1 being complete acceptance
and 0 being total rejection. The preference of a solution is then computed by taking the
minimal preference over the constraints. This may seem awkward in some scenarios,
but it is instead very natural, for example, when we are reasoning about critical ap-
plications, such as space or medical applications, where we want to be as cautious as
possible. Possibilistic constraints [122] are very similar to fuzzy constraints and they
have the same expressive power: priorities are associated to constraints and the aim
is to find an assignment which minimizes the priority of the most important violated
constraint.

Lack of discrimination among solutions with the same minimal preferences is one
of the main drawbacks of fuzzy constraints (the so-called drowning effect). To avoid
this, one can use fuzzy lexicographic constraints [45]. The idea is to consider not just
the least preference value, but all the preference values when evaluating a complete as-
signment, and to sort such values in increasing order. When two complete assignments
are compared, the two sorted preference lists are then compared lexicographically.

There are situations where we are more interested in the damages we get by not
satisfying a constraint rather than in the advantages we obtain when we satisfy it.
A natural way to extend the classical constraint formalism to deal with these situations
consists of associating a certain penalty or cost to each constraint, to be paid when the
constraint is violated. A weighted constraint is thus just a classical constraint plus
a weight. The cost of an assignment is the sum of all weights of those constraints
which are violated. An optimal solution is a complete assignment with minimal cost.
In the particular case when all penalties are equal to 1, this is called the MAX-CSP
problem [50]. In fact, in this case the task consists of finding an assignment where the
number of violated constraints is minimal, which is equivalent to say that the number
of satisfied constraints is maximal.

Weighted constraints are among the most expressive soft constraint frameworks,
in the sense that the task of finding an optimal solution for fuzzy, possibilistic, or
lexicographic constraint problems can be efficiently reduced to the task of finding an
optimal solution for a weighted constraint problem [124].

The literature contains also at least two general formalisms to model soft con-
straints, of which all the classes above are instances: semiring-based constraints [13,
14] and valued constraints [124]. Semiring-based constraints rely on a simple alge-
braic structure which is very similar to a semiring, and it is used to formalize the

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 14
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



F. Rossi, P. van Beek, T. Walsh 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

notion of preferences (or satisfaction degrees), the way preferences are ordered, and
how to combine them. The minimum preference is used to capture the notion of ab-
solute non-satisfaction, which is typical of hard constraints. Similarly for the maximal
preference, which can model complete satisfaction. Valued constraints depend on a
different algebraic structure, a positive totally ordered commutative monoid, and use
a different syntax than semiring-based constraints. However, they have the same ex-
pressive power, if we assume preferences to be totally ordered [12]. Partially ordered
preferences can be useful, for example, when we need to reason with more than one
optimization criterion, since in this case there could be situations which are naturally
not comparable.

Soft constraint problems are as expressive, and as difficult to solve, as constraint
optimization problems, which are just constraint problems plus an objective function.
In fact, given any soft constraint problem, we can always build a constraint optimiza-
tion problem with the same solution ordering, and vice versa.

4.6.2 Searching for the Best Solution

The most natural way to solve a soft constraint problem, or a constraint optimization
problem, is to use Branch and Bound. Depth First Branch and bound (DFBB) per-
forms a depth-first traversal of the search tree. At each node, it keeps a lower bound
lb and an upper bound ub. The lower bound is an underestimation of the violation
degree of any complete assignment below the current node. The upper bound ub is the
maximum violation degree that we are willing to accept. When ub � lb(t), the sub-
tree can be pruned because it contains no solution with violation degree lower than ub.
The time complexity of DFBB is exponential, while its space complexity is linear. The
efficiency of DFBB depends largely on its pruning capacity, that relies on the quality
of its bounds: the higher lb and the lower ub, the better DFBB performs, since it does
more pruning, exploring a smaller part of the search tree. Thus many efforts have been
made to improve (that is, to increase) the lower bound.

While the simplest lower bound computation takes into account just the past
variables (that is, those already assigned), more sophisticated lower bounds include
contributions of other constraints or variables. For example, a lower bound which con-
siders constraints among past and future variables has been implemented in the Partial
Forward Checking (PFC) algorithm [50]. Another lower bound, which includes con-
tributions from constraints among future variables, was first implemented in [143] and
then used also in [89, 90], where the algorithm PFC-MRDAC has been shown to give
a substantial improvement in performance with respect to previous approaches. An
alternative lower bound is presented within the Russian doll search algorithm [140]
and in the specialized RDS approach [101].

4.6.3 Inference in Soft Constraints

Inference in classical constraint problems consists of computing and adding implied
constraints, producing a problem which is more explicit and hopefully easier to solve.
If this process is always capable of solving the problem, then inference is said to
be complete. Otherwise, inference is incomplete and it has to be complemented with
search. For classical constraints, adaptive consistency enforcing is complete while lo-
cal consistency (such as arc or path consistency) enforcing is in general incomplete.

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 15
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



16 4. Constraint Programming

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

Inference in soft constraints keeps the same basic idea: adding constraints that will
make the problem more explicit without changing the set of solutions nor their pref-
erence. However, with soft constraints, the addition of a new constraint could change
the semantics of the constraint problem. There are cases though where an arbitrary
implied constraint can be added to an existing soft constraint problem while getting an
equivalent problem: when preference combination is idempotent.

Bucket elimination

Bucket elimination (BE) [34, 35] is a complete inference algorithm which is able to
compute all optimal solutions of a soft constraint problem (as opposed to one opti-
mal solution, as usually done by search strategies). It is basically the extension of the
adaptive consistency algorithm [37] to the soft case. BE has both a time and a space
complexity which are exponential in the induced width of the constraint graph, which
essentially measures the graph cyclicity. The high memory cost, that comes from the
high arity of intermediate constraints that have to be stored as tables in memory, is
the main drawback of BE to be used in practice. When the arity of these constraints
remains reasonable, BE can perform very well [91]. It is always possible to limit the
arity of intermediate constraints, at the cost of losing optimality with respect to the
returned level and the solution found. This approach is called mini-bucket elimination
and it is an approximation scheme for BE.

Soft constraint propagation

Because complete inference can be extremely time and space intensive, it is often in-
teresting to have simpler processes which are capable of producing just a lower bound
on the violation degree of an optimal solution. Such a lower bound can be immediately
useful in Branch and Bound algorithms. This is what soft constraint propagation does.

Constraint propagation is an essential component of any constraint solver. A local
consistency property is identified (such as arc or path consistency), and an associ-
ated enforcing algorithm (usually polynomial) is developed to transform a constraint
problem into a unique and equivalent network which satisfies the local consistency
property. If this equivalent network has no solution, then the initial network is obvi-
ously inconsistent too. This allows one to detect some inconsistencies very efficiently.
A similar motivation exists for trying to adapt this approach to soft constraints: the
hope that an equivalent locally consistent problem may provide a better lower bound
during the search for an optimal solution. The first results in the area were obtained
on fuzzy networks [129, 122]. Then, [13, 14] generalized them to semiring-based con-
straints with idempotent combination.

If we take the usual notions of local consistency like arc or path consistency and
replace constraint conjunction by preference combination, and tuple elimination by
preference lowering, we immediately obtain a soft constraint propagation algorithm.
If preference combination is idempotent, then this algorithm terminates and yields a
unique equivalent arc consistent soft constraints problem. Idempotency is only suffi-
cient, and can be slightly relaxed, for termination. It is however possible to show that
it is a necessary condition to guarantee equivalence.

However, many real problems do not rely on idempotent operators because such
operators provide insufficient discrimination, and rather rely on frameworks such as

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 16
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



F. Rossi, P. van Beek, T. Walsh 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

weighted or lexicographic constraints, which are not idempotent. For these classes of
soft constraints, equivalence can still be maintained, compensating the addition of new
constraints by the “subtraction” of others. This can be done in all fair classes of soft
constraints [24], where it is possible to define the notion of “subtraction”. In this way,
arc consistency has been extended to fair valued structures in [123, 26]. While equiv-
alence and termination in polynomial time can be achieved, constraint propagation
on non-idempotent classes of soft constraints does not assure the uniqueness of the
resulting problem.

Several global constraints and their associated algorithms have been extended
to handle soft constraints. All these proposals have been made using the approach
of [111] where a soft constraint is represented as a hard constraint with an extra vari-
able representing the cost of the assignment of the other variables. Examples of global
constraints that have been defined for soft constraints are the soft all-different
and soft gcc [112, 138, 139].

4.7 Constraint Logic Programming

Constraints can, and have been, embedded in many programming environments, but
some are more suitable than others. The fact that constraints can be seen as relations
or predicates, that their conjunction can be seen as a logical and, and that backtracking
search is a basic methodology to solve them, makes them very compatible with logic
programming [94], which is based on predicates, logical conjunctions, and depth-first
search. The addition of constraints to logic programming has given the constraint logic
programming paradigm [77, 98].

4.7.1 Logic Programs

Logic programming (LP) [94] is based on a unique declarative programming idea
where programs are not made of statements (like in imperative programming) nor of
functions (as in functional programming), but of logical implications between collec-
tions of predicates. A logic program is thus seen as a logical theory and has the form
of a set of rules (called clauses) which relate the truth value of a literal (the head of
the clause) to that of a collection of other literals (the body of the clause).

Executing a logic program means asking for the truth value of a certain statement,
called the goal. Operationally, this is done by repeatedly transforming the goal via a
sequence of resolution steps, until we either end up with the empty goal (in this case
the proof is successful), or we cannot continue and we do not have the empty goal
(and in this case we have a failure), or we continue forever (and in this case we have
an infinite computation). Each resolution step involves the unification between a literal
which is part of a goal and the head of a clause.

Finite domain CSPs can always be modeled in LP by using one clause for the
definition of the problem graph and many facts to define the constraints. However, this
modeling is not convenient, since LP’s execution engine corresponds to depth-first
search with chronological backtracking and this may not be the most efficient way to
solve the CSP. Also, it ignores the power of constraint propagation in solving a CSP.

Constraint logic programming languages extend LP by providing many tools to im-
prove the solution efficiency using constraint processing techniques. They also extend

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 17
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



18 4. Constraint Programming

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

CSPs by accommodating constraints defined via formulas over a specific language of
constraints (like arithmetic equations and disequations over the reals, or term equa-
tions, or linear disequations over finite domains).

4.7.2 Constraint Logic Programs

Syntactically, constraints are added to logic programming by just considering a spe-
cific constraint type (for example, linear equations over the reals) and then allowing
constraints of this type in the body of the clauses. Besides the usual resolution engine
of logic programming, one has a (complete or incomplete) constraint solving system,
which is able to check the consistency of constraints of the considered type. This sim-
ple change provides many improvements over logic programming. First, the concept
of unification is generalized to constraint solving: the relationship between a goal and
a clause (to be used in a resolution step) can be described not just via term equations
but via more general statements, that is, constraints. This allows for a more general and
flexible way to control the flow of the computation. Second, expressing constraints by
some language (for example, linear equations and disequations) gives more compact-
ness and structure. Finally, the presence of an underlying constraint solver, usually
based on incomplete constraint propagation of some sort, allows for the combination
of backtracking search and constraint propagation, which can give more efficient com-
plete solvers.

To execute a CLP program, at each step we must find a most general unifier be-
tween the selected subgoal and the head. Moreover, we have to check the consistency
of the current set of constraints with the constraints in the body of the clause. Thus two
solvers are involved: unification, and the specific constraint solver for the constraints
in use. The constraint consistency check can use some form of constraint propaga-
tion, thus applying the principle of combining depth-first backtracking search with
constraint propagation, as usual in complete constraint solvers for CSPs.

Exceptional to CLP (and LP) is the existence of three different but equivalent se-
mantics for such programs: declarative, fixpoint, and operational [98]. This means that
a CLP program has a declarative meaning in terms of set of first-order formulas but
can also be executed operationally on a machine.

CLP is not a single programming language, but a programming paradigm, which is
parametric with respect to the class of constraints used in the language. Working with
a particular CLP language means choosing a specific class of constraints (for example,
finite domains, linear, or arithmetic) and a suitable constraint solver for that class. For
example, CLP over finite domain constraints uses a constraint solver which is able to
perform consistency checks and projection over this kind of constraints. Usually, the
consistency check is based on constraint propagation similar to, but weaker than, arc
consistency (called bounds consistency).

4.7.3 LP and CLP Languages

The concept of logic programming [94, 132] was first developed in the 1970s, while
the first constraint logic programming language was Prolog II [23], which was de-
signed by Colmerauer in the early 1980s. Prolog II could treat term equations like
Prolog, but in addition could also handle term disequations. After this, Jaffar and
Lassez observed that both term equations and disequations were just a special form

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 18
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



F. Rossi, P. van Beek, T. Walsh 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

of constraints, and developed the concept of a constraint logic programming scheme
in 1987 [76]. From then on, several instances of the CLP scheme were developed: Pro-
log III [22], with constraints over terms, strings, booleans, and real linear arithmetic;
CLP(R) [75], with constraints over terms and real arithmetics; and CHIP [39], with
constraints over terms, finite domains, and finite ranges of integers.

Constraint logic programming over finite domains was first implemented in the
late 1980s by Pascal Van Hentenryck [70] within the language CHIP [39]. Since then,
newer constraint propagation algorithms have been developed and added to more re-
cent CLP(FD) languages, like GNU Prolog [38] and ECLiPSe [142].

4.7.4 Other Programming Paradigms

Whilst constraints have been provided in declarative languages like CLP, constraint-
based tools have also been provided for imperative languages in the form of libraries.
The typical programming languages used to develop such solvers are C++ and Java.
ILOG [1] is one the most successful companies to produce such constraint-based li-
braries and tools. ILOG has C++ and Java based constraint libraries, which uses many
of the techniques described in this chapter, as well as a constraint-based configurator,
scheduler and vehicle routing libraries.

Constraints have also been successfully embedded within concurrent constraint
programming [120], where concurrent agents interact by posting and reading con-
straints in a shared store. Languages which follow this approach to programming are
AKL [78] and Oz [71]. Finally, high level modeling languages exist for modeling
constraint problems and specifying search strategies. For example, OPL [135] is a
modeling language similar to AMPL in which constraint problems can be naturally
modeled and the desired search strategy easily specified, while COMET is an OO
programming language for constraint-based local search [136]. CHR (Constraint Han-
dling Rules) is instead a rule-based language related to CLP where constraint solvers
can be easily modeled [52].

4.8 Beyond Finite Domains

Real-world problems often take us beyond finite domain variables. For example, to
reason about power consumption, we might want a decision variable to range over the
reals. Constraint programming has therefore been extended to deal with more than just
finite (or enumerated) domains of values. In this section, we consider three of the most
important extensions.

4.8.1 Intervals

The constraint programming approach to deal with continuous decision variables
is typically via intervals [20, 28, 74, 107]. We represent the domain of a continu-
ous variable by a set of disjoint intervals. In practice, the bounds on an interval are
represented by machine representable numbers such as floats. We usually solve a con-
tinuous problem by finding a covering of the solution space by means of a finite set of
multi-dimensional interval boxes with some required precision. Such a covering can
be found by means of a branch-and-reduce algorithm which branches (by splitting an

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 19
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



20 4. Constraint Programming

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

interval box in some way into several interval boxes) and reduces (which applies some
generalization of local consistency like box or hull consistency to narrow the size of
the interval boxes [8]). If we also have an optimization criteria, a bounding proce-
dure can compute bounds on the objective within the interval boxes. Such bounds can
be used to eliminate interval boxes which cannot contain the optimal objective value.
Alternatively, direct methods for solving a continuous constraint problem involve re-
placing the classical algebraic operators in the constraints by interval operators and
using techniques like Newton’s methods to narrow the intervals [137].

4.8.2 Temporal Problems

A special class of continuous constraint problems for which they are specialized and
often more efficient solving methods are temporal constraint problems. Time may be
represented by points (e.g., the point algebra) or by interval of time points (e.g., the
interval algebra). Time points are typically represented by the integers, rationals or re-
als (or, in practice, by machine representations of these). For the interval algebra (IA),
Allen introduced [3] an influential formalism in which constraints on time intervals
are expressed in terms of 13 mutually exclusive and exhaustive binary relations (e.g.,
this interval is before this other interval, or this interval is during this other interval).
Deciding the consistency of a set of such interval constraints is NP-complete. In fact,
there are 18 maximal tractable (polynomial) subclasses of the interval algebra (e.g.,
the ORD-Horn subclass introduced by Nebel and Bürckert) [106]. The point algebra
(PA) introduced by Vilain and Kautz [141] is more tractable. In this algebra, time
points can be constrained by ordering, equality, or a disjunctive combination of order-
ing and equality constraints. Koubarakis proved that enforcing strong 5-consistency
is a necessary and sufficient condition for achieving global consistency on the point
algebra. Van Beek gave an O(n2) algorithm for consistency checking and finding a
solution. Identical results hold for the pointisable subclass of the IA (PIA) [141]. This
algebra consists of those elements of the IA that can be expressed as a conjunction of
binary constraints using only elements of PA. A number of richer representations of
temporal information have also been considered including disjunctive binary differ-
ence constraints [36] (i.e.,

∨
i ai � xj − xk � bi), and simple disjunctive problems

[131] (i.e.,
∨

i ai � xi − yi � bi). Naturally, such richer representations tend to be
more intractable.

4.8.3 Sets and other Datatypes

Many combinatorial search problems (e.g., bin packing, set covering, and network
design) can be naturally represented in the language of sets, multisets, strings, graphs
and other structured objects. Constraint programming has therefore been extended to
deal with variables which range over such datatypes. For example, we can represent a
decision variable which ranges over sets of integers by means of an upper and lower
bound on the possible and necessary elements in the set (e.g., [60]). This is more
compact both to represent and reason with than the exponential number of possible
sets between these two bounds. Such a representation necessarily throws away some
information. We cannot, for example, represent a decision variable which takes one
of the two element sets: {1, 2} or {3, 4}. To represent this, we need an empty lower
bound and an upper bound of {1, 2, 3, 4}. Two element sets like {2, 3} and {1, 4} also

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 20
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



F. Rossi, P. van Beek, T. Walsh 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

lie within these bounds. Local consistency techniques have been extended to deal with
such set variables. For instance, a set variable is bound consistent iff all the elements
in its lower bound occur in every solution, and all the elements in its upper bound
occur in at least one solution. Global constraints have also been defined for such set
variables [119, 9, 115] (e.g., a sequence of set variables should be pairwise disjoint).
Variables have also been defined over other richer datatypes like multisets (or bags)
[87, 145], graphs [40], strings [64] and lattices [46].

4.9 Distributed Constraint Programming

Constraints are often generated by several different agents. Typical examples are
scheduling meetings, where each person has his own constraints and all have to be
satisfied to find a common time to meet. It is natural in such problems to have a decen-
tralized solving algorithm. Of course, even when constraints are produced by several
agents, one could always collect them all in one place and solve them by using a
standard centralized algorithm. This certainly saves the time to exchange messages
among agents during the execution of a distributed algorithm, which could make the
execution slow. However, this is often not desirable, since agents may want to keep
some constraints as private. Moreover, a centralized solver makes the whole system
less robust.

Formally, a distributed CSP is just a CSP plus one agent for each variable. The
agent controls the variable and all its constraints (see, e.g., [147]). Backtracking
search, which is the basic form of systematic search for constraint solving, can be
easily extended to the distributed case by passing a partial instantiation from an agent
to another one, which will add the instantiation for a new variable, or will report
the need to backtrack. Forward checking, backjumping, constraint propagation, and
variable and value ordering heuristics can also be adapted to this form of distributed
synchronous backtracking, by sending appropriate messages. However, in synchro-
nous backtracking one agent is active at any given time, so the only advantage with
respect to a centralized approach is that agents keep their constraints private.

On the contrary, in asynchronous distributed search, all agents are active at the
same time, and they coordinate only to make sure that what they do on their variable
is consistent with what other agents do on theirs. Asynchronous backtracking [148]
is the main algorithm which follows this approach. Branch and bound can also be
adapted to work in a distributed asynchronous setting.

Various improvements to these algorithms can be made. For example, variables can
be instantiated with a dynamic rather than a fixed order, and agents can control con-
straints rather than variables. The Asynchronous Weak Commitment search algorithm
[146] adopts a dynamic reordering. However, this is achieved via the use of much
more space (to store the nogoods), otherwise completeness is lost.

Other search algorithms can be adapted to a distributed environment. For example,
the DPOP algorithm [109] performs distributed dynamic programming. Also local
search is very well suited for a distributed setting. In fact, local search works by mak-
ing incremental modifications to a complete assignment, which are usually local to
one or a small number of variables.

Open constraint problems are a different kind of distributed problems, where vari-
able domains are incomplete and can be generated by several distributed agents.

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 21
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



22 4. Constraint Programming

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

Domains are therefore incrementally discovered, and the aim is to solve the problem
even if domains are not completely known. Both solutions and optimal solutions for
such problems can be obtained in a distributed way without the need to know the en-
tire domains. This approach can be used within several algorithms, such as the DPOP
algorithm for distributed dynamic programming [110].

4.10 Application Areas

Constraint programming has proven useful in important applications from industry,
business, manufacturing, and science. In this section, we survey three general applica-
tion areas—vehicle routine, scheduling, and configuration—with an emphasis on why
constraint programming has been successful and why constraint programming is now
often the method of choice for solving problems in these domains.

Vehicle Routing is the task of constructing routes for vehicles to visit customers at
minimum cost. A vehicle has a maximum capacity which cannot be exceeded and the
customers may specify time windows in which deliveries are permitted. Much work
on constraint programming approaches to vehicle routing has focused on alternative
constraint models and additional implied constraints to increase the amount of prun-
ing performed by constraint propagation. Constraint programming is well-suited for
vehicle routing because of its ability to handle real-world (or side) constraints. Vehicle
routing problems that arise in practice often have unique constraints that are particular
to a business entity. In non-constraint programming approaches, such side constraints
often have to be handled in an ad hoc manner. In constraint programming a wide vari-
ety of side constraints can be handled simply by adding them to the core model (see,
e.g., [86, 108]).

Scheduling is the task of assigning resources to a set of activities to minimize a
cost function. Scheduling arises in diverse settings including in the allocation of gates
to incoming planes at an airport, crews to an assembly line, and processes to a CPU.
Constraint programming approaches to scheduling have aimed at generality, with the
ability to seamlessly handle side constraints. As well, much effort has gone into im-
proved implied constraints such as global constraints, edge-finding constraints and
timetabling constraints, which lead to powerful constraint propagation. Additional ad-
vantages of a constraint propagation approach to scheduling include the ability to form
hybrids of backtracking search and local search and the ease with which scheduling
or domain specific heuristics can be incorporated within the search routines (see, e.g.,
[6, 18]).

Configuration is the task of assembling or configuring a customized system from a
catalog of components. Configuration arises in diverse settings including in the assem-
bly of home entertainment systems, cars and trucks, and travel packages. Constraint
programming is well-suited to configuration because of (i) its flexibility in modeling
and the declarativeness of the constraint model, (ii) the ability to explain a failure to
find a customized system when the configuration task is over-constrained and to subse-
quently relax the user’s constraints, (iii) the ability to perform interactive configuration
where the user makes a sequence of choices and after each choice constraint propa-
gation is used to restrict future possible choices, and (iv) the ability to incorporate
reasoning about the user’s preferences (see, e.g., [4, 85]).

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 22
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



F. Rossi, P. van Beek, T. Walsh 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

4.11 Conclusions

Constraint programming is now a relatively mature technology for solving a wide
range of difficult combinatorial search problems. The basic ideas behind constraint
programming are simple: a declarative representation of the problem constraints, com-
bined with generic solving methods like chronological backtracking or local search.
Constraint programming has a number of strengths including: rich modeling languages
in which to represent complex and dynamic real-world problems; fast and general
purpose inference methods, like enforcing arc consistency, for pruning parts of the
search space; fast and special purpose inference methods associated with global con-
straints; hybrid methods that combine the strengths of constraint programming and
operations research; local search methods that quickly find near-optimal solutions;
a wide range of extensions like soft constraint solving and distributed constraint solv-
ing in which we can represent more closely problems met in practice. As a result,
constraint programming is now used in a wide range of businesses and industries in-
cluding manufacturing, transportation, health care, advertising, telecommunications,
financial services, energy and utilities, as well as marketing and sales. Companies
like American Express, BMW, Coors, Danone, eBay, France Telecom, General Elec-
tric, HP, JB Hunt, LL Bean, Mitsubishi Chemical, Nippon Steel, Orange, Porsche,
QAD, Royal Bank of Scotland, Shell, Travelocity, US Postal Service, Visa, Wal-Mart,
Xerox, Yves Rocher, and Zurich Insurance all use constraint programming to opti-
mize their business processes. Despite this success, constraint programming is not
(and may never be) a push-button technology that works “out of the box”. It requires
sophisticated users who master a constraint programming system, know how to model
problems and how to customize search methods to these models. Future research needs
to find ways to lower this barrier to using this powerful technology.

Bibliography

[1] Ilog Solver 4.4. Reference Manual. ILOG SA, Gentilly, France, 1998.
[2] A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex

scheduling and placement problems. Math. Comput. Modelling, 17:57–73,
1993.

[3] J. Allen. Maintaining knowledge about temporal intervals. Journal ACM,
26(11):832–843, 1983.

[4] J. Amilhastre, H. Fargier, and P. Marquis. Consistency restoration and expla-
nations in dynamic CSPs: Application to configuration. Artificial Intelligence,
135(1–2):199–234, 2002.

[5] K.R. Apt. Principles of Constraint Programming. Cambridge University Press,
2003.

[6] P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-Based Scheduling: Applying
Constraint Programming to Scheduling Problems. Kluwer, 2001.

[7] N. Beldiceanu. Global constraints as graph properties on structured network
of elementary constraints of the same type. Technical Report T2000/01, SICS,
2000.

[8] F. Benhamou, D. McAllester, and P. Van Hentenryck. CLP(intervals). In
M. Bruynooghe, editor. Proceedings of International Symposium on Logic Pro-
gramming, pages 124–138. MIT Press, 1994.

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 23
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



24 4. Constraint Programming

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

[9] C. Bessiere, E. Hebrard, B. Hnich, and T. Walsh. Disjoint, partition and intersec-
tion constraints for set and multiset variables. In 10th International Conference
on Principles and Practices of Constraint Programming (CP-2004). Springer-
Verlag, 2004.

[10] C. Bessière and J.-C. Régin. MAC and combined heuristics: Two reasons to
forsake FC (and CBJ?) on hard problems. In Proceedings of the Second Inter-
national Conference on Principles and Practice of Constraint Programming,
pages 61–75, Cambridge, MA, 1996.

[11] C. Bessière, J.-C. Régin, R.H.C. Yap, and Y. Zhang. An optimal coarse-grained
arc consistency algorithm. Artificial Intelligence, 165:165–185, 2005.

[12] S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex, and G. Verfaillie.
Semiring-based CSPs and valued CSPs: Frameworks, properties and compari-
son. Constraints, 4:199–240, 1999.

[13] S. Bistarelli, U. Montanari, and F. Rossi. Constraint solving over semirings. In
Proc. IJCAI 1995, 1995.

[14] S. Bistarelli, U. Montanari, and F. Rossi. Semiring based constraint solving and
optimization. Journal of the ACM, 44(2):201–236, 1997.

[15] D. Brélaz. New methods to color the vertices of a graph. Comm. ACM, 22:251–
256, 1979.

[16] A.A. Bulatov. A dichotomy theorem for constraints on a three-element set. In
Proceedings of 43rd IEEE Symposium on Foundations of Computer Science
(FOCS’02), pages 649–658, 2002.

[17] M. Carlsson and N. Beldiceanu. Arc-consistency for a chain of lexico-
graphic ordering constraints. Technical report T2002-18 Swedish Institute
of Computer Science. ftp://ftp.sics.se/pub/SICS-reports/Reports/SICS-T–2002-
18–SE.ps.Z, 2002.

[18] Y. Caseau and F. Laburthe. Improved CLP scheduling with task intervals. In
Proceedings of the Eleventh International Conference on Logic Programming,
pages 369–383, Santa Margherita Ligure, Italy, 1994.

[19] B.M.W. Cheng, K.M.F. Choi, J.H.M. Lee, and J.C.K. Wu. Increasing constraint
propagation by redundant modeling: an experience report. Constraints, 4:167–
192, 1999.

[20] J.G. Cleary. Logical arithmetic. Future Computing Systems, 2(2):125–149,
1987.

[21] D.A. Cohen, P. Jeavons, C. Jefferson, K.E. Petrie, and B.M. Smith. Symmetry
definitions for constraint satisfaction problems. In P. van Beek, editor. Pro-
ceedings of Eleventh International Conference on Principles and Practice of
Constraint Programming (CP2005), pages 17–31. Springer, 2005.

[22] A. Colmerauer. An introduction to Prolog-III. Comm. ACM, 1990.
[23] A. Colmerauer. Prolog II reference manual and theoretical model. Technical

report, Groupe Intelligence Artificielle, Université Aix-Marseille II, October
1982.

[24] M. Cooper. High-order consistency in valued constraint satisfaction. Con-
straints, 10:283–305, 2005.

[25] M. Cooper, D. Cohen, and P. Jeavons. Characterizing tractable constraints. Ar-
tificial Intelligence, 65:347–361, 1994.

[26] M. Cooper and T. Schiex. Arc consistency for soft constraints. Artificial Intelli-
gence, 154(1–2):199–227, April 2004. See arXiv.org/abs/cs.AI/0111038.

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 24
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV

ftp://ftp.sics.se/pub/SICS-reports/Reports/SICS-T--2002-18--SE.ps.Z
ftp://ftp.sics.se/pub/SICS-reports/Reports/SICS-T--2002-18--SE.ps.Z


F. Rossi, P. van Beek, T. Walsh 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

[27] J. Crawford, G. Luks, M. Ginsberg, and A. Roy. Symmetry breaking predi-
cates for search problems. In Proceedings of the 5th International Conference
on Knowledge Representation and Reasoning, (KR ’96), pages 148–159, 1996.

[28] E. Davis. Constraint propagation with interval labels. Artificial Intelligence,
32:281–331, 1987.

[29] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Comm. ACM, 5:394–397, 1962.

[30] M. Davis and H. Putnam. A computing procedure for quantification theory.
J. ACM, 7:201–215, 1960.

[31] R. Dechter. Learning while searching in constraint satisfaction problems. In
Proceedings of the Fifth National Conference on Artificial Intelligence, pages
178–183, Philadelphia, 1986.

[32] R. Dechter. Enhancement schemes for constraint processing: Backjumping,
learning, and cutset decomposition. Artificial Intelligence, 41:273–312, 1990.

[33] R. Dechter. From local to global consistency. Artificial Intelligence, 55:87–107,
1992.

[34] R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence, 113(1–2):41–85, 1999.

[35] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
[36] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intel-

ligence, 49(1–3):61–95, 1991.
[37] R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction

problems. Artificial Intelligence, 34:1–38, 1988.
[38] D. Diaz. The GNU Prolog web site. http://pauillac.inria.fr/~diaz/gnu-prolog/.
[39] M. Dincbas, P. van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier.

The constraint logic programming language CHIP. In Proc. International Con-
ference on Fifth Generation Computer Systems, Tokyo, Japan, 1988.

[40] G. Dooms, Y. Deville, and P. Dupont. CP(Graph): Introducing a graph com-
putation domain in constraint programming. In 10th International Conference
on Principles and Practices of Constraint Programming (CP-2004). Springer-
Verlag, 2004.

[41] D. Dubois, H. Fargier, and H. Prade. Using fuzzy constraints in job-shop
scheduling. In Proc. of IJCAI-93/SIGMAN Workshop on Knowledge-based Pro-
duction Planning, Scheduling and Control Chambery, France, August 1993.

[42] D. Dubois and H. Prade. Fuzzy Sets and Systems: Theory and Applications.
Academic Press, 1980.

[43] K. Easton, G. Nemhauser, and M. Trick. Solving the traveling tournament prob-
lem: a combined integer programming and constraint programming approach.
In Proceedings of the International Conference on the Practice and Theory of
Automated Timetabling (PATAT 2002), 2002.

[44] T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breaking. In T. Walsh,
editor. Proceedings of 7th International Conference on Principles and Practice
of Constraint Programming (CP2001), pages 93–107. Springer, 2001.

[45] H. Fargier, J. Lang, and T. Schiex. Selecting preferred solutions in fuzzy con-
straint satisfaction problems. In Proc. of the 1st European Congress on Fuzzy
and Intelligent Technologies, 1993.

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 25
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV

http://pauillac.inria.fr/~diaz/gnu-prolog/


26 4. Constraint Programming

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

[46] A.J. Fernandez and P.M. Hill. An interval constraint system for lattice domains.
ACM Transactions on Programming Languages and Systems (TOPLAS-2004),
26(1), 2004.

[47] P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh.
Breaking row and column symmetry in matrix models. In 8th International
Conference on Principles and Practices of Constraint Programming (CP-2002).
Springer, 2002.

[48] P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh. Ma-
trix modelling. Technical Report APES-36-2001, APES group. Available from
http://www.dcs.st-and.ac.uk/~apes/reports/apes-36-2001.ps.gz, 2001. Presented
at FORMUL’01 Workshop on Modelling and Problem Formulation, CP2001
post-conference workshop.

[49] E.C. Freuder. Synthesizing constraint expressions. Comm. ACM, 21:958–966,
1978.

[50] E.C. Freuder and R.J. Wallace. Partial constraint satisfaction. Artificial Intelli-
gence, 58:21–70, 1992.

[51] A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh. Global constraints
for lexicographic orderings. In 8th International Conference on Principles and
Practices of Constraint Programming (CP-2002). Springer, 2002.

[52] T. Frühwirth. Theory and practice of constraint handling rules. Journal of Logic
Programming, 37:95–138, 1998.

[53] T. Frühwirth and S. Abdennadher. Essentials of Constraint Programming.
Springer, 2003.

[54] J. Gaschnig. A constraint satisfaction method for inference making. In Proceed-
ings Twelfth Annual Allerton Conference on Circuit and System Theory, pages
866–874, Monticello, IL, 1974.

[55] J. Gaschnig. Experimental case studies of backtrack vs. Waltz-type vs. new
algorithms for satisfying assignment problems. In Proceedings of the Second
Canadian Conference on Artificial Intelligence, pages 268–277, Toronto, 1978.

[56] P.A. Geelen. Dual viewpoint heuristics for binary constraint satisfaction prob-
lems. In Proceedings of the 10th European Conference on Artificial Intelligence,
pages 31–35, Vienna, 1992.

[57] P.A. Geelen. Dual viewpoint heuristics for binary constraint satisfaction prob-
lems. In Proceedings of the 10th ECAI, pages 31–35, European Conference on
Artificial Intelligence, 1992.

[58] I.P. Gent, E. MacIntyre, P. Prosser, B.M. Smith, and T. Walsh. An empirical
study of dynamic variable ordering heuristics for the constraint satisfaction
problem. In Proceedings of the Second International Conference on Princi-
ples and Practice of Constraint Programming, pages 179–193, Cambridge, MA,
1996.

[59] I.P. Gent and B.M. Smith. Symmetry breaking in constraint programming. In
W. Horn, editor. Proceedings of ECAI-2000, pages 599–603. IOS Press, 2000.

[60] C. Gervet. Interval propagation to reason about sets: definition and implemen-
tation of a practical language. Constraints, 1(3):191–244, 1997.

[61] M.L. Ginsberg. Dynamic backtracking. J. Artificial Intelligence Res., 1:25–46,
1993.

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 26
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV

http://www.dcs.st-and.ac.uk/~apes/reports/apes-36-2001.ps.gz


F. Rossi, P. van Beek, T. Walsh 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

[62] M.L. Ginsberg, M. Frank, M.P. Halpin, and M.C. Torrance. Search lessons
learned from crossword puzzles. In Proceedings of the Eighth National Con-
ference on Artificial Intelligence, pages 210–215, Boston, MA, 1990.

[63] F. Glover and M. Laguna. Tabu Search. Kluwer, 1997.
[64] K. Golden and W. Pang. Constraint reasoning over strings. In F. Rossi, editor.

Proceedings of Ninth International Conference on Principles and Practice of
Constraint Programming (CP2003), pages 377–391. Springer, 2003.

[65] S. Golomb and L. Baumert. Backtrack programming. J. ACM, 12:516–524,
1965.

[66] C. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed phenomena in sat-
isfiability and constraint satisfaction problems. J. Automated Reasoning, 24:67–
100, 2000.

[67] G. Gottlob, N. Leone, and F. Scarcello. A comparison of structural CSP decom-
position methods. Artificial Intelligence, 124(2):243–282, 2000.

[68] R.M. Haralick and G.L. Elliott. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14:263–313, 1980.

[69] W.D. Harvey. Nonsystematic backtracking search. PhD thesis, Stanford Univer-
sity, 1995.

[70] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,
1989.

[71] M. Henz, G. Smolka, and J. Wurtz. Oz—a programming language for multi-
agent systems. In Proc. 13th IJCAI, 1995.

[72] J. Hooker. Logic-Based Methods for Optimization: Combining Optimization
and Constraint Satisfaction. Wiley, New York, 2000.

[73] H.H. Hoos and T. Stützle. Stochastic Local Search: Foundations and Applica-
tions. Morgan Kaufmann, 2004.

[74] E. Hyvönen. Constraint reasoning based on interval arithmetic. Artificial Intel-
ligence, 58:71–112, 1992.

[75] J. Jaffar, et al. The CLP(R) language and system ACM Transactions on Pro-
gramming Languages and Systems, 1992.

[76] J. Jaffar and J.L. Lassez. Constraint logic programming. In Proc. POPL. ACM,
1987.

[77] J. Jaffar and M.J. Maher. Constraint logic programming: A survey. Journal of
Logic Programming, 19–20, 1994.

[78] S. Janson. AKL—A multiparadigm programming language, PhD thesis, Upp-
sala Theses in Computer Science 19, ISSN 0283-359X, ISBN 91-506-1046-5,
Uppsala University, and SICS Dissertation Series 14, ISSN 1101-1335, ISRN
SICS/D-14-SE, 1994.

[79] P. Jeavons, D.A. Cohen, and M. Cooper. Constraints, consistency and closure.
Artificial Intelligence, 101(1–2):251–265, 1998.

[80] P. Jeavons, D.A. Cohen, and M. Gyssens. Closure properties of constraints.
J. ACM, 44:527–548, 1997.

[81] P. Jeavons, D.A. Cohen, and M. Gyssens. How to determine the expressive
power of constraints. Constraints, 4:113–131, 1999.

[82] P. Jeavons and M. Cooper. Tractable constraints on ordered domains. Artificial
Intelligence, 79:327–339, 1995.

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 27
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



28 4. Constraint Programming

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

[83] D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimization by
simulated annealing: An experimental evaluation: Part II. Graph coloring and
number partitioning. Operations Research, 39(3):378–406, 1991.

[84] P. Jonsson and C. Backstrom. A unifying approach to temporal constraint rea-
soning. Artificial Intelligence, 102:143–155, 1998.

[85] U. Junker and D. Mailharro. Preference programming: Advanced problem solv-
ing for configuration. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing, 17(1):13–29, 2003.

[86] P. Kilby, P. Prosser, and P. Shaw. A comparison of traditional and constraint-
based heuristic methods on vehicle routing problems with side constraints.
Constraints, 5(4):389–414, 2000.

[87] Z. Kiziltan and T. Walsh. Constraint programming with multisets. In Proceed-
ings of the 2nd International Workshop on Symmetry in Constraint Satisfaction
Problems (SymCon-02), 2002. Held alongside CP-02.

[88] M. Koubarakis. Tractable disjunctions of linear constraints. In E.C. Freuder, edi-
tor. Proceedings of Second International Conference on Principles and Practice
of Constraint Programming (CP96), pages 297–307. Springer, 1996.

[89] J. Larrosa and P. Meseguer. Exploiting the use of DAC in Max-CSP. In Proc. of
CP’96, pages 308–322, Boston (MA), 1996.

[90] J. Larrosa and P. Meseguer. Partition-based lower bound for Max-CSP. In Proc.
of the 5th International Conference on Principles and Practice of Constraint
Programming (CP-99), pages 303–315, 1999.

[91] J. Larrosa, E. Morancho, and D. Niso. On the practical applicability of bucket
elimination: Still-life as a case study. Journal of Artificial Intelligence Research,
23:421–440, 2005.

[92] Y.C. Law and J.H.M. Lee. Global constraints for integer and set value prece-
dence. In Proceedings of 10th International Conference on Principles and Prac-
tice of Constraint Programming (CP2004), pages 362–376. Springer, 2004.

[93] Y.C. Law and J.H.M. Lee. Breaking value symmetries in matrix models using
channeling constraints. In Proceedings of the 20th Annual ACM Symposium on
Applied Computing (SAC-2005), pages 375–380, 2005.

[94] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1993.
[95] A.K. Mackworth. Consistency in networks of relations. Artificial Intelligence,

8:99–118, 1977.
[96] A.K. Mackworth. On reading sketch maps. In Proceedings of the Fifth Interna-

tional Joint Conference on Artificial Intelligence, pages 598–606, Cambridge,
MA, 1977.

[97] A.K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8:99–118, 1977.

[98] K. Marriott and P.J. Stuckey. Programming with Constraints: An Introduction.
MIT Press, 1998.

[99] J.J. McGregor. Relational consistency algorithms and their application in find-
ing subgraph and graph isomorphisms. Inform. Sci., 19:229–250, 1979.

[100] K. Mehlhorn and S. Thiel. Faster algorithms for bound-consistency of the sort-
edness and alldifferent constraint. In Proceedings of the Sixth International
Conference on Principles and Practice of Constraint Programming, pages 306–
319, Singapore, 2000.

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 28
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



F. Rossi, P. van Beek, T. Walsh 29

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

[101] P. Meseguer and M. Sanchez. Specializing Russian doll search. In Principles
and Practice of Constraint Programming — CP 2001, LNCS, vol. 2239, Paphos,
Cyprus, November 2001, pages 464–478. Springer-Verlag, 2001.

[102] S. Minton, M.D. Johnston, A.B. Philips, and P. Laird. Minimizing conflicts:
A heuristic repair method for constraint satisfaction and scheduling problems.
Artificial Intelligence, 58:161–206, 1992.

[103] R. Mohr and G. Masini. Good old discrete relaxation. In Proceedings of the
8th European Conference on Artificial Intelligence, pages 651–656, Munchen,
Germany, 1988.

[104] U. Montanari. Networks of constraints: Fundamental properties and applications
to picture processing. Inform. Sci., 7:95–132, 1974.

[105] U. Montanari. Networks of constraints: Fundamental properties and applications
to picture processing. Inform. Sci., 7:95–132, 1974.

[106] B. Nebel and H.-J. Burckert. Reasoning about temporal relations: A maximal
tractable subclass of Allen’s interval algebra. J. ACM, 42(1):43–66, 1995.

[107] W.J. Older and A. Vellino. Extending Prolog with constraint arithmetic on real
intervals. In Proceedings of IEEE Canadian Conference on Electrical and Com-
puter Engineering. IEEE Computer Society Press, 1990.

[108] G. Pesant, M. Gendreau, J. Potvin, and J. Rousseau. An exact constraint logic
programming algorithm for the traveling salesman problem with time windows.
Transportation Science, 32(1):12–29, 1998.

[109] A. Petcu and B. Faltings. A scalable method for multiagent constraint optimiza-
tion. In Proceedings of the 19th IJCAI, pages 266–271, 2005.

[110] A. Petcu and B. Faltings. ODPOP: An algorithm for open distributed constraint
optimization. In AAMAS 06 Workshop on Distributed Constraint Reasoning,
2006.

[111] T. Petit, J.-C. Régin, and C. Bessière. Meta-constraints on violations for over
constrained problems. In IEEE–ICTAI’2000 International Conference, pages
358–365, Vancouver, Canada, November 2000.

[112] T. Petit, J.-C. Régin, and C. Bessière. Specific filtering algorithms for over-
constrained problems. In Principles and Practice of Constraint Programming—
CP 2001, LNCS, vol. 2239, Paphos, Cyprus, November 2001, pages 451–463.
Springer-Verlag, 2001.

[113] P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Computa-
tional Intelligence, 9:268–299, 1993.

[114] J.-F. Puget. Breaking all value symmetries in surjection problems. In
P. van Beek, editor. Proceedings of Eleventh International Conference on Prin-
ciples and Practice of Constraint Programming (CP2005). Springer, 2005.

[115] C.-G. Quimper and T. Walsh. Beyond finite domains: The all different and
global cardinality constraints. In 11th International Conference on Principles
and Practices of Constraint Programming (CP-2005). Springer-Verlag, 2005.

[116] J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Pro-
ceedings of the Twelfth National Conference on Artificial Intelligence, pages
362–367, Seattle, 1994.

[117] J.-C. Régin. Generalized arc consistency for global cardinality constraint. In
Proceedings of the Thirteenth National Conference on Artificial Intelligence,
pages 209–215, Portland, OR, 1996.

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 29
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



30 4. Constraint Programming

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

[118] C. Roney-Dougal, I. Gent, T. Kelsey, and S. Linton. Tractable symmetry break-
ing using restricted search trees. In Proceedings of ECAI-2004. IOS Press, 2004.

[119] A. Sadler and C. Gervet. Global reasoning on sets. In Proceedings of Workshop
on Modelling and Problem Formulation (FORMUL’01), 2001. Held alongside
CP-01.

[120] V. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.
[121] T. Schaefer. The complexity of satisfiability problems. In Proceedings of 10th

ACM Symposium on Theory of Computation, pages 216–226, 1978.
[122] T. Schiex. Possibilistic constraint satisfaction problems or “How to handle soft

constraints? In Proc. of the 8th Int. Conf. on Uncertainty in Artificial Intelli-
gence, Stanford, CA, July 1992.

[123] T. Schiex. Arc consistency for soft constraints. In Principles and Practice of
Constraint Programming—CP 2000, LNCS, vol. 1894, Singapore, September
2000, pages 411–424. Springer, 2000.

[124] T. Schiex, H. Fargier, and G. Verfaillie. Valued constraint satisfaction problems:
hard and easy problems. In Proc. IJCAI 1995, pages 631–637, 1995.

[125] T. Schiex and G. Verfaillie. Nogood recording for static and dynamic constraint
satisfaction problems. International Journal on Artificial Intelligence Tools,
3:1–15, 1994.

[126] M. Sellmann and P. Van Hentenryck. Structural symmetry breaking. In Proceed-
ings of the 19th IJCAI, International Joint Conference on Artificial Intelligence,
2005.

[127] B. Selman, H. Levesque, and D.G. Mitchell. A new method for solving hard
satisfiability problems. In Proceedings of the Tenth National Conference on Ar-
tificial Intelligence, pages 440–446, San Jose, CA, 1992.

[128] B. Smith, K. Stergiou, and T. Walsh. Using auxiliary variables and implied con-
straints to model non-binary problems. In Proceedings of the 16th National
Conference on AI, pages 182–187. American Association for Artificial Intel-
ligence, 2000.

[129] P. Snow and E.C. Freuder. Improved relaxation and search methods for approxi-
mate constraint satisfaction with a maximin criterion. In Proc. of the 8th Biennal
Conf. of the Canadian Society for Comput. Studies of Intelligence, pages 227–
230, May 1990.

[130] R.M. Stallman and G.J. Sussman. Forward reasoning and dependency-directed
backtracking in a system for computer-aided circuit analysis. Artificial Intelli-
gence, 9:135–196, 1977.

[131] K. Stergiou and M. Koubarakis. Backtracking algorithms for disjunctions of
temporal constraints. Artificial Intelligence, 120(1):81–117, 2000.

[132] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1994.
[133] P. van Beek. On the minimality and decomposability of constraint networks. In

Proceedings of 10th National Conference on Artificial Intelligence, pages 447–
452. AAAI Press/The MIT Press, 1992.

[134] P. van Beek and R. Dechter. Constraint tightness and looseness versus local and
global consistency. J. ACM, 44:549–566, 1997.

[135] P. van Hentenryck. The OPL Optimization Programming Language. MIT Press,
1999.

[136] P. van Hentenryck and L. Michel. Constraint-Based Local Search. MIT Press,
2005.

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 30
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



F. Rossi, P. van Beek, T. Walsh 31

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

[137] P. van Hentenryck, L. Michel, and Y. Deville. Numerica: A Modeling Language
for Global Optimization. MIT Press, 1997.

[138] W.J. van Hoeve. A hyper-arc consistency algorithm for the soft alldifferent
constraint. In Proc. of the Tenth International Conference on Principles and
Practice of Constraint Programming (CP 2004), LNCS, vol. 3258. Springer,
2004.

[139] W.J. van Hoeve, G. Pesant, and L.-M. Rousseau. On global warming (softening
global constraints). In Proc. of the 6th International Workshop on Preferences
and Soft Constraints, Toronto, Canada, 2004.

[140] G. Verfaillie, M. Lemaître, and T. Schiex. Russian doll search. In Proc. AAAI
1996, pages 181–187, Portland, OR, 1996.

[141] M. Vilain and H. Kautz. Constraint propagation algorithms for temporal rea-
soning. In Proceedings of 5th National Conference on Artificial Intelligence,
pages 377–382. Morgan Kaufmann, 1986.

[142] M. Wallace, S. Novello, and J. Schimpf. ECLiPSe: A platform for constraint
logic programming. ICL Systems Journal, 12(1):159–200, 1997. Available via
http://eclipse.crosscoreop.com/eclipse/reports/index.html.

[143] R.J. Wallace. Directed arc consistency preprocessing. In M. Meyer, editor. Se-
lected Papers from the ECAI-94 Workshop on Constraint Processing, LNCS,
vol. 923, pages 121–137. Springer, Berlin, 1995.

[144] T. Walsh. Search in a small world. In Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence, pages 1172–1177, Stockholm, 1999.

[145] T. Walsh. Consistency and propagation with multiset constraints: A formal
viewpoint. In F. Rossi, editor. 9th International Conference on Principles and
Practices of Constraint Programming (CP-2003). Springer, 2003.

[146] M. Yokoo. Weak-commitment search for solving constraint satisfaction prob-
lems. In Proceedings of the 12th AAAI, pages 313–318, 1994.

[147] M. Yokoo. Distributed Constraint Satisfaction: Foundation of Cooperation in
Multi-Agent Systems. Springer, 2001.

[148] M. Yokoo, E.H. Durfee, T. Ishida, and K. Kuwabara. Distributed constraint sat-
isfaction for formalizing distributed problem solving. In Proceedings of the 12th
ICDCS, pages 614–621, 1992.

[149] Y. Zhang, R. Yap, and J. Jaffar. Functional eliminations and 0/1/all con-
straints. In Proceedings of 16th National Conference on Artificial Intelligence,
pages 281–290. AAAI Press/The MIT Press, 1999.

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 31
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV

http://eclipse.crosscoreop.com/eclipse/reports/index.html


1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

Proof of Raw Subject Index

Page: 1
constraint programming
constraint satisfaction problem

Page: 2
consistency!local
constraint propagation

Page: 3
consistency!arc consistency
consistency!arc consistency
consistency!hyper arc consistency
consistency!generalized arc consistency
consistency!bounds consistency
constraints!temporal
consistency!path consistency
constraint!global

Page: 4
constraint!all-different
constraint!cardinality
constraint!cumulative
search!depth-first

Page: 5
search!branching strategy
constraint!propagation
unit propagation
forward checking
search!forward checking
maintaining arc consistency
search!maintaining arc consistency
constraint!implied

Page: 6
nogood
constraint!nogood
dynamic backtracking
search!dynamic backtracking
dependency-directed backtracking
search!dependency-directed backtracking
backjumping
search!backjumping
conflict-directed backjumping
search!conflict-directed backjumping
heuristic!variable ordering

heuristic!value ordering

Page: 7
restarts
randomization
search!randomization and restarts
local search
search!local

Page: 8
linear programming
relaxation
constraints!global

Page: 9
Schaefer’s dichotomy theorem
Horn clauses
constraints!ZOA

Page: 10
constraints!row-convex
consistency!path consistency

Page: 11
interval algebra
constraints!linear Horn
linear Horn
point algebra
constraint graph
constraint!graph

Page: 12
constraint!channeling

Page: 13
symmetry
symmetry breaking

Page: 14
preferences
constraints!soft
constraints!fuzzy
constraints!possibilistic
constraints!weighted
constraints!semiring

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 32
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV



Proof of Raw Subject Index

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

Page: 15
constraints!valued
search!branch and bound
inference

Page: 16
bucket elimination
consistency!adaptive
soft constraint propagation

Page: 17
constraint logic programming
logic programming!constraint logic

programming
CLP
logic programming
resolution
unification

Page: 18

constraint logic programming
logic programming

Page: 19
constraint logic programming

Page: 20
constraints!temporal
point algebra
interval algebra
constraints!set

Page: 21
constraints!distributed

Page: 22
constraint programming!applications
vehicle routing
scheduling
configuration

fai3 v.2007/08/28,v 1.9 Prn:31/08/2007; 8:55 F:fai3004.tex; VTEX/ML p. 33
aid: 3004 pii: S1574-6526(07)03004-0 docsubty: REV


	Constraint Programming
	Introduction
	Constraint Propagation
	Local Consistency
	Global Constraints

	Search
	Backtracking Search
	Constraint propagation during search
	Nogood recording
	Backjumping
	Variable and value ordering heuristics
	Randomization and restart strategies

	Local Search
	Hybrid Methods

	Tractability
	Tractable Constraint Languages
	Some examples
	Constraint tightness
	Algebraic results
	Dichotomy results
	Infinite domains

	Tractable Constraint Graphs

	Modeling
	CP v ¬ CP
	Viewpoints
	Symmetry

	Soft Constraints and Optimization
	Modeling Soft Constraints
	Searching for the Best Solution
	Inference in Soft Constraints
	Bucket elimination
	Soft constraint propagation


	Constraint Logic Programming
	Logic Programs
	Constraint Logic Programs
	LP and CLP Languages
	Other Programming Paradigms

	Beyond Finite Domains
	Intervals
	Temporal Problems
	Sets and other Datatypes

	Distributed Constraint Programming
	Application Areas
	Conclusions
	Bibliography


