
Global Grammar Constraints

Claude-Guy Quimper1 and Toby Walsh2

1 School of Computer Science, University of Waterloo, Canada,
cquimper@math.uwaterloo.ca

2 NICTA and UNSW, Sydney, Australia, tw@cse.unsw.edu.au

Abstract. We consider global constraints over a sequence of variables
which restrict the values assigned to be a string within a given language
defined by a grammar or automaton. Such constraints are useful in a
wide range of scheduling, rostering and sequencing problems. For regular
languages, we gave a simple encoding into ternary constraints that can
be used to enforce GAC in time linear in the number of variables. We
study a number of extensions including regular languages specified by
non-deterministic automata, and soft and cyclic versions of the global
constraint. For context-free languages, we give two propagators which
enforce GAC based on the CYK and Earley parsers.

1 Introduction

Global constraints are an important tool in the constraint toolkit. Unfortunately,
whilst it is usually easy to specify when a global constraint holds, it is often dif-
ficult to build a good propagator. For example, it is easy to specify when an
AllDifferent constraint holds as we just need to check Xi 6= Xj for i < j.
However, it is complex to implement a global propagator which is efficient, effec-
tive and incremental. For this reason, researchers have tried to build frameworks
in which global constraints can be specified and efficient propagators automati-
cally extracted. One direction is to specify global constraints using Boolean com-
binations of more primitive constraints [1–3]. The problem here is that either
we lose the global nature of the propagator or propagation becomes intractable.
Another direction is to specify global constraints via graph properties where the
graph is a structured network of elementary constraints [4]. The problem here
is to extract propagators from such specifications (but see [5, 6] for some first
steps). Indeed, such specifications can easily specify constraints like NValues

which are NP-hard to propagate completely.
Another direction is to specify global constraints via grammars or automata.

The Regular constraint [7] permits us to specify a global constraint by means
of a regular language, and to propagate this constraint specification efficiently
and effectively. More precisely, the Regular constraint ensures that the values
taken by a sequence of variables form a string accepted by the deterministic
finite automaton (DFA). Regular languages are precisely those accepted by a
DFA. We show here how to implement a propagator for the Regular constraint
using nothing more than ternary constraints. We can therefore incorporate the

Regular constraint into constraint toolkits with relative ease. One limitation of
this approach is that we cannot compactly specify everything we might like using
just deterministic finite automaton. We therefore consider a number of extensions
including regular languages specified by non-deterministic finite automata, and
soft and cyclic versions of this global constraint. Finally, we consider global
constraints specified by context-free and context-sensitive languages.

2 Background

A constraint satisfaction problem consists of a set of variables, each with a do-
main of values, and a set of constraints specifying allowed combinations of values
for given subsets of variables. A solution is an assignment of values to variables
satisfying the constraints. Finite domain variables take values which are taken
from a finite set of integers. Set variables takes values which are sets of integers.
A set variable S has a lower bound lb(S) for its definite elements and an upper
bound ub(S) for its definite and potential elements. Constraint solvers typically
explore partial assignments enforcing a local consistency property. Given a con-
straint C on finite domain variables, a support is assignment to each variable of
a value in its domain which satisfies C. A constraint C on finite domain vari-
ables is generalized arc consistent (GAC) iff for each variable, every value in its
domain belongs to a support. We will also consider constraints involving both
finite domain and set variables. We therefore consider a local consistency prop-
erty for such situations. Given a constraint C on finite domain and set variables,
a hybrid support on C is an assignment of a value to each finite domain vari-
able within its domain, and of a set to each set variable between its lower and
upper bounds which satisfies C. A value for an integer or set variable is hybrid

consistent with C iff there exists a hybrid support assigning this value to this
variable. A constraint C is hybrid consistent (HC) iff for each integer variable,
every value in its domain belongs to an hybrid support, and for each set variable
S the values in ub(S) belong to S in at least one hybrid support, and the values
in lb(S) belong to S in all hybrid supports.

We will consider global constraints which are specified in terms of a grammar
or automaton which accepts just valid assignments for a sequence of variables. A
deterministic finite automaton (DFA) Ω is given by 〈Q, Σ, T, q0, F 〉 where Q is
a finite set of states, Σ is an alphabet, T : Σ×Q 7→ Q is the transition function,
q0 ∈ Q is the initial state and F ⊆ Q is the set of final (or accepting) states. A
non-deterministic finite automaton (NFA) is given by a 5-tuple (Q, Σ, δ, q0, F)
where δ is a transition function from Σ ×Q 7→ 2Q. The automaton starts in the
initial state q0. In state q, the automaton inputs the next symbol s ∈ Σ and non-
deterministically moves to one of the states in δ(s, q). The string is accepted iff
there is a path that ends in a state q ∈ F . Both DFA and NFA accept precisely
regular languages. Context-free languages are above regular languages in the
Chomsky hierarchy. Context-free languages are exactly those accepted by non-
deterministic pushdown automaton. A context-free language can be specified by
a set of grammar rules in which the left-hand side has just one non-terminal,
and the right-hand side may have a string of terminals and non-terminals. In

fact, any context-free grammar can be written in Chomsky normal form in which
each rule yields either just one terminal or two non-terminals.

3 Regular constraint

In many scheduling, rostering and sequencing problems, we may need to ensure
certain patterns do (or do not) occur over time. For example, we may wish
that no worker has three consecutive night shifts. The Regular constraint and
related constraints like Stretch have been proposed to model such situations
[7]. The constraint Regular(A, [X1, . . . , Xn]) holds iff the string defined by
the sequence of variables, X1 to Xn is part of the regular language recognized
by the deterministic finite automaton (DFA), A. This can be used to encode
a wide variety of useful global constraints including the Stretch constraint
[7], and the precedence constraint for breaking value symmetries [8]. Pesant
gives a domain consistency algorithm for the Regular constraint based on
dynamic programming that runs in O(ndQ) time and O(ndQ) space where d is
the maximum domain size and Q is the number of states of the DFA.

We show here that dynamic programming is not needed. The Regular con-
straint can be encoded using a simple sequence of ternary constraints. Enforcing
GAC on this decomposition achieves GAC on the original Regular constraint.
In addition, enforcing GAC on the decomposition takes just O(ndQ) time, as
with Pesant’s propagator. To encode the Regular constraint, we introduce a
second sequence of variables, Q0 to Qn to represent the state of the automa-
ton. We then post the sequence of transition constraints C(Xi+1, Qi, Qi+1) for
0 ≤ i < n which hold iff Qi+1 = T (Xi+1, Qi) where T is the transition function
of the DFA. In addition, we post the unary constraints Q0 = q0 and Qn ∈ F .

Theorem 1 Enforcing GAC on the ternary encoding of the Regular con-

straint enforces GAC on the original Regular constraint in O(ndQ) time.

Proof: Clearly an assignment which satisfies the encoding corresponds to a
string accepted by the DFA. As the constraint graph of this encoding is Berge-
acyclic, enforcing GAC on the individual ternary constraints achieves GAC on
the original Regular constraint. Since the third argument of T is functional on
the first two arguments, it takes O(dQ) time to enforce GAC on each ternary
constraint. As there are O(n) ternary constraints, the total time complexity to
enforce GAC on the decomposition is O(ndQ). ⋄

To enforce GAC on the ternary constraints in the decomposition, we can use
the table constraint available in many solvers, a generic propagator like GAC-
schema, or primitives like implication. Alternatively we can use any efficient
algorithm available to propagate the ternary constraints. Consider, for exam-
ple, the constraint Max(N, [X1, . . . , Xn]) which ensures that N is the maximum
value taken by X1 to Xn. This can be implemented with a Regular constraint
that uses a DFA with d possible states. A naive implementation using a Table

constraint will take O(nd2) time to propagate. However, we can post the ternary

transition constraints symbolically: Qn+1 = max(Xn+1, Qn). Each ternary tran-
sition constraint can be propagated in constant time so the overall time com-
plexity reduces from O(nd2) to just O(n).

Another advantage of this encoding is that we have explicit access to the
states of the automaton. Consider, for example, a rostering problem where work-
ers are allowed to work for up to three consecutive shifts and then must take a
break. This can be specified with a simple Regular language constraint. Sup-
pose we want to minimize the number of times a worker has to work for three
consecutive shifts. To model this, we can impose a global cardinality constraint
on the state variables to count the number of times we visit the state representing
three consecutive shifts, and minimize the value taken by this variable.

The states of the automaton need not be finite domain variables but can,
for example, be set variables. For instance, we can model the open stacks prob-
lem from the IJCAI-05 constraint modelling and solving challenge using two
automata. The first automaton has a state variable which is the set of cus-
tomers who have products produced so far. The transition function is simply
Qi+1 = Qi ∪ customer(Xi) where customer returns the set of customers order-
ing a given product. The second automaton is identical but runs backwards from
Xn to X1. To restrict the number of open stacks, we simply post a constraint
on the cardinality of the intersection of the two sets of state variables.

4 NFA constraint

A limitation of the Regular constraint is that the language needs to be spec-
ified by a DFA. Unfortunately, there are regular languages which can only be
defined by a DFA with an exponential number of states. Consider, for example,
a scheduling problem where we wish to ensure that a maintenance shift takes
place k shifts before we close the factory for the winter. This might translate
to a sequence of shift variables which take the values defined by the regular
expression: 0∗(1|2)∗2(1|2)k−10∗ where 0 represents the factory being closed, 1
represents a production shift and 2 represents a maintenance shift. Any DFA

specifying this regular language has at least 2k states.

One way around this problem is to use a non-deterministic finite automaton
(NFA). Whist NFA still only recognize regular languages, they can do so with
exponentially fewer states than the smallest DFA. Our maintenance scheduling
problem can, for example, be represented by a NFA with just O(k) states. We
let NFA(A, [X1, . . . , Xn]) be a global constraint which holds iff X1 to Xn give a
string recognized by the non-deterministic finite automaton A. We can permit
the NFA to use ǫ transitions (which do not consume any input symbol) since
any NFA using such transitions can be converted into one that does not use
them without increasing the number of states.

To propagate NFA(A, [X1, . . . , Xn]) we can again encode it into a simple
sequence of ternary constraints by introducing a sequence of state variables, Q0

to Qn to represent the state of the DFA. We then post the sequence of ternary
constraints D(Xi+1, Qi, Qi+1) for 0 ≤ i < n which hold iff Qi+1 ∈ δ(Xi+1, Qi)

where δ is the transition function of the NFA. We again let Q0 = q0 and Qn ∈ F .
As with the Regular constraint, the constraint hyper-graph of the encoding
is Berge-acyclic [9]. Enforcing GAC on this decomposition therefore achieves
GAC on NFA(A, [X1, . . . , Xn]). This takes O(ndQ2) time in general. However,
if the automaton A is deterministic, the ternary constraints are functional on
their first two arguments, and we can achieve GAC in O(ndQ) time (as with Pe-
sant’s algorithm for the Regular constraint specified by a DFA). This analysis
may leave the impression that propagating the NFA constraint is more diffi-
cult than propagating the Regular constraint. This is not the case. The NFA

constraint can give exponential savings. Enforcing GAC for a deterministic or
non-deterministic automaton takes O(nT) time, where T is the number of tran-
sitions in the automaton. This number can be exponentially smaller for a NFA

compared to a DFA. The key to a fast propagation algorithm is to encode the
regular language with the fewest number of transitions T regardless of whether
the automaton is deterministic or non-deterministic.

5 Soft forms of the Regular constraint

If our problem is over-constrained, we might want to insist that we are “near”
to a string in the regular language. van Hoeve, Pesant and Rousseau [10] pro-
posed a generalization of the Regular constraint to deal with such situations.
Regularsoft([X1, . . . , Xn], N, Ω) holds iff the values taken by X1 to Xn form a
string that is at most distance N from a string accepted by Ω. Distance is either
Hamming distance (giving the usual variable-based costs) or edit distance (which
may be more useful in certain circumstances). We can model Hamming distance
using an additional sequence of variables, D0 to Dn in which to count distance.
More precisely, we post the constraints E(Xi+1, Qi, Qi+1, Di, Di+1) which hold
iff either T (Xi+1, Qi) = Qi+1 and Di+1 = Di, or T (Xi+1, Qi) 6= Qi+1 and
Di+1 = Di + 1. In addition, we need Q0 = q0, Qn ∈ F , D0 = 0 and Dn ≤ N .
We can again implement a constraint like E using a table constraint, a generic
propagator like GAC-schema, or primitives like implication and equality. To
model edit distance, we again count using a sequence of variables. We model
substitutions (as above), and insertions by letting E also hold if Qi+1 = Qi and
Di+1 = Di + 1. Deletions require a little more work. Let Gk(q) be the set of
states that can be reached from state q with a word of size k. We then also let E

hold if q ∈ Gk(Qi), T (Xi+1, q) = Qi+1 and Di+1 = Di+k. In either case, decom-
position now hinders propagation as the constraint graph is not Berge-acyclic.
We can either accept this, or achieve global consistency by combining together
the cost and the state information into a single tuple variable. This increases the
number of states by a factor of O(n) so we achieve GAC in O(n2dQ). We can
deal with soft forms of the NFA constraint in a similar way.

6 Cyclic forms of the Regular constraint

We may want to find a repeating sequence. We therefore introduce two cyclic
forms of the Regular constraint. Regular+ considers how the sequence wraps

around. More precisely, Regular+(A, [X1, . . . , Xn]) holds iff the string defined
by X1 . . . XnX1 is part of the regular language recognized by the determinis-
tic finite automaton A. For example, in a rostering problem where the shift
pattern is repeated every four weeks, such a constraint can be used to ensure
that shifts changes only according to a set of valid patterns (e.g. a night shift
is only followed by another night shift or a rest day, and is not followed by a
day shift). A stronger form of cyclicity is defined by the Regularo constraint
which ensures that any rotation of the sequence gives a string in the regular
language. More precisely, Regularo(A, [X1, . . . , Xn]) holds iff the strings de-
fined by Xi . . . X1+(i+n−1 mod n) for 1 ≤ i ≤ n are part of the regular language
recognized by the deterministic finite automaton A. For example, in a rostering
problem where the shift pattern is repeated every four weeks, we might want to
insist that no person works more than three night shifts in any seven day period.

6.1 Regular+ constraint

We can decompose Regular+ into a non-cyclic Regular constraint and an
additional equality constraint. More precisely, Regular+(A, [X1, . . . , Xn]) de-
composes into Regular(A, [X1, . . . , Xn, Xn+1]) and X1 = Xn+1. Not surpris-
ingly, this decomposition hinders propagation. To enforce GAC on Regular+,
we can create a new automaton A′ = 〈Q′, Σ, T ′, q′0, F

′〉. Let C = {c ∈ Σ |
T (c, q0) is defined} be the set of characters allowed to start a sequence. We con-
struct the set of states Q′ by duplicating each non-initial state of A. We have
Q′ = {qc | q ∈ Q − {q0} and c ∈ C} ∪ {q′0}. The set of final states is given by
F ′ = {qc | q ∈ F and c ∈ C}. We have the following transitions T ′: T ′(t, qc

i) = qc
j

for all c ∈ C, qi, qj ∈ Q− ({q0}∪F), t ∈ Σ such that T (t, qi) = qj ; T ′(c, q′0) = qc
i

for T (c, q0) = qi and T ′(c, qc) = qc
f for all qf ∈ F such that T (c, q) = qf . This

new automaton accepts a subset of the sequences accepted by A, those whose
first and last character are equal. We can therefore use this new automaton and
a normal Regular constraint to enforce GAC on Regular+ in O(nd2Q) time.

6.2 Regularo constraint

The cyclic Regularo constraint can also be decomposed into a sequence of
Regular constraints. More precisely, Regularo(A, [X1, . . . , Xn]) decomposes
into Regular(A, [Xi, . . . , X1+(i+n−1 mod n)]) for 1 ≤ i ≤ n. Not surprisingly,
this decomposition hinders propagation. Consider the automaton A which ac-
cepts strings that alternate 0 and 1. Then the decomposition into three Regular

constraints is GAC if Xi ∈ {0, 1}. On the other hand, enforcing GAC on
Regularo(A, [X1, X2, X3]) gives a domain wipeout. Nevertheless, the decom-
position is a way to propagate Regularo as enforcing GAC is NP-hard.

Theorem 2 Enforcing GAC on a Regularo constraint is NP-hard.

Proof: Consider a graph G = 〈V, E〉 in which we want to find a Hamiltonian
cycle. Let A be an automaton with alphabet Σ accepting any sequence such
that the first character appears only once in the sequence. Such an automaton

requires no more than O(d) states and O(d2) transitions where d = |Σ|. Let B be
an automaton whose alphabet is Σ and that accepts any walk in graph G, i.e. a
character a ∈ Σ can be followed by a character b ∈ Σ iff (a, b) ∈ E. Automaton
B can be constructed with one state per node in V and one transition per edge
in E. We choose an arbitrary state as an initial state and all states are terminal
states. Finally, we construct in polynomial time an automaton C = A ∩ B that
accepts the intersection of both languages. This automaton has no more than
O(d2) states and O(d4) transitions. There is a Hamiltonian cycle in graph G if
and only if Regularo(C, [X1, . . . , Xn]) is satisfiable for dom(Xi) = Σ. Hence
checking for support for the Regularo constraint is NP-hard. ⋄

Similar results can be derived for cyclic forms of the NFA constraint.

7 Other extensions of Regular

We consider two more generalizations of the Regular constraint that are met
in practice. The first is where we have some values which are forced to oc-
cur (e.g. a maintenance shift must occur somewhere in the schedule). The sec-
ond is where variables are repeated (e.g. we want to get the same shift each
weekend). Unfortunately, in both cases, it becomes NP-hard in general to en-
force GAC. To force certain values to occur somewhere within a Regular con-
straint, we consider Regularfix(A, [X1, . . . , Xn], [B1, . . . , Bm]) which holds iff
both Regular(A, [X1, . . . , Xn]) holds and Bi = 1 iff ∃j.Xj = i for all 1 ≤ i ≤ m.

Theorem 3 Enforcing GAC on a Regularfix constraint is NP-hard even if Bi

are ground.

Proof: A simple reduction from Hamiltonian Path. The result also quickly fol-
lows from the proof that enforcing GAC on the Forced Shift Stretch constraint
is NP-hard [11]. ⋄

Theorem 4 Enforcing GAC on a Regular constraint is NP-hard when vari-

ables are repeated, even if no variable is repeated more than three times.

Proof: We use a reduction from a special case of 3SAT in which at most three
clauses contain a variable or its negation. Each Boolean variable x in the 3SAT
problem is represented by (at most three occurrences of) a CSP variable X in
the Regular constraint. If the 3SAT problem has m clauses, then we construct
a Regular constraint over 4m CSP variables. Each clause is represented by a
block of 4 variables. Suppose the ith clause is x ∨ ¬y ∨ z. Then we have the
sequence of variables: UXY Z where U is a CSP variable introduced to ensure
we satisfy the clause, and X , Y and Z are 0/1 variables representing the Boolean
variables. The domain of U are the 7 tuples satisfying the clause (e.g. for x∨¬y∨z,
the domain of the clause variable includes 〈1, 0, 0〉 but not 〈0, 1, 0〉). The states
of the DFA are all possible tuples of truth values up to size 3 and an initial
state q0 which is also the final accepting state. The transition function satisfies
T (U, q0) = U (that is, we transition from the initial state to the value in the first

clause variable), T (X, 〈X, Y, Z〉) = 〈Y, Z〉, T (Y, 〈Y, Z〉) = 〈Z〉, T (Z, 〈Z〉) = q0.
A string accepted by this DFA corresponds to a satisfying truth assignment.
Hence, enforcing GAC is NP-hard. ⋄

8 Cfg constraint

Another generalization is to context-free languages. Unlike the generalizations
considered in the last section, this is tractable. However, the high cost of propa-
gation means this generalization may be limited to small grammars. Context-free
languages strictly contain regular languages. For example, consider a stacking
constraint which ensures that we have a sequence of null characters, n followed
by a sequence of objects and then its reverse, and finally another sequence of null
characters. For simplicity, we consider just two types of object, a and b being
stacked. Thus, the global constraint ensures that we have a string of the form
n∗wwrevn∗ where w ∈ {a, b}∗ and |w| ≥ 1. This language is not regular but can
be specified by a Cfg constraint with the following grammar, G1:

S → N P | P | P N

P → a P a | b P b | a a | b b

N → n | n N

Where S is the start symbol.
We therefore introduce the global grammar constraint Cfg(G, [X1, . . . , Xn])

which ensures that X1 to Xn form a string accepted by the context-free grammar
G. Such a constraint might be useful in a number of applications:

Rostering and car sequencing: we might wish to express constraints that
are not expressible using a regular language (e.g. that there must be twice
as many cars on the assembly line without the sunroof option as with);

Configuration: a product might be hierarchically specified using a context-
free grammar (e.g. the computer consists of a motherboard, and input and
output devices, the motherboard itself consists of a CPU, and memory, etc.);

Bioinformatics: patterns in genes and other types of sequences involving palin-
dromes might be represented using a context-free grammar;

Natural language processing: in speech recognition, we may need to choose
between different possible words which can be parsed with a context-free
grammar;

To illustrate the Cfg constraint, we consider a small example. Suppose
X1 ∈ {n, a}, X2 ∈ {b}, X3 ∈ {a, b} and X4 ∈ {n, a}, Then enforcing GAC
on Cfg(G1, [X1, X2, X3, X4]) prunes a from X3 as there are only two satisfying
sequences: nbbn and abba.

8.1 CYK-style propagator

To achieve GAC on a Cfg constraint, we give a propagator based on the CYK
parser which requires the context-free grammar to be in Chomsky normal form.

We assume that S is the unique starting non-terminal. The propagator given
in Algorithm 1 proceeds in two phases. In the first phase (lines 1 to 7), we
use dynamic programming to construct a table V [i, j] with the potential non-
terminal symbols that can be parsed using values in the domains of Xi to Xi+j−1.
V [1, n] thus contains all the possible parsings of the sequence of n variables.

In the second phase of the algorithm (lines 9 to 19), we backtrack in the table
V and mark each triplet (i, j, A) such that there exists a valid sequence of size
n in which A generates the substring of size j starting at i. When the triplet
(i, 1, A) is marked, we conclude there is a support for every value a ∈ dom(Xi)
such that A → a ∈ G.

Algorithm 1: CYK-prop(G, [X1, . . . , Xn])

for i = 1 to n do1

V [i, 1]← {A | A→ a ∈ G, a ∈ dom(Xi)}2

for j = 2 to n do3

for i = 1 to n− j + 1 do4

V [i, j]← ∅5

for k = 1 to j − 1 do6

V [i, j]← V [i, j] ∪ {A | A→ BC ∈ G, B ∈ V [i, k], C ∈ V [i + k, j − k]}7

if S 6∈ V [1, n] then return “Unsatisfiable”8

mark (1, n, S)9

for j = n downto 2 do10

for i = 1 to n− j + 1 do11

for A→ BC ∈ G such that (i, j, A) is marked do12

for k = 1 to j − 1 do13

if B ∈ V [i, k], C ∈ V [k + k, j − k] then14

mark (i, k, B)15

mark (i + k, j − k, C)16

for i = 1 to n do17

dom(Xi)← {a ∈ dom(Xi) | A→ a ∈ G, (i, 1, A) is marked}18

return “Satisfiable”19

Theorem 5 CYK-prop enforces GAC on Cfg(G, [X1, . . . , Xn]) in Θ(|G|n3) time

and Θ(|G|n2) space.

Proof: (Correctness) Follows quickly from the correctness of the CYK parser
as we simply trace back every support that can generate a valid sequence.

(Complexity) Lines 1 to 7 run in Θ(|G|n3) steps and require Θ(|G|n2) mem-
ory since it is essentially the CYK-algorithm. Lines 9 to 19 clearly run in
Θ(|G|n3) steps and require Θ(|G|n2) bits, one for each element in the sets con-
tained in table V . ⋄

When the propagator is used within search, we can perform the dynamic
programming incrementally. More specifically, we can restrict computation to
those array elements V [i, j] which can possibly have changed. For instance, if
only the domain of Xk changes, then we only need to re-compute V [i, j] when
k ∈ [i, i+ j−1]. There are exactly k(n−k+1) such entries. The running time of
the first phase can be brought downto O(|G|k(n − k)n). When k = 1 or k = n,
we obtain a complexity of O(|G|n2). When k = n

2 , we remain with a complexity
of O(|G|n3). The second phase can also be implemented incrementally. For each
element A ∈ V [i, j], we count how many times the triplet (i, j, A) has been
marked. When a terminal A is removed from a cell V [i, j], we check for each
rule A → BC ∈ G and each 1 ≤ k < j if we have B ∈ V [i, k] and C ∈
V [i + k, j − k]. If so, we decrement by one the number of times the triplets
(i, k, B) and (i + k, j − k, C) have been marked. If a counter reaches 0, we can
remove the corresponding element form the list and propagate the change. Again,
the time needed for this operation is bounded by O(|G|n3) but will most likely
perform better in practice than recomputing the whole table V .

8.2 Earley-style propagator

Our second propagator is based on the popular Earley chart parser which also
uses dynamic programming to parse a context-free language. Whilst this propa-
gator is more complex than the CYK-based propagator, it has several practical
and theoretical advantages. First, the Earley parser is not restricted to grammars
in Chomsky normal form. Second, it is often much more efficient than CYK as it
parses strings top-down. For context-free grammars with few acceptable strings,
it will therefore do little work. It also performs particularly well when the pro-
ductions are left-recursive. Third, although the Earley parser runs in O(n3) time
in the worst case like the CYK algorithm, due to its top-down nature, it takes
just O(n2) time on any unambiguous context-free grammar, and is linear on a
wide range of useful grammars like LR(0).

The propagator again uses dynamic programming to build up possible sup-
port. Productions are annotated with a “dot” indicating position of the parser.
For example, S → N•P represents the fact that: the production S → NP has
been used in the parsing, we have already parsed N and so are now expecting P .
Without loss of generality, we assume that there is an unique starting production
of the form S → U . We therefore begin with S → •U . A successful parsing is
thus when we generate S → U•.

Algorithm 2 is the Earley chart parser augmented with the sets S that keep
track of the supports for each value in the domains. We use a special data
structure to implement these sets S. We first build the basic sets {Xi = v} for
every potential support v ∈ dom(Xi). Once a set is computed, its value is never
changed. To compute the union of two sets A ∪ B, we create a set C with a
pointer on A and a pointer on B. This allows to represent the union of two sets
in constant time. The data structure form a directed graph where the sets are
the nodes and the pointers are the edges. To enumerate the content of a set S,

Algorithm 2: Earley-Prop(G, [X1, . . . , Xn])

for i = 0 to n do C[i]← ∅1

queue← {(s→ •u, 0, ∅)}2

for i = 0 to n + 1 do3

for state ∈ C[i] do push(state,queue)4

while queue is not empty do5

(r, j, S)← pop(queue)6

add((r, j, S), C[i])7

if r = (u→ v•) then8

foreach (w→ . . . •u . . . , k, T) ∈ C[j] do9

add((w→ . . . u• . . . , k, S ∪ T), queue)10

else if i ≤ n and r = (u→ . . . •v . . .) and v ∈ dom(Xi) then11

add((u→ . . . v• . . . , j, S ∪ {Xi = v}), C[i + 1])12

else if r = (u→ . . . •v . . .) and non terminal(v,G) then13

foreach v → w ∈ G such that (v → •w, i, ∅) 6∈ C[i] ∪ queue do14

push((v → •w, i, ∅), queue)15

if C[i] = ∅ then16

return “Unsatisfiable”17

if (s→ u•, 0, S) ∈ C[n] then18

for i = 1 to n do19

dom(Xi) = {a | Xi = a ∈ S}20

else21

return “Unsatisfiable”22

one can do depth-first search. The basic sets {Xi = v} that are visited in the
search are the elements of S.

Theorem 6 Earley-prop enforces GAC on Cfg(G, [X1, . . . , Xn]) in O(|G|n3)
time for an arbitrary context-free grammar, and in O(|G|n3) space.

Proof: (Correctness) Follows quickly from the correctness of the Earley parser,
as we have basically just augmented the parsing information with value supports.

(Complexity) The total time complexity is identical to the Earley chart parser
except for the additional work involved in calling the add procedure within the
innermost loop to compute support information. Using the data structure ex-

Algorithm 3: add((a, b, c), q)

if ∃ (a, b, d) ∈ q then1

q ← replace((a, b, d), (a, b, c ∪ d), q)2

else3

push((a, b, c), q)4

plained above, the add procedure takes O(1) time. Lines 3 to 20 involve a depth-
first-search in the data structure used to store the sets. Since this is been con-
structed in O(|G|n3) time, it has no more than O(|G|n3) sets and pointers. The
depth-first-search computing S in line 20 therefore requires O(|G|n3) steps. ⋄

We might consider moving up the Chomsky hierarchy to context-sensitive
grammars. However, this would make constraint propagation highly intractable.
A context-sensitive grammar is one in which every production is of the form u →
v where |u| ≤ |v|. A global constraint specified by a context-sensitive grammar
is outside of what we usually consider a global constraint. Determining if a
string belongs to a context-sensitive grammar is PSPACE-complete, whilst we
usually assume that it takes polynomial time to check if an assignment satisfies a
constraint [12]. In fact, since it is undecidable to determine if a context-sensitive
grammar is empty, detecting domain wipeout (and thus enforcing GAC) on a
context-sensitive grammar constraint is undecidable.

9 Experimental results

We implemented the ternary encoding of the Regular constraint and com-
pared it with Pesant’s propagator [7]. Pesant presents two propagators, we
implemented the one that keeps track of all supports for a given character
c ∈ dom(Xi). As in [7], we generated random automata with |Q| states and
an alphabet of size |Σ|. We selected 30% of all possible tuples (c, qi) ∈ Σ × Q

and randomly chose a state qj ∈ Q to form the transition T (c, qi) = qj . We
obtained the set of final states F by randomly selecting 50% of the states in Q.
Following Pesant, we used a random variable ordering and random value selec-
tion. All experiments were run on a 900 Mhz Pentium and times were averaged
over 30 runs. Table 1 shows the results. The ternary encoding of the Regular

constraint dominates on all but one instance. We believe that the propagator
for the Table constraint provided in ILog Solver is highly optimized and con-
tributed to the performance offered by our ternary encoding.

n |Σ| |Q| Pesant’s Ternary encoding
Regular of Regular

25 5 10 0.0032 0.0031
20 0.0029 0.0025
40 0.0052 0.0046
80 0.0079 0.0041

25 10 10 0.0053 0.0038
20 0.0099 0.0063
40 0.0165 0.0087
80 0.0284 0.0136

25 20 10 0.0113 0.0057
20 0.0195 0.0083
40 0.0399 0.0140
80 0.0812 0.0226

n |Σ| |Q| Pesant’s Ternary encoding
Regular of Regular

50 5 10 0.0047 0.0051
20 0.0047 0.0037
40 0.0101 0.0086
80 0.0168 0.0087

50 10 10 0.0105 0.0071
20 0.0207 0.0129
40 0.0359 0.0185
80 0.0631 0.0301

50 20 10 0.0232 0.0119
20 0.0396 0.0177
40 0.0814 0.0289
80 0.1655 0.0457

Table 1. Time in seconds to find a sequence satisfying a randomly generated automaton either using
Pesant’s propagator for the Regular constraint or a ternary encoding using the Table constraint

We also ran experiments on a model for the Mystery Shopper problem due
to Helmut Simonis that appears in CSPLib (prob004). This model contains a
large number of Among constraints. We encoded the Among constraint ei-
ther as a Regular constraint or by means of a Boolean decomposition. This
decomposes Among([X1, . . . , Xn], s, N) into Bi = 1 iff Xi ∈ s for all i, and∑

i Bi = N . For the Regular constraint, we either used Pesant’s propagator,
or our ternary encoding. For the ternary encoding, we either implemented the
transition constraint, C(Xi+1, Qi, Qi+1) using ILog’s Table constraint or by
the simple implications: Xi ∈ s → Qi+1 = Qi + 1, Qi+1 = Qi + 1 → Xi ∈ s,
Xi 6∈ s → Qi+1 = Qi, Qi+1 = Qi → Xi 6∈ s.

Among using Regular using Regular using Regular using
Booleans simple implications Table constraints Pesant’s propagator

Size #fails cpu time #solved #fails cpu time #solved #fails cpu time #solved #fails cpu time #solved
10 6 0.00400 9/10 6 0.00244 9/10 6 0.00755 9/10 6 0.01022 9/10
15 8342 0.64075 32/52 8342 0.42647 32/52 8342 1.15954 32/52 8342 1.19897 32/52
20 12960 2.21400 21/35 12960 1.74521 21/35 12960 3.40063 21/35 12960 5.63347 21/35
25 6186 0.67040 4/20 6186 0.52567 5/20 6186 0.87862 4/20 6186 1.41279 4/20
30 1438 0.32695 3/10 1438 0.28229 3/10 1438 0.47626 3/10 1438 0.72189 3/10
35 6297 1.66825 21/56 6297 1.49327 21/56 6297 2.36849 20/56 6297 3.73623 20/56

Table 2. Mytery Shopper problem, #fails and cpu time are only averaged on instances solved by
all methods

Results are given in Table 2. All instances solved in the experiments use a
time limit of 5 minutes. All methods acheive GAC on the Among constraint, so
the search trees are identical and it is only the efficiency of the propagator which
differ. Our ternary encoding using simple implications dominates on all prob-
lem instances. This example demonstrates the benefits of encoding the ternary
transition constraints using simple but efficient builtin propagators.

Finally, we implemented the two propagators for the Cfg constraint. To com-
pare them, we considered the problem of providing an editor that only accepts
grammatical sentences. Such editors have been proposed for entering natural lan-
guage specifications of ontologies, web services and software [13]. Within such an
editor, we have to take a partial string, and enforce GAC on a Cfg constraint,
thereby limiting the next word to those that give sentences within the language.
We used a simple English grammar with 36 rules available online [14] that gener-
ates sentences like “The robber knew Vincent shot Marsellus”. We gave the Cfg

constraint 20 randomly generated sentences containing up to 30 words. We then
added each word in sequence and enforced GAC. As the grammar contains 25
words, this is the initial size of each variable domain. Results are given in Table
3. The Earley propagator is faster when the number of instantiated variables
increases.

n k Cfg using Cfg using
CYK-prop Earley-prop

20 0 0.0095 0.0413
20 4 0.0064 0.0188
20 8 0.0046 0.0066
20 12 0.0035 0.0014
20 16 0.0028 0.0000
20 20 0.0026 0.0000

n k Cfg using Cfg using
CYK-prop Earley-prop

30 0 0.0286 0.1800
30 6 0.0202 0.0720
30 12 0.0145 0.0245
30 18 0.0114 0.0053
30 24 0.0095 0.0001
30 30 0.0092 0.0000

Table 3. Time in seconds to enforce GAC on a Cfg constraint of n symbols in which first k are
fixed. When n = k, the problem degenerates to parsing the sentence.

10 Related work

Carlsson and Beldiceanu derived a propagation algorithm for a chain of lexico-
graphical ordering constraints based on a deterministic finite automaton [15]. For
the Regular constraint, a propagation algorithm based on dynamic program-
ming that enforces GAC was given in [7]. Coincidently Beldiceanu, Carlsson and
Petit proposed specifying global constraints by means of deterministic finite au-
tomaton augmented with counters [16]. Propagators for such automaton are con-
structed automatically from the specification of the automaton by constructing a
conjunction of signature and transition constraints. The ternary encodings used
here are similar to those proposed in [16]. However, there are a number of dif-
ferences. One is that we permit non-deterministic transitions. As argued before,
non-determinism can reduce the size of the automaton significantly. In addition,
the counters used by Beldiceanu, Carlsson and Petit introduce complexity. For
example, they need to achieve pairwise consistency to guarantee global consis-
tency. Pesant encodes a cyclic Stretch constraint into a Regular constraint
in which the initial variables of the sequence are repeated at the end, and then
dummy unconstrained variables are placed at the start and end [7]. Hellsten,
Pesant and van Beek propose a domain consistency algorithm for the Stretch

constraint based on dynamic programming similar to that for the Regular

constraint [11]. They also showed how to extend it to deal with cyclic Stretch

constraints. Finally, Golden and Pang propose the use of string variables which
are specificed using regular expressions or automata and show how to enforce
GAC on matching, containment, cardinality and other constraints [17].

11 Conclusions

We have studied a range of grammar constraints. These are global constraints
over a sequence of variables which restrict the values assigned to be a string
within a given language. Such constraints are useful in a wide range of schedul-
ing, rostering and sequencing problems. For regular languages, we gave a simple
encoding into ternary constraints that can be used to enforce GAC in linear time.
Our experiments demonstrated that such encodings are efficient and effective in
practice. This ternary encoding is therefore an easy means to incorporate this
global constraint into constraint toolkits. We also considered a number of exten-
sions including regular languages specified by non-deterministic finite automata,

and soft and cyclic versions of the global constraint. For context-free languages,
we gave two propagators which enforce GAC based on the CYK and Earley
parsers. There are many directions for future work. One promising direction is
to learn grammar constraints from examples. We can leverage on results and
algorithms from grammar induction. For example, it is not possible to learn a
Regular constraint from just positive examples.

References

1. Lhomme, O.: An efficient filtering algorithm for disjunction of constraints. In Proc.
of 9th Int. Conf. on Principles and Practice of Constraint Programming (CP2003),
(2003) 904–908

2. Lhomme, O.: Arc-consistency filtering algorithms for logical combinations of con-
straints. In Proc. of CP AI OR, (2004) 209–224

3. Bacchus, F., Walsh, T.: Propagating logical combinations of constraints. In Proc.
of 19th IJCAI, (2005) 35–40

4. Beldiceanu, N.: Global constraints as graph properties on a structured network of
elementary constraints of the same type. In Proc. of 6th Int. Conf. on Principles
and Practice of Constraint Programming (CP2000), (2000) 52–66

5. Beldiceanu, N., Carlsson, M., Rampon, J.X., Truchet, C.: Graph invariants as
necessary conditions for global constraints. In Proc. of 11th Int. Conf. on Principles
and Practice of Constraint Programming (CP2005), (2005) 92–106

6. Beldiceanu, N., Petit, T., Rochart, G.: Bounds of graph characteristics. In Proc. of
11th Int. Conf. on Principles and Practice of Constraint Programming (CP2005),
(2005) 742–746

7. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In Proc. of 10th Int. Conf. on Principles and Practice of Constraint Pro-
gramming (CP2004), (2004) 482–295

8. Law, Y., Lee, J.: Global constraints for integer and set value precedepnce. In
Proc. of 10th Int. Conf. on Principles and Practice of Constraint Programming
(CP2004), (2004) 362–376

9. Janssen, M., Hentenryck, P.V., Deville, Y.: Constraint satisfaction approach to
parametric differential equations. In Proc. of the 17th IJCAI, (2001)

10. van Hoeve, W.J., Pesant, G., Rousseau, L.M.: On global warming : Flow-based
soft global constaints. Journal of Heuristics (2006) To appear.

11. Hellsten, L., Pesant, G., van Beek, P.: A domain consistency algorithm for the
stratch constraint. In Proc. of 10th Int. Conf. on Principles and Practice of Con-
straint Programming (CP2004), (2004) 290–304

12. Bessiere, C., Hebrard, E., Hnich, B., Walsh, T.: The complexity of global con-
straints. In Proc. of the 19th AAAI (2004)

13. Schwitter, R.: A controlled natural language layer for the semantic web. In Ad-
vances in Artificial Intelligence (AI’2005), (2005) 425–434 LNCS 3809.

14. Blackburn, P., Striegntiz, K.: Natural language processing techniques in Prolog
(2005) http://www.coli.uni-saarland.de/ kris/nlp-with-prolog/html/index.html.

15. Carlsson, M., Beldiceanu, N.: Arc-consistency for a chain of lexicographic ordering
constraints. Tech report T2002-18, Swedish Institute of Computer Science (2002)

16. Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from con-
straint checkers. In Proc. of 10th Int. Conf. on Principles and Practice of Constraint
Programming (CP2004), (2004) 107–122

17. Golden, K., Pang, W.: Constraint reasoning over strings. In Proc. of 9th Int. Conf.
on Principles and Practice of Constraint Programming (CP2003), (2003) 377–391

