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Abstract plexity (Bartholdi, Tovey, and Trick 1989). Whilst manip-

ulations might exist, what if they are too hard to find?
Unfortunately, only a few voting rules used in prac-

C 90 , = tice are known to be NP-hard to manipulate with un-
inating candidates does not necessarily increase the compu

- : ; ; ighted votes and a single manipulator: single trans-
tational complexity of manipulation. However, for many vot weig . . - .
ing rules used in practice, the computational complexity in ferable voting (STV) [(Bartholdi and Orlin 1991), a vari-
creases. For example, it is already known that it is NP-hard ~ ant of the Copeland rulé (Bartholdi, Tovey, and Trick 1989),

to compute how a single voter can manipulate the result of ~ ranked pairs (Xia et al. 2009), and Nanson’s and Baldwin’s

Successive elimination of candidates is often a route to-mak
ing manipulation intractable to compute. We prove that elim

single transferable voting(the elimination version ofrplity rules (Narodytska, Walsh, and Xia 2011). A feature com-

voting). We show here that it is NP-hard to compute how a mon to a majority of these rules is that they successively

single voter can manipulate the result of the elimination ve eliminate candidates. We therefore explore in more detail

sion of veto voting, of the closely related Coombs’ rule, and  \yhether such elimination style voting makes manipulation

of the elimination versions of a general class of scoringsul intractable to compute.

Introduction Background

Lo . - We consider a general class of voting rules.séoring

\Voting is a general mechanism for combining the prefer- rule overm candidates is defined by a vecia, ..., s)

ences together of multiple agents. Voting is, however, not
without its problems. One such problem is that agents may
vote strategically, mis-reporting their true preferenioesr-

der to improve the outcome for them. For instance, in each
round of a popular TV game show, players vote on which

where for each vote ranking a candidate in positipthe
candidate receives a score ©f The candidate with the
highest total score wins. Plurality has the scoring vector
(1,0,...,0), Bordahagm — 1,m — 2,...,0), whilst veto

7 . has(1,...,1,0). For a scoring ruleX with scoring vector
?ﬁgedrﬂfgfrtﬂael'g'r}f?& 'I:;g Tﬁ;te’aA;ensﬁiI:I?b'r(])soodnbthe?? tell (s1,...,8m), theadjointof X, written X* has the scoring
Y player, 9 ye. vector (s — Spm,...,81 — S2,81 — s1). For example, the

Players have an interesting strategic decision to make. On
the one hand, they should vote to eI|m_|nate weqk players (as Elimination versions of scoring rules can vary along a
weak players will tend to reduce the size of the jackpot). On ber of dimensions:

the other hand, they should vote to eliminate strong players number o . o ) )

(as the overall winner takes the final jackpot and everyone Base rule: STV is an elimination version of plurality vot-
else walks away empty-handed). Similarly, when the Inter-  Ing, whilst Nanson’s and Baldwin’s rules are elimination
national Olympic Committee (I0C) meets to select asite for ~ Versions of Borda voting. We consider here elimination
the next Olympics, there is an election in which the weak-  Vversions of other scoring rules like veto voting.

est city is successively eliminated. Strategic votingro#p- Elimination criteria: Different criteria can be used to
pears to take place. For example, in the vote for the sitesof th eliminate candidates. For instance, in STV and Baldwin’s
2012 Olympics, New York had 19 votes in the first round but rule, we succcessively eliminate the last placed candidate
only 16 in the second as several IOC members switched alle-  On the other hand, in Nanson’s rule, we eliminate all can-
giances. In this paper, we study the computational resistan didates with less than the average Borda score.

of eIiminatiqn style voting rl_JIes to such strategic voting. Stopping criteria: Do we stop when all but one candidate
Results like those of Gibbard-Satterthwaite prove that 155 peen eliminated. or as soon as one candidate has a

most voting rules are manipulable. That is, it may pay for — majority of first placed votes? For example, Coombs’ rule

agents to mis-report their preferences. One potentialy ap s an elimination version of veto voting which stops when
pealing escape from manipulation is computational com- ;6 candidates has a majority.

adjoint of plurality is veto. Note thatX*)* = X.

Copyright© 2012, Association for the Advancement of Artificial ~ Voting: Do agents vote just once, or in each round? For ex-
Intelligence (www.aaai.org). All rights reserved. ample, in STV voting, agents vote only once. On the other
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hand, when selecting Olympic venues, IOC members can
cast a new vote in each round. We shall show that this
increases the opportunity for manipulation.

Given a voting ruleX, eliminate(X) is the rule that suc-
cessively eliminates the candidate placed in last plac& by
For a scoring ruleX, divide(X) is the rule that successively

eliminates those candidates with the mean or smaller score.

For non-scoring ruleX, divide(X) is the rule that succes-
sively eliminates candidates rankedlyin the bottom half.

Finally, sequential(X) is the voting rule which runs a se-
guence of elections using to eliminate the last placed can-

didate from each successive election. In each round, voters

can change their vote according to which candidates remain.

Example 1 STV is eliminate(plurality). Note that
eliminate(STV) is STV itself. Baldwin's rule is
eliminate(Borda). Nanson’s rule is divide(Borda).
Exhaustive ballot isequential (plurality). The IOC uses
sequential(plurality) to select Olympic sites. The FIFA
executive committee uses the same rule to select the lncatio
of the World Cup. The TV game shows, “Survivor” and
“The Weakest Link” both useequential(veto) to elimi-
nate players up to the final round. Finally, Coombs’ rule
is related toeliminate(veto). Coombs’ rule successively
eliminates the candidate in last place in the most voted unti
there is a candidate with a majority of first place votes.

Elimination style voting rules satisfy several desirable a
iomatic properties. For example, consider Condorcet sensi
tency, the property that a voting rule elects the candidete t
beats all others in pairwise comparisons when such a candi-
date exists. Whilst the Borda rule is not Condorcet consis-
tent, elimination versions of Borda voting like Nanson’'slan
Baldwin’s rule are Condorcet consistent. On the other hand,
elimination rounds can also destroy a deriable axiomatic
property. In particular, consider monotonicity, the pndpe
that raising the position of the winner in some ballots does
not change the winner. Whilst Borda voting is monotonic,
elimination style voting rules like STV, Nanson’s and Bald-
win’s are not monotonic. The loss of monotonicity is one of
the significant trade-offs involved in obtaining a votinderu

that is, as we shall see, somewhat more resistant to manipu-

lation.

Manipulation

Successively eliminating candidates can increase the
complexity of computing a manipulation. For ex-
ample, computing a manipulation of plurality is
polynomial, but of eliminate(plurality) is NP-hard
(Bartholdi and Orlin 1991). Similarly, computing a ma-
nipulation of Borda by one manipulator is polynomial,
but of eliminate(Borda) and divide(Borda) is NP-hard
(Narodytska, Walsh, and Xia 2011). Elkind and Lipmaa
(2005) conjectured that many elimination style voting
rules will be intractable to manipulate. They argue that
“[such elimination style] protocols provide the most faithf
manipulation-resistant approximation to the underlying
protocols, which makes them compelling alternatives to the
original protocols.

We might wonder if elimination always increases tie com-
putational complexity. The following result demonstrates
that it does not always make computing a manipulation in-
tractable.

Theorem 1 There exists a non-dictatorial voting rulé€ for
which computing a manipulation €, eliminate(X) and
divide(X) are polynomial.

Proof: Consider the rule which orders candidates alphabet-
ically unless there is unanimity when it returns the unani-
mous orderill

Indeed there are even (admittedly artificial) voting rules
where successively eliminating candidates reduces the com
putational complexity of computing a manipulation.

Theorem 2 There exists a voting rul& for which comput-
ing a manipulation ofX is NP-hard but ofeliminate(X)
and ofdivide(X) are polynomial.

Proof: Let candidates be integers [, m]. X is a rule
whose result decides a 1-in-3-SAT problem on positive
clauses ovem variables. A vote which starts with 0 is in-
terpreted as a positive clause by taking the candidatesdn 2n
to 4th place as its literals. Any other vote is interpreted as
a truth assignment: those candidates appearing before 0 are
interpreted as true literals, and those after as false. @/ith
candidatesX returns the majority winner. With 3 or more
candidatesX returns 0 as winner if one of the votes repre-
sents a truth assignment which satisfies exactly 1 in 3lgera
in each clause represented by a vote, otherwise 1 is winner.
Other candidates are returned in numerical order. Comput-
ing a manipulation ofX is NP-hard. However, computing

a manipulation okliminate(X) or divide(X) is polyno-
mial. 0 and 1 always enter the final round, and the overall
winner is simply the majority winner between 0 andilL.

Eliminate(veto)

Adding elimination rounds to plurality makes finding a ma-
nipulation intractable. Veto is essentially the oppositke r

to plurality. This is reflected in the alternate name for veto
of “anti-plurality”. Computing a manipulation of veto is
polynomial. We just veto the current winner until our cho-
sen candidate wins. An interesting case to consider then
is eliminate(veto). With weighted votes, Coleman and
Teague[(2007) have proved that computing a manipulation
of eliminate(veto) is polynomial when the number of can-
didates is bound@d They left ‘the difficultly] of WCM
[weighted coalition manipulation] on Coombs for unlimited
candidates as an open questiowe resolve this open ques-
tion. Computing a manipulation efiminate(veto) and of

the closely related Coombs’ rule is NP-hard even with
weightedvotes and an unbounded number of candidates.

Theorem 3 Deciding if a single manipulator can make a
candidate win forliminate(veto) is NP-complete.

Proof: (Sketch, the full proof can be found online
in a technical report). The proof is inspired by ideas

!Note that Coleman and Teague call the voting rule studied in
their paper Coombs’ rule but itis, in faetliminate(veto).



from (Bartholdi and Orlin 1991). We reduce from the 3-#| [ _#votes ]| Type of votes
COVER problem. We are given a s¢t= {d1, . ..,d, } with Block P, _
|S| — n and subsetsSl, SQ, o Sm c S with |Sz| =3 ‘preferred candidate’ and ‘items’ :
for i € [1,m]. We ask if there exists an index sewith | X-1 hp= g = s <8
|[I| =n/3andlJ,.; S; = S. This set ofS; is called a cover als X = ‘20 < Bdg < T PT84
for S. We create aeliminate(vetoglection such that a ma- | oL-€ "] X=3 || di 2 8a; < v P= 8a
nipulator can make a given candidate win iff there exists g Firstlosers’ and 'second line .
cover forS. |t € 1tm] { X=6 b =< gy < - P 8h
. P ] Jj€e€S: 2 b; < dj <8bya; < . P< 8Bb.d.
The set of all candidates & where|C| = c, and consists | J i
of 7 groups: ‘preferred candidatg! ‘items’ {dy,...,d,} |_|i €L m] { N i gy n PREE
and an extra ‘item'dy; ‘first 10Sers’ {ay,ai ..., am,amt; || 2 bis do=Ehag X - P B
‘second liN€'{b1, b1, ..., by, b} ; 'PUMPS {p1, ..., pm}; |8 S || X~ hze jlai < gy < - PeE
‘switches’s; ands; ‘garbage collectorsyy, . .., g}, (see | X Sz < gam < C PR e
d . fi a; < bi <8aib: < . P= Ba.b.
Table[1 for the complete list of garbage collectors). The |i € (1.m] { p 0 < d < i< g e
elimination has 4 phasegt) cover selection(2),(3) cover )|, ., f2 DR a?T' g Z< oo
verification(4) garbage collection. o f3 L P T Beisifig DV
Let o*(¢'), ¢ € C be the number of last place votes| |, _ o || x ff oo 81 D o Sa1
for candidate’ at roundk. We call this the veto-score of 13| =~ el T et
¢’. First, we explain the candidates. The candidates ‘first, I3 ” a2 B g . L o<
losers’, ‘second line’ and ‘pumps’ form a gadget to select g.|? € [, { £ < < p: oo < gij‘bi
cover. There arém candidates of these types in total, [0g-¢|; ¢ (1, fo B < i < Biy1 < gﬁ.;.;l g
ically partitioned into elimination group&:;, a;, bi, bi, pi), |5 f; a1 < e < ! ‘__‘“ o< gf_“aia‘“
i € [1,m]. The construction makes sure thabut of 5 - ‘Pumlps, =1
elements ofith group are eliminated consecutively duringg 2 P a; < Eom. =g
4 rounds starting at roundii + 1, i € [0,m). Moreover, | ofa bi< @< o e gf"?’
{ai,@i,p:}, i € [1,m] must be eliminated letting one of the |, | € [1.m) o DI A
{0, b;} reach roundm. Eliminated candidatels determine [} i € (i, m] y P . Epib; T PR Beiy
selection sets5;. The ‘pump’p; increases the veto-scores Qf? Pi X 05 =X Bpiby - p= gfnﬁj
of all candidates except ‘garbage collectors’ amdinning |2 2f2 Pi 3 Pj = Beir © P 8pipy
candidates from groups j < i. This allows us to remem- |3 22 pi< P= 8pip - < Epip
beri choices of the manipulator encoded in thésenning 4% € [1. 22 pi < do < 8pydo © PR Bpag
candidates fron2i candidates ifb;,b;}, j = 1,..,i. The [Pk €Ln] oo pi< de S gpa - P Bpay
items’ candidates encode the set of items. The‘switcheg® 2f2 Pi= 51 =Bpisp X e PR Bpsy
check the cover. The first ‘switcly;, separates elimination 27 f% pm < 81 < Bpmsy - p= Epmsy
of p,do, . . ., dn, s> from the elimination of other candidates. 22 2f2 Pi™ %2 = Bps t PX Bpsy
The second ‘switchs, is themostdangerous candidate that T jw'mhei —
can be eliminated iff a valid cover is selected during the .\ 2 N o ) dp ) Ba1p - Es1p
first 4m rounds. ‘Garbage collectorgiy,, ..., gs, control |1 AN 0= Beado T PR Baa
. ; € [1,n] 4f2 + f1 51 < di < 8s;d . P= 8% a
the veto-scores of non-garbage candidates. ‘Garbageeollg,, it o1 < s2<g 1dk o< g,l k
tors’ g, , ..., g5, preventp from having a majority (which |, L do < sy < gil b ) o< gfldk
is needed later on to prove Theorgin 6). oal k€ (1. . D T B L e
We partition votes into two set®; andP,. Table1 shows |, ' Xene3|5s< gu < oo ) D
the votes. inreversepreference order. We refer to sets of Block 7 :
votes in each line of the table by the number in the third colsgli e (1, m] X — o0& (i) 72 < &p; < - s
umn. For convenience, we introduce a new garbage cang| X _ "391(50 51 < gsll < i < gél‘
date in each set of votes. Unspecified candidates are ordere
in the same arbitrary order, starting wigh,, - . ., g4,, in all Table 1: The constructed election.

votes. P; is the main construction. Lines 1-3 set up initial

veto-scores for the preferred candidate and ‘items’. Likes

22 encode the 1st phase. The important point to observe is 29-34 are used to check a cover. In particular, lines 33-84 ar
how ‘pumps’ work (lines 18-28). The candidateis elim- used to count how many candidatgsi € [0,n] are elimi-
inated last in its group and increases the veto-score of all nated by increasing veto-scoressaf Finally, line 35 is re-
other running candidates by a constayfif except running sponsible for triggering the garbage collection procedbse
candidates inJ;_, {b;,b;} and ‘garbage’ candidates. This  ensures thatall ‘pumps’ and the ‘switch’ have initial score
allowsm running candidates selected frasf, {b;,b;} to of X, whereX is sufficiently large number, e.¢¢ > 16m°
reach the 4th phase. Lines 23—28 make sure that veto-scoreando, (¢’) is the number of last place votes for candidate
of ‘items’ and ‘switches’, that are not eliminated duringth ¢ in the votesP; at the first round. The initial veto-score
1st phase, grow the same way as veto-scoresspb’s and of a garbage collector equdisand stays less thaK until

p’'s. Line 27 is used to eliminatg at round4dm + 1. Lines the4th phase. So we do not have to worry about the garbage



collectors during the first three phases. We also define the

following constants required to control elimination inesid
each group(a;, a;, b;, b;,p;), i € [1,m]. The f constants
in Table[d satisfy the following constraintgis = f1 + fo,
Srs=fi+ fat fa. 12 f2+2f3+2,2f2 > fL +2,
2f2 > f3—|—2, .fl > f3—|—2, fl >2m + 3fori e [1,3],
andf, = 2m — 2n/3 + 3. For examplef; = 11(2m + 3),
fo =8(2m + 3) and f3 = 3 4+ (2m + 3). Overall, the con-
struction ensures that initial veto-scores of all candidat
b, p, s1 equalsX with an exception ofi; anda; that have
X + 3 veto-points. All the other candidates have veto-scores
that are less than or equal 6. This forces the manipula-
tor to make a choice between anda; in the first round

wherey/" 2, i € [0,n] is the veto-score that candidate

d; gets during the firstm + 1 rounds in addition to its ini-
tial veto-scorey;" 2 is even. As can be seen from these
equationsss can be eliminated beforeiff s; getsn + 2 ex-
tra veto-points. This is possible iff, . . . , d,, are eliminated
befores, so thats; getsn + 1 veto-points from lines 33—-34.
Moreover, the manipulator must give an extra veto-point to
s2. Then, by the tie-breaking rule; is eliminated before.
Consider how to eliminaté,, . . . , d,, beforess andp.

> Candidatesd; for ¢ = 1,...,n: Let d;, be the candi-
date with the highest valug™ 2. If 3,2 > 2 thend
is eliminated. This only increases the veto-score-0by 1
and does not affect the veto-scores of other running candi-

which triggers a selection of sets in a cover. We assume the dates. Suppose that there existsuch thaty,‘i’”+2 =0.1In

tie-breakingrulesy, < dy < p < di, < ... <dp, .. ..

Phase 1. Cover selection. Roundsto 4m. The 1st phase
eliminatesm candidates, one from each pdir;, b;}, i €
[1,m]. If b; is eliminated then the se; is selected in the
cover. A manipulator will choose which candidate from each
pair is eliminated. We claim the following holds in the first
4m rounds wheré € [0, m — 1]:

> Roundti+1. The following invariant holds immediately
before theli 4+ 1st candidate is eliminated:

U4i+l(ai+1) _ U4i+l(di+1) > U4i+1(c/) + 3’

wherec € C \ {al, Q1 ey Qig1, @ig1, 01,01, .., b5, bz} The
manipulator can select which af; ora;; is eliminated.

The manipulatocannot change the outcome of the fol-
lowing three rounds.

> Round4i + 2. b, is eliminated at this round iffi;
is eliminated at the previous round. Similary, ; is elimi-
nated iffa;, is eliminated at the previous round.

> Rounddi + 3. a;41 is eliminated at this round iff; 1 is
eliminated at thei+1st round. Similarlyg;; is eliminated
at this round iffa; 1 is eliminated at thei + 1st round.

> Round4i + 4. The candidate;; is eliminated.

Hence, the manipulator selecin candidates in
um™,{b;,b;} to eliminate. The elimination ofp,, at
round 4m forces an increase of the veto-scores of
p,dg, ..., dn,s1,82 by 2fs (lines 23—-26,28) and an addi-
tional increase off; in the veto-score of; (line 27). This
meanss; is the next candidate to be eliminated.

Phase 2. Pump up ofp, ss,dy,...,d,. Round 4m +
1. The elimination ofs; increases the veto-scores of
D, 827d07 v 7dn by4f2 + fl-

Phase 3. Cover verification. Rounddm + 2to 4m + 2 +
(n+1). This phase ensures thateaches the next phase iff
the setsS; that correspond to eliminated candidaiigform
a cover ofdy, . .., d,, and there are exactly/3 such candi-
dates. Consider the candidates,, do, - . . , d,,. We observe
that at roundtm + 2:

O_4m+2(p) _ U4m+2(di) —14+2— yglm+27
04m+2(p) = 04m+2(d0) —14+2m—n/3+1)—
ot (p) = 0 (s9) = 1+ (n+1) + 2,

4m-—+2
Yo

)

this casep has 1 veto-point extra compareddp. Moreover,
the manipulator cannot sayefrom elimination due to the
tie-breaking rule. Hencey™*? > 2 for i € [1,n]. This
means that setS; that correspond to candidatisthat are
eliminated during the first phase cover all values. Next we
show that exactly./3 of b,’s are eliminated.

> The candidately: This candidate ha&(m — n/3) + 1
veto-points less than the veto-scorepoHence, during the
first phasedy needs to get at leag(m — n/3) extra veto-
points. This means that —n/3 of the candidates; have to
be eliminated during the first phase. Hence exacfl¥ b;'s
can be eliminated during the first phase. Finally, the manipu
lator gives one extra veto-pointify and, by the tie-breaking
rule,dy is eliminated. Hences, is eliminated aftetl;s, and
p reaches the next round.

Phase 4. Garbage collection. Round$m + 2 + (n +
1) 4+ 1to ¢. This phase ensures thatvins if it is not already
eliminated.p is either the last, first or second candidate in
all remaining votes at this round. Hence, its veto-scoresdoe
not change until the penultimate round. The elimination of
dp, and thens,, increases the veto-score of a candidate
by2X — (n+1) —2(m —n/3) — 5 (lines 2 and 35), which
triggers elimination of other running candidates up to un
¢ — 2. When only 2 candidates remajmust win.

The reverse direction is trivial. Given a covkrwe con-
struct the vote of a manipulator in the following way.:lf
is in cover, we put; at positionc — 2i anda,; at position
c—2i—1. Otherwise, we invert their positions. Then we put
do, s2. Finally, we makep the most preferred candidate, and
put the remaining candidates in an arbitrary oriier.

Coombs’ Rule

Coombs’ rule is a variant afliminate(veto) with the stop-
ping criteria that a winner is declared when one candidate
has a majority of first placed votes (instead of when one
candidate remains). Although this is a small change, it can
have a large impact on the result and on strategic voting. For
instance, there are a family of elections where the number
of manipulators required to achieve victory for a particula
candidate is unbounded fefiminate(veto) but bounded

for Coombs’, and vice versa.

Theorem 4 There exists an election with + 3 candi-
dates where a given candidate has already won with
eliminate(veto) but the number of manipulators with



Coombs’ rule is2(n).

Proof: We have n votes: (a,di,..dy,b,c),
(a,da,.,dn-1,b,¢), ., (a,dp,.,d1,b,c). Note that
positions2 — (n + 1) in these votes contain a cyclic permu-
tation of candidatedy, . .., d,,. Similarly, for the other two
groups ofn votes. We also have votes:(b, a,dy, .., dy, ¢),
(b,a,do,...dp_1,¢), .., (b,a,dyn,.,di,c). Finally we
have n votes: (¢, b,a,d,...dy,), (b,a,da,..dn—1), ..,
(¢,b,a,dy,.,d1). The preferred candidate is. As is
common in the literature, ties are broken in favor of ma-
nipulators. Forliminate(veto), c is eliminated in the first
round and in the secondu is now in first place in all votes
so ultimately wins. For Coombst,is eliminated in the first
round.b is then in the first place ifn votes and wins by the
majority rule. There are two options for the manipulators.
Either they adcdh votes to the elections to make sure that
does not have a majority after the first elimination round, or
they prevent the elimination of the candidatén the first
round. With the exception af, each candidate has has only

one veto point. Therefore, the manipulators need at least ., ¢, ;.

2n — 1 votes to prevent the elimination of &

Theorem 5 There exists an election with+ 2 candidates
which a single manipulator can manipulate with Coombs’
rule buteliminate(veto) requiresf)(n) manipulators.

Proof: We haven votes:(a, b, d1, ..,d,), (a,b,dsa, ..,dp—1),
., (a,b,dy, ..,d1). Note that positiong — (n + 1) in these
votes contain a cyclic permutation of candidates . ., d,,.
Similarly, for the other group ofi votes. We also have
Votes:(b, di,..,dn, a), (b, do,...,dn_1, a), oy (b, dp, .., dq, a).
None of the candidates has a majority. For Coombs’, if
one manipulator puts in first place thena wins. For
eliminate(veto), the manipulators must prevent the elim-
ination ofa in the first round. As candidates to d,, have
only 1 veto point we need at least— 1 manipulators to
prevent the elimination of. ®

Despite these differences between Coombs’ rule and
eliminate(veto), it is intractable to compute a manipula-
tion for Coombs’ as it is witleliminate(veto).

Theorem 6 Deciding if a single manipulator can make a
candidate win for the Coombs’ rule is NP-complete.

Proof: Follows from the proof of Theorefd 3 @ can be
eliminated after a cover is verifiell

Eliminate(scoring rule)
We next consider scoring rules in general. With weighted

votes, Coleman and Teague (2007) have proved that manip-

ulation by a coalition is NP-hard to compute for the elimi-
nation version of any scoring rul¥ that is not isomorphic

to veto. With unweighted votes, we prove a general result
that relates the computational complexity of manipulating
scoring rule and the elimination version of its adjoint.

Theorem 7 Deciding whethek manipulators can make a
candidate win forliminate(X) is NP-complete if it is NP-
complete also foX *.

Proof: First, we argue that for vote¥, k£ manipulators
can make a candidate win witlx* iff for the reversed

set of votesV*, k£ manipulator can make a candidates
come last withX. The proof is similar to Lemma 10 in
(Coleman and Teague 2007). We simply reverse all the ma-
nipulating votes. Supposé* is an election overn candi-
dates wheren > 3, and thek manipulators want,,, to
come last. LeU bes; (|V| + k + 1) copies of the following
votes:

Cl>=Cy > ...>Cm—1 > Cm,
Co > C3 > ... Cp > C1,

Cm ™ ClL > ... ™ Cpp—2 = Cm—1

Each candidate receives the same scor# iirrespective
of X. We argue that there is a manipulation making
win in V* U U for eliminate(X) if there is a manipula-
tion makingc,, last inV* for X. By the same argument as
in the proof of Theorem 13 in (Coleman and Teague 2007),
if ¢; is the first candidate eliminated i* U U, then no
matter how the manipulators vote, the elimination order is
Ci—2,y...,Cir1 (Wherec,, 11 = ¢1) ande;;1 wins.
Hencec; wins iff ¢, is eliminated first. The manipulators
can force,, to be eliminated firstiv*UU if they can force
cm to belastin/* as the relative scores of the candidates are
initially the same inl’* and inV* U U. Hence manipulation
of X* reduces to manipulation efiminate(X). ®

Borda is NP-hard to manipulate with 2 manipu-
lators (Betzler, Niedermeier, and Woeginger 2011;
Davies et al. 2011). Since the adjoint of Borda is Borda
itself, it follows from Theoreni]7 thatliminate(Borda),
which is Baldwin’s rule, is NP-hard to manipulate by 2
manipulators. This result is strengthened to NP-hard with
just one manipulator iri (Narodytska, Walsh, and Xia 2011).
Note that the reverse of Theordm 7 does not hold. STV,
which is eliminate(plurality), is NP-hard to manipulate
butplurality is only polynomial to manipulate.

We next identify a large class of scoring rules which are
intractable to manipulate. Given a fixédatruncated scor-
ing rule (score;) has a scoring vectofsy, ..., s, ) with
S5 0 for all ¢ > k. For example, plurality and-
approval voting are both truncated scoring rules. As a sec-
ond example, the Heisman Trophy, which is awarded an-
nually to the best player in collegiate football, uses the
truncated scoring rul€3,2,1,0,...,0). As a third and fi-
nal example, the Eurovision song contest uses the trun-
cated scoring rulé12,10,8,7,6,5,4,3,2,1,0,...,0). We
now prove out next major results: computing a manipulation
of eliminate(score;) or of divide(score;) is intractable.
When candidates are eliminated, we suppose that the scor-
ing vector is truncated to the firgt positions wheren is
the number of candidates left after elimination.

Theorem 8 Deciding if a single manipulator can make a
candidate win forliminate(score;) is NP-complete.

Proof: (Sketch, the full proof can again be found on-
line in a technical report). The proof is also inspired by
ideas from[(Bartholdi and Orlin 1991) and uses a reduction
from 3-COVER. We block the first — 1 positions in each
vote with an additional set of(k — 1) dummy candidates,



where the valueg is computed taking into account the scor-
ing vector. By this construction, only those scores at posi-
tions k to ¢, which are(sg, 0, ...,0), determine the elimi-
nation order for the first — g(k — 1) — 1 rounds, where

c is the total number of candidates. We thereby reduce our
problem to one that resembles a multiple of the reduction
used for STV. Only one non-dummy candidate reaches the
(¢ — q(k — 1) — 1)th round. If the preferred candidate
reaches this round then the remaining votes are suctpthat
wins the election. Similar to the reduction used in the STV
proof, this only happens if there is a 3-COVER. As we have a
large number of additional dummy candidates, we can make
sure that the individual score of each dummy candidate is
greater than the score of any non-dummy candidate until the
(¢ — q(k — 1) — 1)th round and is smaller than the score of
p atthe(c — g(k — 1) — 1)th round &

Theorem 9 Deciding if a single manipulator can make a
candidate win fowivide(score;) is NP-complete.

Proof: (Sketch, the full proof can again be found online in

a technical report). The proof uses a reduction from the 3-
COVER problem wheré = n/3, n is the number of items.
The first two rounds encode solving the 3-COVER problem
and the remaining rounds are used to collect garbage. The
main types of candidates are‘items’, m ‘sets’ and one
‘preferred’. The rest of the candidates are dummy candédate

that are used to control scores of non-dummy candidates and

the average score. In the first round, we sekeséts. Using

a large number of dummy candidates we make sure that the
score of 'sets’ candidates equals the average score atghe fir
round. Hence, manipulator can selécbf them to pass to

the second round. In the second round, we check that this
forms a cover. If this is the case, all ’items’ candidates in
the covered set are eliminated. Otherwise, one of the ‘items
candidates reaches the third round and wins the eledlion.

Sequential Rules

the manipulator cannot stapbeing eliminated next now
receive more points angh cannot win the election. There-
fore, a single manipulator cannot majevin.

On the other hand, if a single manipulator votes for
in the first two rounds¢ andd are eliminated and: has3
points and is safe for now. At this poimtjs in danger with
only 2 points. If the manipulator now votes forb is saved
and bothe and f are eliminated next. At this point, and
g are tied. If the manipulator now votes faragain, g is
eliminated and the score af increases td. At this point,
all candidates excepthave6 points, and if the manipulator
now votes fomp, h is eliminated by tie-breaking angdwins
the election. Hence, if the manipulator can change votes af-
ter each roundp can win.

In general, manipulating a sequential elimination elettio
requires a strategy, which provides a manipulating respons
however the other agents vote. It is not hard to see that de-
ciding if such a strategy exists is PSPACE-complete. In fact
strategic voting in a sequential elimination election fegia
game theoretic analysis. We can view a sequential elimina-
tion election as a finite repeated sequential game. We could,
for example, use backward induction to find the subgame
perfect Nash equilibrium in which each agent makes the best
strategic move in each round.

Other Related Work

Bag, Sabourian and Winter (2009) proved that many sequen-
tial elimination rules includingequential (plurality) elect
candidates in the top cycle (and are hence Condorcet con-
sistent) supposing strategic voting. Contizer and Samdhol
(2003) studied the impact on the tractability of manipulati

of adding an initial round of the Cup rule to a voting rule.
This initial round eliminates half the candidates and makes
manipulation NP-hard to compute for several voting rule in-
cluding plurality and Borda. Elkind and Lipmda (2005) ex-
tended this idea to a general technique for combining two
voting rules. The first voting rule is run for some number

When selecting the site of the next Olympics, IOC members of rounds to eliminate some of the candidates, before the
can cast a new vote in each round. This increases the oppor-second voting rule is applied to the candidates that remain.
in which a manipulator can only change the resultif the ma-  are NP-hard to manipulate. However, they did not consider

nipulator votes differently in each round.

Example 2 Consider the  following 21  votes:
1:(a, h,p,...), 1:(c,a,h,p,...), 1l:(d,a,h,p,...)
3:(g,ahp,...), 2:(b,hp,...), 2:(ebhp,...)
2:(f,b,h,p,...), 6:(h,p,...), 5 (p,h,...)

The election usessequential(plurality), and the

manipulator wantsp to win. The tie-breaking rule is
p<g<c<d<a<e=<f=<b=<h.

We first argue that a single manipulator cannot make
win. Note thap cannot gain any points untll is eliminated.
For p to win, the manipulator needs to giyeone point so
that it has 6 points (and beats by the tie-breaking rule)
and no other candidate receives more thiapoints. In or-
der for h not to receive any more than the initial 6 points,
a andb must not be eliminated. The manipulator must save
a from elimination in the first round by voting far. The
first two rounds therefore eliminateand d. Unfortunately,

the veto or truncated scoring rules at the centre of our study
here. They also considered tblesed protocqlwhere a rule

is combined with itself. In many cases, the closed protocol
of X is eliminate(X). They conjectured that such closed
protocols will often be NP-hard to manipulate.

Conclusions

We have provided more evidence that successively elimi-
nating candidates is often a route to making manipulation
intractable to compute. In general, eliminating candiglate
does not necessarily increase the computational complex-
ity of manipulation. Indeed, we exhibited an artificial vagi

rule where the computational complexity actually decrsase
However, for many voting rules used in practice, the com-
putational complexity increases. For example, it was known
that it is NP-hard to compute how a single voter can manip-
ulate the result of STV (the elimination verison of plunalit
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