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Abstract

This paper presents the beginnings of a theory for reasoning with
proof outlines; proof outlines are abstract descriptions of proofs, pro-
viding the important subgoals on the way to the final conclusion. The
use of proof outlines can both aid explanation and reduce search.
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1 Introduction

Mathematicians often describe a proof by its outline. As well as aiding
explanation, outlines are a powerful means of controlling search. Polya, for
instance, proposes a strategy for solving mathematical problems based on
“... the main achievement in the solution of a problem
is to conceive the idea of a plan ... The plan gives a general outline; we have
to convince ourselves that the details fit into the outline.” [9][pages 8 and 12]

The purpose of this paper is to propose a notion of proof outline for

the use of outlines:

guiding search. We will illustrate the generality of this approach by means
of some examples including outlines for proofs of the Diamond Lemma and
Godel’s First Incompleteness theorem.

2 Trees

To describe proofs and their outlines, we first give some notions for describing
the structure of proofs. Proofs, whether they be written on a piece of paper
or represented internally in a computer, usually have some sort of hierarchical
or tree-like structure. Proof outlines also usually have a hierarchical struc-
ture. We will therefore give some notions for representing and describing this
structure.

Proofs are special types of formulae trees. A tree, II is a directed non-
cyclic graph with a distinguished node, the root, and with an unique path
from the root to any node. A formulae tree is a tree with each node labelled
by a wif. The label of the root node is the root formula, whilst the labels of
the leaf nodes are the leaf formulae. Sometimes we will draw formulae trees
graphically using the notation:

IL...11,
¥

where 11y, ..., 1I,, are formulae trees and ¢ is the root formula. Note that
this notation distinguishes the left to right ordering of formulae trees. A
deduction is a finite tree in which the wif labelling every node is derived
from the wifs labelling the nodes connected to it by the valid application
of an inference rule. A proof is a deduction tree in which the leaf formulae
are either discharged assumptions or axioms. A path of a formulae tree is a
sequence of wifs, with each wif a label of a node, and the nodes connected



in order by arcs. A branch is a path starting at the root formula and ending
at a leaf formula. The depth of a tree II, written |II], is the length of the
longest branch in the tree. A path contains another path if it mentions the
same wils (and possibly more) in the same order. N (¢, II) is the number of
occurrences of the wif o in the tree II. The weight of a tree II, written |[II||,
is the number of wifs in the tree. That is, ||II|| = 32, N (¢, II) = |nodes(I1)|.
One very useful notion is the subtree relation. If II is the tree % then
I, and Ily,...IT,, plus their subtrees are the (only) subtrees of II. That is,

Definition 1 (Subtree) : II; is a subtree of Il, iff Il; is a tree with
nodes(Ily) C nodes(Ily), arcs(lly) C arces(Ily), and leaves(1ly) C leaves(1ly).
Dually 11, is a supertree of 11;.

Arcs describe the local structure of a tree. They also induce a global
structure on trees; we can define when one node is below another, when it is
above another, or (when neither of these two cases is true) when it is adjacent
to another.

Definition 2 (<) : For any two nodes ni,ny in a formulae tree, ny is
below n,, written nqy <ny iff

o 1Ny = ny;
o (n1,n3) € arcs(Il) and ns <n,.

The below relation is a weak partial order. If ny <ng but =(ny <ny) then
we say that np is strictly below ny, written ny <n,. When ny is below ny
the wif labelling nq, label(nq) is beneath that labelling ny, label(ny). We will
therefore also say that the wff label(nq) is below the wif label(ns). Addition-
ally, we will say that ny is above ny iff nyg <nq, and that n; is adjacent to
ng, written nqo<ngy iff ny is not below or above nj. If nqy is adjacent to ns
then the wif labelling ny, label(ny) is in a distinct subtree to that labelling
ng, label(ny). Adjacency is an incomparability relation; that is, exactly one
of ny <ng, ny <ny and ny <iny holds. As an example, consider the tree:

In this tree, c<¢, c<a, e<b, and arad.



3 Outlines

We can now define a notion of proof outline. The relationship between a
proof and an outline is one of monotonicity — the outline can be built simply
by deleting formulae from the proof. The relationship therefore satisfies the
following two conditions:

e the preservation of the nodes; all the formulae in the outline (plus
possibly more) appear in the proof;

e the preservation of the global structure; the below, above and
adjacency relations should be maintained.

These considerations motivate the following very important definitions.

Definition 3 (Tree subsumption) : 1I; subsumes Il,, written II; C1l,,
iff there is an injective map, 7 : nodes(Ily) — nodes(Ily) such that,

o label(n) = label(T(n))

o ny Xny iff T(n1) 2 7(n2)

Definition 4 (Proof outline) : If II; C1l, and 11, is a proof, then 11y an
outline of II.

The intuitive interpretation of these definitions is that the same wifs occur
in Iy as in Il (first condition of Definition 3) with the same global ordering
(second condition of Definition 3). We need a map between nodes so that we
can skip nodes in the tree 1l3; not every wif in 1I; corresponds to a wif in 11;.
As examples, consider the following four trees.

a a

Hl = b C H2 _= _ H3 —



Il and Ils both subsume II;. Note that Il is a subtree of II; but that 1l; is
not; tree subsumption is therefore a more general property than the subtree
relation. Finally, II, does not subsume Il even though all the occurrences
of wifs, and all the branches in 1I; appear in 1l,.

Tree subsumption is a preorder being transitive, and reflexive. It is also
a monotonicity property on the depth, the weight, the number of formulae
occurrences, the ordering of wffs and the branches.

Theorem 1 (Monotonicity) : If 1I; CIl, then
o |II;] < |1
o ] < ML
o N(p,IL) < N(p,115)
o if v is below o in Iy then ¢ s below o in 11,
o if bis a branch of 11y then some branch of 1l contains b.

Note that monotonicity on depth and on the ordering of wifs follows
from the monotonicity property on branches, and that monotonicity on the
weight follows from monotonicity on the number of formulae occurrences.
Note also that this theorem does not reverse; the trees, Il and Il in the
example above are a counter-example. These five properties only guarantee
monotonicity on the nodes and partial monotonicity on the structure; that
is, from these properties it follows that ny; <ny implies 7(ny) < 7(n2). To
get tree subsumption and monotonicity on the whole structure, we also need
7(ny) < 7(ny) implying ny < ny (or, equivalently, a monotonicity property on
adjacency: ny<ing implying 7(nq)>a7(n2)). Indeed, tree subsumption is as
weak a relation on trees as is possible whilst being monotonic with respect
to the nodes and the global structure. No part of the definition of tree sub-
sumption can be weakened without losing monotonicity on the structure or
the nodes. For example, if we drop the injectivity requirement on 7 then
tree subsumption is not a monotonicity property on the nodes (and thus, for
example, on the weight).

Other monotonicity properties on trees have been defined in the past;
all of them are too strong for describing outlines. For instance, the subtree
relation is also a monotonicity property but is too strong:



Theorem 2 : [f1ly, 115 are two trees and 11y is a subtree of 115 then 11y C1l5.

As in the examples given earlier, the reverse does not hold. There are two
main differences between tree subsumption and the subtree relation. With
tree subsumption, wffs anywhere in the subsuming tree can be skipped and
the ordering of trees is ignored, whilst with the subtree relation, only wffs in
the supertree beneath the subtree are skipped and the ordering of the trees
is fixed.

Further proof of the naturalness of tree subsumption, and of its intrinsic
interest, is that it is closely related to the conventional notion of tree isomor-
phism. Indeed, if we simply make 7, the mapping between nodes, a bijection
instead of an injection, we get tree isomorphism.

Definition 5 (Tree isomorphism) : II; ~ Il iff there is a bijective map
7 : nodes(1l;) — nodes(1ly)

o label(n) = label(T(n))
o ny = ny iff T(n1) 2 7(n2)

Intuitively, two trees are isomorphic iff they are equal up to reordering of
their subtrees. Trees that are isomorphic have the same depth, the same
weight, the same formulae occurrences, the same ordering of formulae and
the same branches. Trivially, tree isomorphism is the equivalence relation
generated by tree subsumption.

Theorem 3 : H1 ~ H2 Zﬁ H1 g H2 and H2 g Hl.

This result adds weight to our claim that tree subsumption is a natural
relationship between the structure of trees.

4 Using Outlines

We now turn to the problem of how we use proof outlines to guide theorem
proving. The intuitive idea is that of jumping between islands: the outline
suggests the major subgoals which need to be bridged in building a proof.
Outlines thereby “divide-and-conquer” the search.



Consider, for example, a proof of the Diamond Lemma that local Church-
Rosser implies global Church-Rosser for any well-founded relation r. A rela-
tion r is local Church-Rosser iff r(a, b) and r(a, ¢) implies there exists some d
such that r(b,d) and r(c¢,d). A relation r is global Church-Rosser iff r*(a, b)
and r+(a, ¢) implies there exists some d such that r+(b, d) and r*(c, d) where r+
is the transitive closure of r. David Barker-Plummer and Sidney Bailin have
described [1] a theorem proving system called Grover which is guided in its
search for a prootf of the Diamond Lemma by an outline generated automat-
ically from a diagram similar to the following (unlabelled arcs represent the
relation r whilst those labelled with * represent r).

a

The proof of the Diamond Lemma given by Barker-Plummer and Bailin
uses transfinite induction. After unfolding the definitions of global and local
Church-Rosser, their goal is to show that there exists some h with r« (b, h)
and r#*(c, h) given r«(a,b) and r*(a,c). They first show that there exists d
and e immediately below «; that is, such that r(a,d) and r(a,e). By local
Church-Rosser, there exists f such that r(d, f) and r(e, f). By the induction
hypothesis, there exists g such that r+(f,g) and r+(c,g). Hence, by the
induction hypothesis again, there exists h such that r*(b, k) and r=*(g,h).
Finally, by transitivity of r+ r+*(b, h) and r*(c, h).

Collecting together all these subgoals suggests the following proof outline:

r(a,d) r(a,e)
r(d, f)nr(e, f)
r(f,g)ANr*(c,g)
r*(b,h) AN r+(g,h)
r#(b,h) A rx(c,h)

This is an outline of the Diamond Lemma as it tree subsumes a complete
proof. It is not a proof in its own right as it only contains the key subgoals
in the proof. Each step in the outline represents several proof steps. For
example, consider the last step of the outline:

r*(b,h) A T*(g,h)
r#(b,h) A rx(c,h)
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This corresponds to a much larger part of the proof where the transitivity
of r+is used to deduce that r«(c, h) given r*(c,g) and r+*(g, k). To build a
complete proof, we refine the outline by bridging the gaps between formulae.
The outline provides the key subgoals we must prove on the way to the final
goal. Proof outlines therefore allow us to do a form of middle-out reasoning
[4]: instead of starting at the axioms and applying inference rules until we
reach the goal (forward reasoning), or starting at the goal and generating
subgoals until we reach axioms (backwards reasoning), we identify some key
steps in the proof and fill in the gaps between them. We thereby construct
the proof from the middle-out.

5 Outlines from Abstraction

In the last section, an outline of a proof was constructed by analysing a dia-
gram. Another very general method for building outlines is with abstraction.
The proof to an abstracted theorem can serve as an outline for a proof of
the original unabstracted (or “ground”) theorem. We refine this outline by
adding in extra steps removed by abstraction.

In [5] we argued that abstraction can be seen as the mapping of one rep-
resentation of a problem, the ground representation onto a new and simpler
representation, the abstract representation. Problems can be represented
by axiomatic formal systems. An abstraction f:3¥; = ¥, is then simply a
mapping from one formal system, ¥; (often called the “ground space”) to
another formal system, ¥, (often called the “abstract space”) [6]. It is given
by a triple consisting of ¥, X5 and a function, f which maps formulae in ¥4
onto formulae in ¥,. An interesting restriction is to those abstractions whose
abstract proofs are guaranteed to be outlines of ground proofs. For example,
one very important class of abstractions is given by the following definition:

Definition 6 (PI-abstraction) : An abstraction, f : ¥ = Y5 is said to be
a Pl-abstraction iff, for any proof ll; of a theorem @ in X1, there exists a
proof Iz of f(p) in Xy with Iy C f(I1).

By f(Il;) we mean the formulae tree built by applying f to every formula in
I1;.

The essential idea in using such abstractions is:

(i) we abstract the formula to be proved;



(i1) we find an abstract proof;

(iii) we unabstract the abstract proof; this gives us an outline for the ground
proof;

(iv) we refine this outline by filling in the gaps between the formulae.

Note that it is the unabstraction of the abstract proof, and not the abstract
proof, which provides the proof outline for the ground proof. We’ll illus-
trate this procedure by means of an example in which we reason about the
properties of various containers. We will use a predicate abstraction which
collapses together objects with similar properties. For example, “box(x)”,
“bottle(x)” and “glass(x)” all map onto the generic “container(x)”. Con-
sider the ground goal “movable(a) A graspable(a)” which gets abstracted
onto the abstract goal “shiftable(a) N shiftable(a)”. Let us suppose that
we have performed the steps (i) and (ii), giving the abstract proof:

container(a) container(z)—shiftable(z)
shiftable(a)
shiftable(a) N shiftable(a)

The third step is to unabstract the abstract proof to give an outline.
This can be made as simple as possible by producing the “minimal” outline,
whose abstraction is tree isomorphic to the abstract proof. As an abstraction
is usually a many-to-one mapping on the language and the abstract proof
corresponds to many different (minimal) outlines. For example, up to tree
isomorphism, the abstract proof of the example has 36 minimal outlines.

We tackle this problem by constructing a schema which represents all the
(minimal) outlines up to tree isomorphism. With a predicate abstraction,
this construction uses second order sorted meta-variables (other types of
abstractions require other types of sorted and unsorted, first and second order
meta-variables). These meta-variables allow us to represent any wif in the
ground language that abstracts onto a given abstract wif. For example, “X :
container(a)”, where X is a second order sorted meta-variable, represents
any atomic wif which abstracts onto “container(a)”. The elements of the sort
are the predicates collapsed into container, namely box, bottle, and glass.
This technique allows us to delay the unabstraction of parts of a wif until,
during the refinement, we have a better knowledge of the other instantiations.
The outline resulting from this step is thus:



X :container(a) Y :container(z)—Z : shiftable(x)
U : shiftable(a)
V i shiftable(a) N W : shiftable(a)

In the fourth and final step, this outline is instantiated and refined to
give the following ground proof of “movable(a) A graspable(a)”.

bottle(a) bottle(x)—graspable(x)
graspable(a) graspable(z)—movable(z)
movable(a)
movable(a) N graspable(a)

Note that the abstract proof is not a subtree of the abstraction of the
ground proof as, in refining the outline, we had to add nodes to the middle
of the tree. This is a type of middle-out reasoning.

We are currently building an abstract proof checker for performing these
four steps. This abstract proof checker is built on top of GETFOL which is
an extension and re-implementation of the FOL proof checking system[7, 10].
Actually, GETFOL is far more than a conventional proof checker. For instance,
it includes derived inference rules and complex deciders. A single proof step
in GETFOL can thus represent very complex reasoning. We could perhaps
call it an “interactive theorem prover”. However, we shall stick to “proof
checker” as we wish to emphasize our interest in the interaction with the
system rather than in the automation of the construction of proofs.

We have implemented facilities within GETFOL for abstracting a problem
representation. The user can call upon libraries of abstractions and abstrac-
tion schemata. Our next goal is to provide facilities for unabstracting proofs
and refining outlines; these steps are currently performed by hand. This
approach looks very promising. We have used this approach to develop a
proof of Godel’s First Incompleteness Theorem using as guidance an outline
that was built by unabstracting an abstract proof which is half the size of
the ground proof. Under the abstraction used, more than half the axioms
become redundant and the proof halves in size; more importantly, every step
in the abstract proof corresponds to (the abstraction of) an important step in
the ground proof. That is, the abstract proof tree subsumes (the abstraction
of) the ground proof. Or equivalently, an unabstraction of the abstract proof
is an outline of the ground proof.
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6 Related work

Bledsoe defines a notion of proof plan for use in his analogy guided theorem
prover which can be seen as a restricted type of proof outline [2]. A proof
plan is essentially a (finite) sequence of proof steps. Each proof step contains
a formula and an optional plan; every formula in the proof plan logically
follows from the conjunction of previous formulae. That is, a proof plan, P is
a sequence: S1,53...5, where S; is a proof step (y;, P;), ¢; is an intermediate
subgoal, P; is itself a plan (possibly empty), and A, pi— ¢k for k =1 to n.
A proof plan can thus be seen as the proof outline:

]
1
it

n

where II; is the proof outline associated with the proof plan P;.

Bledsoe claims that the use of such proof plans resembles the way humans
discover proofs by breaking down a hard proof into easier subgoals, which
themselves might also be broken down into easier subgoals. Such a problem
solving strategy seems very promising. Bledsoe’s analogy guided theorem
prover can prove some impressive theorems (eg. the completeness of lock
resolution using as guidance a proof plan derived from the analogical proof
of the completeness of general ground resolution).

A notion of proof plan has also been proposed by Alan Bundy [3] for de-
scribing high-level proof strategies. Proof plans are built in terms of methods,
meta-level descriptions of compound proof steps. Methods encode discrete
proof “chunks”. A particular proof plan can capture many different proofs as
methods include parameters that need to be instantiated to give an object-
level proof. Proof plans are not, however, proof outlines — a proof plan is
a meta-level description of a proof whilst a proof outline is an object-level
description. Nevertheless, many of the motivations behind this work are
similar, and proof plans, like proof outlines, can aid explanation and reduce
search greatly.

Plaisted has also defined a shape correspondence between ground and ab-
stract proofs, written “Il; — 115" (page 63 of [8]), which is closely related to
tree subsumption. Indeed, if we generalize tree subsumption to the relation,
“C*” in which every wif in one tree logically subsumes a wif in the other
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tree, shape correspondence implies tree subsumption. Shape correspondence
is, however, weaker than tree subsumption as the abstract proof must be of
the same depth as the ground proof.

Theorem 4 : [f H1 —f H2 then H1 g*f(HQ) and |H1| = |H2|

7 Conclusions

This paper presents the beginnings of a theory for reasoning with proof out-
lines. We have defined tree subsumption, a very general monotonicity prop-
erty between a proof and its outline. We have explored several ways in which
proof outlines can be built (from diagrams, by abstraction, and so on). We
are currently implementing these ideas in GETFOL, a powerful proof checking
system. As well as aiding explanation, outlines seem a powerful means for
controlling search.
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