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1 IntroductionMathematicians often describe a proof by its outline. As well as aidingexplanation, outlines are a powerful means of controlling search. Polya, forinstance, proposes a strategy for solving mathematical problems based onthe use of outlines: \... the main achievement in the solution of a problemis to conceive the idea of a plan ... The plan gives a general outline; we haveto convince ourselves that the details �t into the outline." [9][pages 8 and 12]The purpose of this paper is to propose a notion of proof outline forguiding search. We will illustrate the generality of this approach by meansof some examples including outlines for proofs of the Diamond Lemma andG�odel's First Incompleteness theorem.2 TreesTo describe proofs and their outlines, we �rst give some notions for describingthe structure of proofs. Proofs, whether they be written on a piece of paperor represented internally in a computer, usually have some sort of hierarchicalor tree-like structure. Proof outlines also usually have a hierarchical struc-ture. We will therefore give some notions for representing and describing thisstructure.Proofs are special types of formulae trees. A tree, � is a directed non-cyclic graph with a distinguished node, the root, and with an unique pathfrom the root to any node. A formulae tree is a tree with each node labelledby a w�. The label of the root node is the root formula, whilst the labels ofthe leaf nodes are the leaf formulae. Sometimes we will draw formulae treesgraphically using the notation: �1:::�n'where �1; :::;�n are formulae trees and ' is the root formula. Note thatthis notation distinguishes the left to right ordering of formulae trees. Adeduction is a �nite tree in which the w� labelling every node is derivedfrom the w�s labelling the nodes connected to it by the valid applicationof an inference rule. A proof is a deduction tree in which the leaf formulaeare either discharged assumptions or axioms. A path of a formulae tree is asequence of w�s, with each w� a label of a node, and the nodes connected2



in order by arcs. A branch is a path starting at the root formula and endingat a leaf formula. The depth of a tree �, written j�j, is the length of thelongest branch in the tree. A path contains another path if it mentions thesame w�s (and possibly more) in the same order. N (';�) is the number ofoccurrences of the w� ' in the tree �. The weight of a tree �, written k�k,is the number of w�s in the tree. That is, k�k = P'N (';�) = jnodes(�)j.One very useful notion is the subtree relation. If � is the tree �1;:::�n' then�; and �1; :::�n plus their subtrees are the (only) subtrees of �. That is,De�nition 1 (Subtree) : �1 is a subtree of �2 i� �1 is a tree withnodes(�1) � nodes(�2), arcs(�1) � arcs(�2), and leaves(�1) � leaves(�2).Dually �2 is a supertree of �1.Arcs describe the local structure of a tree. They also induce a globalstructure on trees; we can de�ne when one node is below another, when it isabove another, or (when neither of these two cases is true) when it is adjacentto another.De�nition 2 (� ) : For any two nodes n1; n2 in a formulae tree, n1 isbelow n2, written n1�n2 i�� n1 = n2;� hn1; n3i 2 arcs(�) and n3�n2.The below relation is a weak partial order. If n1�n2 but :(n2�n1) thenwe say that n1 is strictly below n2, written n1�n2. When n1 is below n2the w� labelling n1, label(n1) is beneath that labelling n2, label(n2). We willtherefore also say that the w� label(n1) is below the w� label(n2). Addition-ally, we will say that n1 is above n2 i� n2�n1, and that n1 is adjacent ton2, written n1 ./ n2 i� n1 is not below or above n2. If n1 is adjacent to n2then the w� labelling n1, label(n1) is in a distinct subtree to that labellingn2, label(n2). Adjacency is an incomparability relation; that is, exactly oneof n1�n2, n2� n1 and n1 ./ n2 holds. As an example, consider the tree:a bc deIn this tree, c� c, c� a, e� b, and a ./ d.3



3 OutlinesWe can now de�ne a notion of proof outline. The relationship between aproof and an outline is one of monotonicity { the outline can be built simplyby deleting formulae from the proof. The relationship therefore satis�es thefollowing two conditions:� the preservation of the nodes; all the formulae in the outline (pluspossibly more) appear in the proof;� the preservation of the global structure; the below, above andadjacency relations should be maintained.These considerations motivate the following very important de�nitions.De�nition 3 (Tree subsumption) : �1 subsumes �2, written �1��2,i� there is an injective map, � : nodes(�1)! nodes(�2) such that,� label(n) = label(� (n))� n1�n2 i� � (n1)� � (n2)De�nition 4 (Proof outline) : If �1��2 and �2 is a proof, then �1 anoutline of �2.The intuitive interpretation of these de�nitions is that the same w�s occurin �1 as in �2 (�rst condition of De�nition 3) with the same global ordering(second condition of De�nition 3). We need a map between nodes so that wecan skip nodes in the tree �2; not every w� in �2 corresponds to a w� in �1.As examples, consider the following four trees.�1 = a ab cd �2 = a ab �3 = a cd�4 = aab4



�2 and �3 both subsume �1. Note that �2 is a subtree of �1 but that �3 isnot; tree subsumption is therefore a more general property than the subtreerelation. Finally, �2 does not subsume �4 even though all the occurrencesof w�s, and all the branches in �2 appear in �4.Tree subsumption is a preorder being transitive, and re
exive. It is alsoa monotonicity property on the depth, the weight, the number of formulaeoccurrences, the ordering of w�s and the branches.Theorem 1 (Monotonicity) : If �1��2 then� j�1j � j�2j� k�2k � k�2k� N (';�1) � N (';�2)� if ' is below  in �1 then ' is below  in �2� if b is a branch of �1 then some branch of �2 contains b.Note that monotonicity on depth and on the ordering of w�s followsfrom the monotonicity property on branches, and that monotonicity on theweight follows from monotonicity on the number of formulae occurrences.Note also that this theorem does not reverse; the trees, �2 and �4 in theexample above are a counter-example. These �ve properties only guaranteemonotonicity on the nodes and partial monotonicity on the structure; thatis, from these properties it follows that n1�n2 implies � (n1)� � (n2). Toget tree subsumption and monotonicity on the whole structure, we also need� (n1)� � (n2) implying n1�n2 (or, equivalently, a monotonicity property onadjacency: n1 ./ n2 implying � (n1) ./ � (n2)). Indeed, tree subsumption is asweak a relation on trees as is possible whilst being monotonic with respectto the nodes and the global structure. No part of the de�nition of tree sub-sumption can be weakened without losing monotonicity on the structure orthe nodes. For example, if we drop the injectivity requirement on � thentree subsumption is not a monotonicity property on the nodes (and thus, forexample, on the weight).Other monotonicity properties on trees have been de�ned in the past;all of them are too strong for describing outlines. For instance, the subtreerelation is also a monotonicity property but is too strong:5



Theorem 2 : If �1, �2 are two trees and �1 is a subtree of �2 then �1��2.As in the examples given earlier, the reverse does not hold. There are twomain di�erences between tree subsumption and the subtree relation. Withtree subsumption, w�s anywhere in the subsuming tree can be skipped andthe ordering of trees is ignored, whilst with the subtree relation, only w�s inthe supertree beneath the subtree are skipped and the ordering of the treesis �xed.Further proof of the naturalness of tree subsumption, and of its intrinsicinterest, is that it is closely related to the conventional notion of tree isomor-phism. Indeed, if we simply make � , the mapping between nodes, a bijectioninstead of an injection, we get tree isomorphism.De�nition 5 (Tree isomorphism) : �1'�2 i� there is a bijective map� : nodes(�1)! nodes(�2)� label(n) = label(� (n))� n1�n2 i� � (n1)� � (n2)Intuitively, two trees are isomorphic i� they are equal up to reordering oftheir subtrees. Trees that are isomorphic have the same depth, the sameweight, the same formulae occurrences, the same ordering of formulae andthe same branches. Trivially, tree isomorphism is the equivalence relationgenerated by tree subsumption.Theorem 3 : �1'�2 i� �1��2 and �2��1.This result adds weight to our claim that tree subsumption is a naturalrelationship between the structure of trees.4 Using OutlinesWe now turn to the problem of how we use proof outlines to guide theoremproving. The intuitive idea is that of jumping between islands: the outlinesuggests the major subgoals which need to be bridged in building a proof.Outlines thereby \divide-and-conquer" the search.6



Consider, for example, a proof of the Diamond Lemma that local Church-Rosser implies global Church-Rosser for any well-founded relation r. A rela-tion r is local Church-Rosser i� r(a; b) and r(a; c) implies there exists some dsuch that r(b; d) and r(c; d). A relation r is global Church-Rosser i� r�(a; b)and r�(a; c) implies there exists some d such that r�(b; d) and r�(c; d) where r�is the transitive closure of r. David Barker-Plummer and Sidney Bailin havedescribed [1] a theorem proving system called Grover which is guided in itssearch for a proof of the Diamond Lemma by an outline generated automat-ically from a diagram similar to the following (unlabelled arcs represent therelation r whilst those labelled with * represent r�).qhqb q cq a\\\\* ����* *����* \\\\ *qd qeqf ��\\ qg\\\\ *The proof of the Diamond Lemma given by Barker-Plummer and Bailinuses trans�nite induction. After unfolding the de�nitions of global and localChurch-Rosser, their goal is to show that there exists some h with r�(b; h)and r�(c; h) given r�(a; b) and r�(a; c). They �rst show that there exists dand e immediately below a; that is, such that r(a; d) and r(a; e). By localChurch-Rosser, there exists f such that r(d; f) and r(e; f). By the inductionhypothesis, there exists g such that r � (f; g) and r � (c; g). Hence, by theinduction hypothesis again, there exists h such that r�(b; h) and r�(g; h).Finally, by transitivity of r�, r�(b; h) and r�(c; h).Collecting together all these subgoals suggests the following proof outline:r(a; d) r(a; e)r(d; f)^ r(e; f)r�(f; g)^ r�(c; g)r�(b; h)^ r�(g; h)r�(b; h)^ r�(c; h)This is an outline of the Diamond Lemma as it tree subsumes a completeproof. It is not a proof in its own right as it only contains the key subgoalsin the proof. Each step in the outline represents several proof steps. Forexample, consider the last step of the outline:r�(b; h)^ r�(g; h)r�(b; h)^ r�(c; h)7



This corresponds to a much larger part of the proof where the transitivityof r� is used to deduce that r�(c; h) given r�(c; g) and r�(g; h). To build acomplete proof, we re�ne the outline by bridging the gaps between formulae.The outline provides the key subgoals we must prove on the way to the �nalgoal. Proof outlines therefore allow us to do a form of middle-out reasoning[4]: instead of starting at the axioms and applying inference rules until wereach the goal (forward reasoning), or starting at the goal and generatingsubgoals until we reach axioms (backwards reasoning), we identify some keysteps in the proof and �ll in the gaps between them. We thereby constructthe proof from the middle-out.5 Outlines from AbstractionIn the last section, an outline of a proof was constructed by analysing a dia-gram. Another very general method for building outlines is with abstraction.The proof to an abstracted theorem can serve as an outline for a proof ofthe original unabstracted (or \ground") theorem. We re�ne this outline byadding in extra steps removed by abstraction.In [5] we argued that abstraction can be seen as the mapping of one rep-resentation of a problem, the ground representation onto a new and simplerrepresentation, the abstract representation. Problems can be representedby axiomatic formal systems. An abstraction f : �1 ) �2 is then simply amapping from one formal system, �1 (often called the \ground space") toanother formal system, �2 (often called the \abstract space") [6]. It is givenby a triple consisting of �1, �2 and a function, f which maps formulae in �1onto formulae in �2. An interesting restriction is to those abstractions whoseabstract proofs are guaranteed to be outlines of ground proofs. For example,one very important class of abstractions is given by the following de�nition:De�nition 6 (PI-abstraction) : An abstraction, f : �1 ) �2 is said to bea PI-abstraction i�, for any proof �1 of a theorem ' in �1, there exists aproof �2 of f(') in �2 with �2� f(�1).By f(�1) we mean the formulae tree built by applying f to every formula in�1.The essential idea in using such abstractions is:(i) we abstract the formula to be proved;8



(ii) we �nd an abstract proof;(iii) we unabstract the abstract proof; this gives us an outline for the groundproof;(iv) we re�ne this outline by �lling in the gaps between the formulae.Note that it is the unabstraction of the abstract proof, and not the abstractproof, which provides the proof outline for the ground proof. We'll illus-trate this procedure by means of an example in which we reason about theproperties of various containers. We will use a predicate abstraction whichcollapses together objects with similar properties. For example, \box(x)",\bottle(x)" and \glass(x)" all map onto the generic \container(x)". Con-sider the ground goal \movable(a) ^ graspable(a)" which gets abstractedonto the abstract goal \shif table(a) ^ shif table(a)". Let us suppose thatwe have performed the steps (i) and (ii), giving the abstract proof:container(a) container(x)!shif table(x)shif table(a)shif table(a) ^ shif table(a)The third step is to unabstract the abstract proof to give an outline.This can be made as simple as possible by producing the \minimal" outline,whose abstraction is tree isomorphic to the abstract proof. As an abstractionis usually a many-to-one mapping on the language and the abstract proofcorresponds to many di�erent (minimal) outlines. For example, up to treeisomorphism, the abstract proof of the example has 36 minimal outlines.We tackle this problem by constructing a schema which represents all the(minimal) outlines up to tree isomorphism. With a predicate abstraction,this construction uses second order sorted meta-variables (other types ofabstractions require other types of sorted and unsorted, �rst and second ordermeta-variables). These meta-variables allow us to represent any w� in theground language that abstracts onto a given abstract w�. For example, \X :container(a)", where X is a second order sorted meta-variable, representsany atomic w� which abstracts onto \container(a)". The elements of the sortare the predicates collapsed into container, namely box, bottle, and glass.This technique allows us to delay the unabstraction of parts of a w� until,during the re�nement, we have a better knowledge of the other instantiations.The outline resulting from this step is thus:9



X : container(a) Y : container(x)!Z : shif table(x)U : shif table(a)V : shif table(a) ^ W : shif table(a)In the fourth and �nal step, this outline is instantiated and re�ned togive the following ground proof of \movable(a)^ graspable(a)".bottle(a) bottle(x)!graspable(x)graspable(a) graspable(x)!movable(x)movable(a)movable(a) ^ graspable(a)Note that the abstract proof is not a subtree of the abstraction of theground proof as, in re�ning the outline, we had to add nodes to the middleof the tree. This is a type of middle-out reasoning.We are currently building an abstract proof checker for performing thesefour steps. This abstract proof checker is built on top of GETFOL which isan extension and re-implementation of the FOL proof checking system[7, 10].Actually, GETFOL is far more than a conventional proof checker. For instance,it includes derived inference rules and complex deciders. A single proof stepin GETFOL can thus represent very complex reasoning. We could perhapscall it an \interactive theorem prover". However, we shall stick to \proofchecker" as we wish to emphasize our interest in the interaction with thesystem rather than in the automation of the construction of proofs.We have implemented facilities within GETFOL for abstracting a problemrepresentation. The user can call upon libraries of abstractions and abstrac-tion schemata. Our next goal is to provide facilities for unabstracting proofsand re�ning outlines; these steps are currently performed by hand. Thisapproach looks very promising. We have used this approach to develop aproof of G�odel's First Incompleteness Theorem using as guidance an outlinethat was built by unabstracting an abstract proof which is half the size ofthe ground proof. Under the abstraction used, more than half the axiomsbecome redundant and the proof halves in size; more importantly, every stepin the abstract proof corresponds to (the abstraction of) an important step inthe ground proof. That is, the abstract proof tree subsumes (the abstractionof) the ground proof. Or equivalently, an unabstraction of the abstract proofis an outline of the ground proof. 10



6 Related workBledsoe de�nes a notion of proof plan for use in his analogy guided theoremprover which can be seen as a restricted type of proof outline [2]. A proofplan is essentially a (�nite) sequence of proof steps. Each proof step containsa formula and an optional plan; every formula in the proof plan logicallyfollows from the conjunction of previous formulae. That is, a proof plan, P isa sequence: S1; S2:::Sn where Si is a proof step h'i;Pii, 'i is an intermediatesubgoal, Pi is itself a plan (possibly empty), and Vi<k 'i!'k for k = 1 to n.A proof plan can thus be seen as the proof outline:�1'1:�n'nwhere �i is the proof outline associated with the proof plan P i.Bledsoe claims that the use of such proof plans resembles the way humansdiscover proofs by breaking down a hard proof into easier subgoals, whichthemselves might also be broken down into easier subgoals. Such a problemsolving strategy seems very promising. Bledsoe's analogy guided theoremprover can prove some impressive theorems (eg. the completeness of lockresolution using as guidance a proof plan derived from the analogical proofof the completeness of general ground resolution).A notion of proof plan has also been proposed by Alan Bundy [3] for de-scribing high-level proof strategies. Proof plans are built in terms of methods,meta-level descriptions of compound proof steps. Methods encode discreteproof \chunks". A particular proof plan can capture many di�erent proofs asmethods include parameters that need to be instantiated to give an object-level proof. Proof plans are not, however, proof outlines { a proof plan isa meta-level description of a proof whilst a proof outline is an object-leveldescription. Nevertheless, many of the motivations behind this work aresimilar, and proof plans, like proof outlines, can aid explanation and reducesearch greatly.Plaisted has also de�ned a shape correspondence between ground and ab-stract proofs, written \�1 !f �2" (page 63 of [8]), which is closely related totree subsumption. Indeed, if we generalize tree subsumption to the relation,\� �" in which every w� in one tree logically subsumes a w� in the other11



tree, shape correspondence implies tree subsumption. Shape correspondenceis, however, weaker than tree subsumption as the abstract proof must be ofthe same depth as the ground proof.Theorem 4 : If �1 !f �2 then �1� �f(�2) and j�1j = j�2j.7 ConclusionsThis paper presents the beginnings of a theory for reasoning with proof out-lines. We have de�ned tree subsumption, a very general monotonicity prop-erty between a proof and its outline. We have explored several ways in whichproof outlines can be built (from diagrams, by abstraction, and so on). Weare currently implementing these ideas in GETFOL, a powerful proof checkingsystem. As well as aiding explanation, outlines seem a powerful means forcontrolling search.References[1] D. Barker-Plumer and S.C. Bailin. Graphical Theorem Proving: AnApproach to Reasoning with the Help of Diagrams Proceedings of ECAI-92, 1992.[2] W.W. Bledsoe. A precondition prover for analogy. Technical report,Computer Science Department, University of Texas at Austin, 1990.[3] A. Bundy. The Use of Explicit Plans to Guide Inductive Proofs. InProceedings of CADE9. Springer-Verlag, 1988.[4] A. Bundy, A. Smaill, and J. Hesketh. Turning eureka steps into calcu-lations in automatic program synthesis. In Proceedings of UK IT 90,1990.[5] F. Giunchiglia and T. Walsh. Abstract Theorem Proving. In Proceedingsof the 11th IJCAI, 1989.[6] F. Giunchiglia and T. Walsh. A Theory of Abstraction. Research paper516, Dept of AI, University of Edinburgh, 1990. Accepted to Arti�cialIntelligence. 12



[7] F. Giunchiglia and R.W. Weyhrauch FOL User Manual - FOL version 2Technical Report 9107-05, DIST, University of Genova, Genova, Italy,1991.[8] D.A. Plaisted. Theorem proving with abstraction. Arti�cial Intelligence,16:47{108, 1981.[9] G. Polya. How to Solve It. Princeton University Press, 1945.[10] R.W. Weyhrauch. Prolegomena to a theory of Mechanized Formal Rea-soning. Arti�cial Intelligence, 13(1), 1980.
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