
Artificial Intelligence 173 (2009) 299–328
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Filtering algorithms for the multiset ordering constraint

Alan M. Frisch a, Brahim Hnich b, Zeynep Kiziltan c,∗, Ian Miguel d, Toby Walsh e

a Department of Computer Science, University of York, UK
b Faculty of Computer Science, Izmir University of Economics, Turkey
c Department of Computer Science, University of Bologna, Italy
d School of Computer Science, University of St Andrews, UK
e NICTA and School of Computer Science and Engineering, University of New South Wales, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 July 2008
Received in revised form 17 October 2008
Accepted 2 November 2008
Available online 6 November 2008

Keywords:
Constraint satisfaction
Constraint programming
Modelling
Global constraints
Constraint propagation
Propagation algorithms
Symmetry breaking
Multiset ordering
Leximin optimal solutions

Constraint programming (CP) has been used with great success to tackle a wide variety of
constraint satisfaction problems which are computationally intractable in general. Global
constraints are one of the important factors behind the success of CP. In this paper,
we study a new global constraint, the multiset ordering constraint, which is shown to
be useful in symmetry breaking and searching for leximin optimal solutions in CP. We
propose efficient and effective filtering algorithms for propagating this global constraint.
We show that the algorithms maintain generalised arc-consistency and we discuss possible
extensions. We also consider alternative propagation methods based on existing constraints
in CP toolkits. Our experimental results on a number of benchmark problems demonstrate
that propagating the multiset ordering constraint via a dedicated algorithm can be very
beneficial.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Constraint satisfaction problems (CSPs) play an important role in various fields of computer science [34] and are ubiq-
uitous in many real-life application areas such as production planning, staff scheduling, resource allocation, circuit design,
option trading, and DNA sequencing. In general, solving CSPs is NP-hard and so is computationally intractable [21]. Constraint
programming (CP) provides a platform for solving CSPs [1,23] and has proven successful in many real-life applications [29,30,
37] despite this intractability. One of the jewels of CP is the notion of global (or non-binary) constraints. They encapsulate
patterns that occur frequently in constraint models. Moreover, they contain specialised filtering algorithms for powerful con-
straint inference. Dedicated filtering algorithms for global constraints are vital for efficient and effective constraint solving.
A number of such algorithms have been developed (see [4] for examples).

In this paper, we study a new global constraint, the multiset ordering constraint, which ensures that the values taken
by two vectors of variables, when viewed as multisets, are ordered. This constraint has applications in breaking row and
column symmetry as well as in searching for leximin optimal solutions. We propose two different filtering algorithms for the
multiset ordering (global) constraint. Whilst they both maintain generalised arc-consistency, they differ in their complexity.
The first algorithm MsetLeq runs in time that is in the number of variables (n) and in the number of distinct values
(d) and is suitable when n is much bigger than d. Instead, the second algorithm is more suitable when we have large

* Corresponding author.
E-mail addresses: frisch@cs.york.ac.uk (A.M. Frisch), brahim.hnich@ieu.edu.tr (B. Hnich), zeynep@cs.unibo.it (Z. Kiziltan), ianm@dcs.st-and.ac.uk

(I. Miguel), toby.walsh@nicta.com.au (T. Walsh).
0004-3702/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.artint.2008.11.001

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:frisch@cs.york.ac.uk
mailto:brahim.hnich@ieu.edu.tr
mailto:zeynep@cs.unibo.it
mailto:ianm@dcs.st-and.ac.uk
mailto:toby.walsh@nicta.com.au
http://dx.doi.org/10.1016/j.artint.2008.11.001

300 A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328
domains and runs in time O (n log(n)) independent of d. We propose further algorithms by considering some extensions to
MsetLeq. In particular, we show how we can identify entailment and obtain a filtering algorithm for the strict multiset
ordering constraint. These algorithms are proven to maintain generalised arc-consistency.

We consider alternative approaches to propagating the multiset ordering constraint by using existing constraints in CP
toolkits. We evaluate our algorithms in contrast to the alternative approaches on a variety of representative problems in
the context of symmetry breaking. The results demonstrate that our filtering algorithms are superior to the alternative ap-
proaches either in terms of pruning capabilities or in terms of computational times or both. We stress that the contribution
of this paper is the study of the filtering algorithms for the multiset ordering constraint. Symmetry breaking is merely
used to compare the efficiency of these propagators. A more in depth comparison of symmetry breaking methods awaits
a separate study. Such a study would be interesting in its own right as multiset ordering constraints are one of the few
methods for breaking symmetry which are not special cases of lexicographical ordering constraints [6]. Nevertheless, we
provide experimental evidence to support the need of multiset ordering constraints in the context of symmetry breaking.

The rest of the paper is organised as follows. After we give the necessary formal background in the next section, we
present in Section 3 the utility of the multiset ordering constraint. In Section 4, we present our first filtering algorithm, prove
that it maintains generalised arc-consistency, and discuss its complexity. Our second algorithm is introduced in Section 5.
In Section 6, we extend our first algorithm to obtain an algorithm for the strict multiset ordering constraint and to detect
entailment. Alternative propagation methods are discussed in Section 7. We demonstrate in Section 8 that decomposing a
chain of multiset ordering constraints into multiset ordering constraints between adjacent or all pairs of vectors hinders
constraint propagation. Computational results are presented in Section 9. Finally, we conclude and outline our plans for
future work in Section 10.

2. Formal background

2.1. Constraint satisfaction problems and constraint programming

A finite-domain constraint satisfaction problem (CSP) consists of: (i) a finite set of variables X ; (ii) for each variable X ∈ X ,
a finite set D(X) of values (its domain); (iii) and a finite set C of constraints on the variables, where each constraint
c(Xi, . . . , X j) ∈ C is defined over the variables Xi, . . . , X j by a subset of D(Xi) × · · · × D(X j) giving the set of allowed
combinations of values. That is, c is an n-ary relation.

A variable assignment or instantiation is an assignment to a variable X of one of the values from D(X). Whilst a partial
assignment A to X is an assignment to some but not all X ∈ X , a total assignment1 A to X is an assignment to every
X ∈ X . We use the notation A[S] to denote the projection of A on to the set of variables S . A (partial) assignment A
to the set of variables T ⊆ X is consistent iff for all constraints c(Xi, . . . , X j) ∈ C such that {Xi, . . . , X j} ⊆ T , we have
A[{Xi, . . . , X j}] ∈ c(Xi, . . . , X j). A solution to the CSP is a consistent assignment to X . A CSP is said to be satisfiable if it has
a solution; otherwise it is unsatisfiable. Typically, we are interested in finding one or all solutions, or an optimal solution
given some objective function. In the presence of an objective function, a CSP is a constraint optimisation problem.

Constraint Programming (CP) has been used with great success to solve CSPs. Recent years have witnessed the devel-
opment of several CP systems [30]. To solve a problem using CP, we need first to formulate it as a CSP by declaring the
variables, their domains, as well as the constraints on the variables. This part of the problem solving is called modelling. In
the following, we first introduce our notations and then briefly overview modelling and solving in CP. Since we compare our
algorithms against the alternative approaches in the context of symmetry breaking, we also briefly review matrix modelling
and index symmetry.

2.2. Notation

Throughout, we assume finite integer domains, which are totally ordered. The domain of a variable X is denoted by
D(X), and the minimum and the maximum elements in this domain by min(X) and max(X). We use vars(c) to denote the
set of variables constrained by constraint c. If a variable X has a singleton domain {v} we say that v is assigned to X and
denotes this by X ← v , or simply say that X is assigned. If two variables X and X ′ are assigned the same value, then we
write X

.= X ′ , otherwise we write ¬(X
.= X ′).

A one-dimensional matrix, or vector, is an ordered list of elements. We denote a vector of n variables as �X =
〈X0, . . . , Xn−1〉 and a vector of n integers as �x = 〈x0, . . . , xn−1〉. In either case, a sub-vector from index a to index b in-
clusive is denoted by the subscript a → b, such as: �xa→b . Unless otherwise stated, the indexing of vectors is from left to
right, with 0 being the most significant index, and the variables of a vector �X are assumed to be disjoint and not repeated.
The vector �X Xi←d is the vector �X with some Xi being assigned to d. The functions floor(�X) and ceiling(�X) assign all
the variables of �X their minimum and maximum values, respectively. A vector �x in the domain of �X is designated by �x ∈ �X .
We write {�x | C ∧ �x ∈ �X} to denote the set of vectors in the domain of �X which satisfy condition C . A vector of variables

1 Throughout, we will say assignment when we mean total assignment to the problem variables.

A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328 301
is displayed by a vector of the domains of the corresponding variables. For instance, �X = 〈{1,3,4}, {1,2,3,4,5}, {1,2}}〉
denotes the vector of three variables whose domains are {1,3,4}, {1,2,3,4,5}, and {1,2}, respectively.

A set is an unordered list of elements in which repetition is not allowed. We denote a set of n elements as X =
{x0, . . . , xn−1}. A multiset is an unordered list of elements in which repetition is allowed. We denote a multiset of n elements
as x = {{x0, . . . , xn−1}}. We write max(x) or max{{x0, . . . , xn−1}} for the maximum element of a multiset x. By ignoring the
order of elements in a vector, we can view a vector as a multiset. For example, the vector 〈0,1,0〉 can be viewed as
the multiset {{1,0,0}}. We will abuse notation and write {{�x}} or {{〈x0, . . . , xn−1〉}} for the multiset view of the vector �x =
〈x0, . . . , xn−1〉.

An occurrence vector occ(�x) associated with �x is indexed in decreasing order of significance from the maximum max{{�x}}
to the minimum min{{�x}} value from the values in {{�x}}. The ith element of occ(�x) is the number of occurrences of max{{�x}}− i
in {{�x}}. When comparing two occurrence vectors, we assume they start and end with the occurrence of the same value,
adding leading/trailing zeroes as necessary. Finally, sort(�x) is the vector obtained by sorting the values in �x in non-increasing
order.

2.3. Search, local consistency and propagation

Solutions to CSPs are often found by searching systematically the space of partial assignments. A common search strategy
is backtracking search. We traverse the search space in a depth-first manner and at each step extend a partial assignment by
assigning a value to one more variable. If the extended assignment is consistent then one more variable is instantiated and
so on. Otherwise, the variable is re-instantiated with another value. If none of the values in the domain of the variable is
consistent with the current partial assignment then one of the previous variable assignments is reconsidered.

Backtracking search may be seen as a search tree traversal. Each node defines a partial assignment and each branch
defines a variable assignment. A partial assignment is extended by branching from the corresponding node to one of its
subtrees by assigning a value j to the next variable Xi from the current D(Xi). Upon backtracking, j is removed from
D(Xi). This process is often called labelling. The order of the variables and values chosen for consideration can have a
profound effect on the size of the search tree [16]. The order can be determined before search starts, in which case the
labelling heuristic is static. If the next variable and/or value are determined during search then the labelling heuristic is
dynamic.

The size of the search tree of a CSP is in the worst case equal to the product of the domain sizes of all variables. It is thus
too expensive in general to enumerate all possible assignments using a naive backtracking algorithm. Consequently, many
CP solution methods are based on inference which reduces the problem to an equivalent (i.e. with the same solution set)
but smaller problem. Since complete inference is too computationally expensive to be used in practice, inference methods
are often incomplete and enforce local consistencies. A local consistency is a property of a CSP defined over “local” parts
of the CSP, in other words defined over subsets of the variables and constraints of the CSP. The main idea is to remove
from the domains of the variables the values that will not take part of any solution. Such values are said to be inconsistent.
Inconsistent values can be detected by using a number of consistency properties.

A common consistency property proposed in [22] is generalised arc-consistency. A constraint c is generalised arc-consistent
(or GAC), written GAC(c), if and only if for every X ∈ vars(c) and every v ∈ D(X), there is at least one assignment to vars(c)
that assigns v to X and satisfies c. Values for variables other than X participating in such assignments are known as the
support for the assignment of v to X . Generalised arc-consistency is established on a constraint c by removing elements from
the domains of variables in vars(c) until the GAC property holds. For binary constraints, GAC is equivalent to arc-consistency
(AC, see [21]). Another useful local consistency is bound consistency that treats the domains of the variables as intervals. For
integer variables, the values have a natural total order, therefore the domain can be represented by an interval whose lower
bound is the minimum value and the upper bound is the maximum value in the domain. A constraint C is bound consistent
(BC) iff for every variable, for its minimum (maximum) there exists a value for every other variable between its minimum
and maximum that satisfies C [36].

We will compare local consistency properties applied to (sets of) logically equivalent constraints, c1 and c2. As in [7], we
say that a local consistency property � on c1 is as strong as � on c2 iff, given any domains, if � holds on c1 then � holds
on c2; we say that � on c1 is strictly stronger than � on c2 iff � on c1 is as strong as � on c2 but not vice versa.

In a constraint program, searching for solutions is interleaved with local consistency as follows. Local consistency is first
enforced before search starts to preprocess the problem and prune subsequent search. It is then maintained dynamically at
each node of the search tree with respect to the current variable assignment. In this way, the domains of the uninstantiated
variables shrink and the search tree gets smaller. Whilst the process of maintaining local consistency over a CSP is known
as propagation, the process of removing inconsistent values from the domains is known as pruning or filtering. For effective
constraint solving, it is important that propagation removes efficiently as many inconsistent values as possible. Note that
GAC is an important consistency property as it is the strongest filtering that be done by reasoning on only a single constraint
at a time. Many global constraints in CP toolkits therefore encapsulate their own filtering algorithm which typically achieves
GAC at a low cost by exploiting the semantics of the constraint. As an example, Régin in [27] gives a filtering algorithm for
the all-different constraint which maintains GAC in time O (n2.5) where n is the number of variables.

The semantics of a constraint can help not only find supports and inconsistent values quickly but also detect entailment
and disentailment without having to do filtering. A constraint c is entailed if all assignments of values to vars(c) satisfy c.

302 A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328
Similarly, a constraint c is disentailed when all assignments of values to vars(c) violate c. If a constraint in a CSP is detected
to be entailed, it does not have to propagated in the future, and if it is detected to be disentailed then it is proven that the
current CSP has no solution and we can backtrack.

2.4. Modelling

CP toolkits provide constructs for declaring the variables, their domains, as well as the constraints between these vari-
ables of a CSP. They often contain a library of predefined constraints with a particular semantics that can be applied to sets
of variables with varying arities and domains. For instance, all-different([X1, . . . , X3]) with D(X1) = D(X2) = {1,2}, D(X3) =
{1,2,3} is an instance of all-different([X1, . . . , Xn]) defined on three variables with the specified domains. It has the seman-
tics that the variables involved take different values [27]. The all-different([X1, . . . , Xn]) constraint can be applied to any
number of variables with any domains. Such constraints are often referred as global constraints. Beldiceanu has catalogued
hundreds of global constraints, most of which are defined over finite domain variables [4]. They permit the user to model a
problem easily by compactly specifying common patterns that occur in many constraint models. They also provide solving
advantages which we shall explain later.

Since constraints provide a rich language, a number of alternative models will often exist, some of which will be more
effective than others. However, one of the most common and effective modelling patterns in constraint programming is a
matrix model. A matrix model is the formulation of a CSP with one or more matrices of decision variables (of one or more
dimensions) [12]. Matrix models are a natural way to represent problems that involve finding a function or a relation. We
shall illustrate matrix models and the power of global constraints in modelling through the sport scheduling problem. This
problem involves scheduling games between n teams over n − 1 weeks [35]. Each week is divided into n/2 periods, and
each period is divided into two slots. The team in the first slot plays at home, while the team in the second slot plays away.
The goal is to find a schedule such that: (i) every team plays exactly once a week; (ii) every team plays against every other
team; (iii) every team plays at most twice in the same period over the tournament. Van Hentenryck et al. propose a model
for this problem in [35], where they extend the problem with a “dummy” final week to make the problem more uniform.
The model consists of two matrices: a 3-d matrix T of P eriods × E weeks × S lots and a 2-d matrix G of P eriods × W eeks,
where P eriods is the set of n/2 periods, E weeks is the set of n extended weeks, W eeks is the set of n − 1 weeks, and S lots
is the set of 2 slots. In T , weeks are extended to include the dummy week, and each element takes a value from {1, . . . ,n}
expressing that a team plays in a particular week in a particular period, in the home or away slot. For the sake of simplicity,
we will treat this matrix as 2-d where the rows represent the periods and the columns represent the extended weeks, and
each entry of the matrix is a pair of variables. The elements of G takes values from {1, . . . ,n2}, and each element denotes
a particular unique combination of home and away teams. More precisely, a game played between a home team h and an
away team a is uniquely identified by (h − 1) ∗ n + a. (see Fig. 1).

Consider the columns of T which denote the (extended) weeks. The first set of constraints post all-different (global)
constraints on the columns of T to enforce that each column is a permutation of 1 . . .n. The second constraint is an
all-different (global) constraint on G that enforces that all games must be different. Consider the rows of T which represent

Fig. 1. The matrix model of the sport scheduling problem in [35].

A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328 303
the periods. The third set of constraints post the global cardinality constraints (gcc) on the rows to ensure that each of
1 . . .n occur exactly twice in every row. The fourth set of constraints are called channelling constraints and are often used
when multiple matrices are used to model the problem and they have to be linked together. In our case, the channelling
constraints links a variable representing a game (Gi, j) with a variable representing the team playing home team (Ti, j,0)
and the corresponding variable representing the away team (Ti, j,1) such that Gi, j = (Ti, j,0 − 1) ∗ n + Ti, j,1. The final set of
constraints will be discussed after giving an overview of symmetry in CP.

2.5. Symmetry

A symmetry is an intrinsic property of an object which is preserved under certain classes of transformations. For instance,
rotating a chess board 90◦ gives us a board which is indistinguishable from the original one. A CSP can have symmetries in
the variables or domains or both which preserve satisfiability. In the presence of symmetry, any (partial) assignment can be
transformed into a set of symmetrically equivalent assignments without affecting whether or not the original assignment
satisfies the constraints.

Symmetry in constraint programs increases the size of the search space. It is therefore important to prune symmetric
states so as to improve the search efficiency. This process is referred to as symmetry breaking. One of the easiest and most
efficient ways of symmetry breaking is adding symmetry breaking constraints [6,25]. These constraints impose an ordering on
the symmetric objects. Among the set of symmetric assignments, only those that satisfy the ordering constraints are chosen
for consideration during the process of search. For instance, in the matrix model of Fig. 1, any solution can be mapped to
a symmetric solution by swapping any two teams (Ti, j,0 and Ti, j,1). These solutions are essentially the same. We can add
the set of constraints (5) in order to break such symmetry between the two teams and speed up search by avoiding visiting
symmetric branches.

A common pattern of symmetry in matrix models is that the rows and/or columns of a 2-d matrix represent indistin-
guishable objects. Consequently the rows and/or columns of an assignment can be swapped without affecting whether or
not the assignment is a solution [11]. These are called row or column symmetry; the general term is index symmetry. For
instance, in the matrix model of Fig. 1, the (extended) weeks over which the tournament is held, as well the periods of a
week are indistinguishable. The rows and the columns of T and G are therefore symmetric. Note that we treat T as a 2-d
matrix where the rows represent the periods and columns represent the (extended) weeks, and each entry of the matrix is
a pair of variables.

If every bijection on the values of an index is an index symmetry, then we say that the index has total symmetry. If the
first (resp. second) index of a 2-d matrix has total symmetry, we say that the matrix has total column symmetry (resp. total
row symmetry). In many matrix models only a subset of the rows or columns are interchangeable. If the first (resp. second)
index of a 2-d matrix has partial symmetry, we say that the matrix has partial column symmetry (resp. partial row symmetry).2

There is one final case to consider: an index may have partial index symmetry on multiple subsets of its values. For example,
a CSP may have a 2-d matrix for which rows 1, 2 and 3 are interchangeable and rows 5, 6 and 7 are interchangeable. This
can occur on any or all of the indices.

An n × m matrix with total row and column symmetry has n!m! symmetries, a number which increases super-
exponentially. An effective way to deal with this class of symmetry is to use lexicographic ordering constraints.

Definition 1. A strict lexicographic ordering �x <lex �y between two vectors of integers �x = 〈x0, x1, . . . , xn−1〉 and �y =
〈y0, y1, . . . , yn−1〉 holds iff ∃k 0 � k < n such that xi = yi for all 0 � i < k and xk < yk .

The ordering can be weakened to include equality.

Definition 2. Two vectors of integers �x = 〈x0, x1, . . . , xn−1〉 and �y = 〈y0, y1, . . . , yn−1〉 are lexicographically ordered �x �lex �y
iff �x <lex �y or �x = �y.

Given two vectors of variables �X = 〈X0, X1, . . . , Xn−1〉 and �Y = 〈Y0, Y1, . . . , Yn−1〉, we write a lexicographic ordering con-
straint as �X �lex �Y and a strict lexicographic ordering constraint as �X <lex �Y . These constraints are satisfied by an assignment
if the vectors �x and �y assigned to �X and �Y are ordered according to Definitions 2 and 1, respectively.

To deal with column (resp. row) symmetry, we can constrain the columns (resp. rows) to be non-decreasing as the
value of the index increases. One way to achieve this is by imposing a lexicographic ordering constraint between adjacent
columns (resp. rows). These constraints are consistent which means that they leave at least one assignment among the
set of symmetric assignments. We can deal with row and column symmetry in a similar way by imposing a lexicographic
ordering constraint between adjacent rows and columns simultaneously. Also such constraints are consistent. Even though
these constraints may not eliminate all symmetry, they have been shown to be effective at removing many symmetries from
the search spaces of many problems. If a matrix has only partial column (resp. partial row) symmetry then the symmetry
can be broken by constraining the interchangeable columns (resp. rows) to be in lexicographically non-decreasing order.

2 Throughout, we will say row symmetry (resp. column symmetry) when we mean total row symmetry (resp. total column symmetry) to the problem variables.

304 A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328
This can be achieved in a manner similar to that described above. The method also extends to matrices that have partial or
total column symmetry together with partial or total row symmetry. Finally, if the columns and/or rows of a matrix have
multiple partial symmetries than each can be broken in the manner just described [11].

3. The multiset ordering constraint and its applications

Multiset ordering is a total ordering on multisets.

Definition 3. Strict multiset ordering x <m y between two multisets of integers x and y holds iff:

x = {{}} ∧ y �= {{}} ∨
max(x) < max(y) ∨

(max(x) = max(y) ∧ x − {{max(x)}} <m y − {{max(y)}})

That is, either x is empty and y is not, or the largest value in x is less than the largest value in y, or the largest values
are the same and, if we eliminate one occurrence of the largest value from both x and y, the resulting two multisets are
ordered. We can weaken the ordering to include multiset equality.

Definition 4. Two multisets of integers x and y are multiset ordered x �m y iff x <m y or x = y.

Even though this ordering is defined on multisets, it may also be useful to order vectors by ignoring the positions but
rather concentrating on the values taken by the variables. We can do this by treating a vector as a multiset. Given two
vectors of variables �X = 〈X0, X1, . . . , Xn−1〉 and �Y = 〈Y0, Y1, . . . , Yn−1〉, we write a multiset ordering constraint as �X �m �Y
and a strict multiset ordering constraint as �X <m �Y . These constraints ensure that the vectors �x and �y assigned to �X and �Y ,
when viewed as multisets, are multiset ordered according to Definitions 4 and 3, respectively.

3.1. Breaking index symmetry

One important application of the multiset ordering constraint is in breaking index symmetry [13]. If X is an n by
m matrix of decision variables, then we can break its column symmetry by imposing the constraints 〈Xi,0, . . . , Xi,m〉 �m

〈Xi+1,0, . . . , Xi+1,m〉 for i ∈ [0,n − 2], or for short �C0 �m �C1 �m · · · �m �Cn−1 where �Ci corresponds to the vector of variables
〈Xi,0, . . . , Xi,m〉 which belong to the ith column of the matrix. Similarly we can break its row symmetry by imposing the
constraints 〈X0, j, . . . , Xn, j〉 �m 〈X0, j+1, . . . , Xn, j+1〉 for j ∈ [0,m − 2], or for short �R0 �m �R1 �m · · · �m �Rm−1 in which �R j
corresponds to the variables 〈X0, j, . . . , Xn, j〉 of the jth row. Such constraints are consistent symmetry breaking constraints.
Note that when we have partial column (resp. row) symmetry, then the symmetry can be broken by imposing multiset
ordering constraints on the symmetric columns (resp. rows) only.

Whilst multiset ordering is a total ordering on multisets, it is not a total ordering on vectors. In fact, it is a preordering
as it is not antisymmetric. Hence, each symmetry class may have more than one element where the rows (resp. columns)
are multiset ordered. This does not however make lexicographic ordering constraints preferable over multiset ordering
constraints in breaking row (resp. column) symmetry. The reason is that they are incomparable as they remove different
symmetric assignments in an equivalence class [13].

One of the nice features of using multiset ordering for breaking index symmetry is that by constraining one dimen-
sion of the matrix, say the rows, to be multiset ordered, we do not distinguish the columns. We can still freely permute
the columns, as multiset ordering the rows ignores positions and is invariant to column permutation. We can therefore
consistently post multiset ordering constraints on the rows together with either multiset ordering or lexicographic ordering
constraints on the columns when we have both row and column symmetry. Neither approach may eliminate all symmetries,
however they are all potentially interesting. Since lexicographic ordering and multiset ordering constraints are incomparable,
imposing one ordering in one dimension and the other ordering in the other dimension of a matrix is also incomparable to
imposing the same ordering on both dimensions of the matrix [13]. Studying the effectiveness of all these different methods
in reducing index symmetry is outside the scope of this paper as we only focus on the design of efficient and effective fil-
tering algorithms for the multiset ordering constraints. Nevertheless, experimental results in Section 9 show that exploiting
both multiset ordering and lexicographic ordering constraints can be very effective in breaking index symmetry.

A multiset ordering constraint can also be helpful for implementing other constraints useful to break index symmetry.
One such constraint is allperm [14]. Experimental results in [14] show that the decomposition of allperm using a multiset
ordering constraint can be as effective and efficient as the specialised algorithm proposed.

3.2. Searching for leximin optimal solutions

Another interesting application of the multiset ordering constraint arises in the context of searching for leximin optimal
solutions. Such solutions can be useful in fuzzy CSPs. A fuzzy constraint associates a degree of satisfaction to an assign-

A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328 305
ment tuple for the variables it constrains. To combine degrees of satisfaction, we can use a combination operator like the
minimum function. Unfortunately, the minimum function may cause a drowning effect when one poorly satisfied constraint
‘drowns’ many highly satisfied constraints. One solution is to collect a vector of degrees of satisfaction, sort these values
in ascending order and compare them lexicographically. This leximin combination operator identifies the assignment that
violates the fewest constraints [10]. This induces an ordering identical to the multiset ordering except that the lower ele-
ments of the satisfaction scale are the more significant. It is simple to modify a multiset ordering constraint to consider the
values in a reverse order. To solve such leximin fuzzy CSPs, we can then use branch and bound, adding a multiset ordering
constraint when we find a solution to ensure that future solutions are greater in the leximin ordering.

Leximin optimal solutions can be useful also in other domains. For instance, as shown in [5], they can be exploited as a
fairness and Pareto optimality criterion when solving multiobjective problems in CP. Experimental results in [5] show that
using a multiset ordering constraint in a branch and bound search can be competitive with the alternative approaches to
finding leximin optimal solutions.

4. A filtering algorithm for multiset ordering constraint

In this section, we present our first filtering algorithm which either detects that �X �m �Y is disentailed or prunes incon-
sistent values so as to achieve GAC on �X �m �Y . After sketching the main features of the algorithm on a running example in
Section 4.1, we first present the theoretical results that the algorithm exploits in Section 4.2 and then give the details of the
algorithm in Section 4.3. Throughout, we assume that the variables of the vectors �X and �Y are disjoint.

4.1. A worked example

The key idea behind the algorithm is to build a pair of occurrence vectors associated with floor(�X) and ceiling(�Y).
The algorithm goes through every variable of �X and �Y checking for support for values in the domains. It suffices to have
occ(floor(�X Xi←max(Xi))) �lex occ(ceiling(�Y)) to ensure that all values of D(Xi) are consistent. Similarly, we only need
occ(floor(�X)) �lex occ(ceiling(�YY j←min(Y j))) to hold for the values of D(Y j) to be consistent. We can avoid the repeated

construction and traversal of these vectors by building, once and for all, the vectors occ(floor(�X)) and occ(ceiling(�Y)),
and defining some pointers and flags on them. For instance, assume we have occ(floor(�X)) �lex occ(ceiling(�Y)). The
vector occ(floor(�X Xi←max(Xi))) can be obtained from occ(floor(�X)) by decreasing the number of occurrences of min(Xi)

by 1, and increasing the number of occurrences of max(Xi) by 1. The pointers and flags tell us whether this disturbs the
lexicographic ordering, and if so they help us to find quickly the largest max(Xi) which does not.

Consider the multiset ordering constraint �X �m �Y where:

�X = 〈{5}, {4,5}, {3,4,5}, {2,4}, {1}, {1}〉
�Y = 〈{4,5}, {4}, {1,2,3,4}, {2,3}, {1}, {0}〉

We have floor(�X) = 〈5,4,3,2,1,1〉 and ceiling(�Y) = 〈5,4,4,3,1,0〉. We construct our occurrence vectors �ox =
occ(floor(�X)) and �oy = occ(ceiling(�Y)), indexed from max({{ceiling(�X)}}∪{{ceiling(�Y)}}) = 5 to min({{floor(�X)}}
∪ {{floor(�Y)}}) = 0:

5 4 3 2 1 0
�ox = 〈1, 1, 1, 1, 2, 0〉
�oy = 〈1, 2, 1, 0, 1, 1〉

Recall that oxi and oyi denote the number of occurrences of the value i in {{floor(�X)}} and {{ceiling(�Y)}}, respectively.
For example, oy4 = 2 as 4 occurs twice in {{ceiling(�Y)}}. Next, we define our pointers and flags on �ox and �oy. The pointer
α points to the most significant index above which the values are pairwise equal and at α we have oxα < oyα . This means
that we will fail to find support if any of the Xi is assigned a new value greater than α, but we will always find support
for values less than α. If �ox = �oy then we set α = −∞. Otherwise, we fail immediately because no value for any variable
can have support. We define β as the most significant index below α such that oxβ > oyβ . This means that we might
fail to find support if any of the Y j is assigned a new value less than or equal to β , but we will always find support for
values larger than β . If such an index does not exist then we set β = −∞. Finally, the flag γ is true iff β = α − 1 or
�oxα+1→β−1 = �oyα+1→β−1, and σ is true iff the sub-vectors below β are ordered lexicographically the wrong way. In our

example, α = 4, β = 2, γ = true, and σ = true:

5 4 3 2 1 0
�ox = 〈1, 1, 1, 1, 2, 0〉
�oy = 〈1, 2, 1, 0, 1, 1〉

α ↑ γ = true β ↑ σ = true

We now go through each Xi and find the largest value in its domain which is supported. If Xi has a singleton domain then
we skip it because we have �ox �lex �oy, meaning that its only value has support. Consider X1. As min(X1) = α, changing
�ox to occ(floor(�X X1←max(X1))) increases the number of occurrences of an index above α by 1. This upsets �ox �lex �oy. We

306 A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328
therefore prune all values in D(X1) larger than α. Now consider X2. We have max(X2) > α and min(X2) < α. As with X1,
any value of X2 larger than α upsets the lexicographic ordering, but any value less than α guarantees the lexicographic
ordering. The question is whether α has any support? Changing �ox to occ(floor(�X X2←α)) decreases the number of oc-
currences of 3 in �ox by 1, and increases the number of occurrences of α by 1. Now we have oxα = oyα but decreasing an
entry in �ox between α and β guarantees lexicographic ordering. We therefore prune from D(X2) only the values greater
than α. Now consider X3. We have max(X3) = α and min(X3) < α. Any value less than α has support but does α have any
support? Changing �ox to occ(floor(�X X3←α)) decreases the number of occurrences of beta in �ox by 1, and increases the
number of occurrences of α by 1. Now we have oxα = oyα and oxβ = oyβ . Since γ and σ are true, the occurrence vectors
are lexicographically ordered the wrong way. We therefore prune α from D(X3). We skip X4 and X5.

Similarly, we go through each Y j and find the smallest value in its domain which is supported. If Y j has a singleton
domain then we skip it because we have �ox �lex �oy, meaning that its only value has support. Consider Y0. As max(Y0) > α,
changing �oy to occ(ceiling(�YY0←min(Y0))) decreases the number of occurrences of an index above α by 1. This upsets
�ox �lex �oy. We therefore prune all values in D(Y0) less than or equal to α. Now consider Y2. We have max(Y2) = α and

min(Y2) � β . Any value larger than β guarantees lexicographic ordering. The question is whether the values less than or
equal to β have any support? Changing �oy to occ(ceiling(�YY2←min(Y2))) decreases the number of occurrences of α by
1, giving us oxα = oyα . If min(Y2) = β then we have oxβ = oyβ . This disturbs �ox �lex �oy because γ and σ are both true.
If min(Y2) < β then again we disturb �ox �lex �oy because γ is true and the vectors are not lexicographically ordered as
of β . So, we prune from D(Y2) the values less than or equal to β . Now consider Y3. As max(Y3) < α, changing �oy to
occ(ceiling(�YY3←min(Y3))) does not change that �ox �lex �oy. Hence, min(Y3) is supported. We skip Y4 and Y5.

We have now the following generalised arc-consistent vectors:

�X = 〈{5}, {4}, {3,4}, {2}, {1}, {1}〉
�Y = 〈{5}, {4}, {3,4}, {2,3}, {1}, {0}〉

4.2. Theoretical background

The algorithm exploits four theoretical results. The first reduces GAC to consistency on the upper bounds of �X and on
the lower bounds of �Y . The second and the third show in turn when �X �m �Y is disentailed and what conditions ensure GAC
on �X �m �Y . And the fourth establishes that two ground vectors are multiset ordered iff the associated occurrence vectors
are lexicographically ordered.

Theorem 1. GAC(�X �m �Y) iff for all 0 � i < n, max(Xi) and min(Yi) are consistent.

Proof. GAC implies that every value is consistent. To show the reverse, suppose for all 0 � i < n, max(Xi) and min(Yi) are
supported, but the constraint is not GAC. Then there is an inconsistent value. If this value is in some D(Xi) then any value
greater than this value, in particular max(Xi), is inconsistent. Similarly, if the inconsistent value is in some D(Yi) then any
value less than this value, in particular min(Yi), is inconsistent. In any case, the bounds are not consistent. �

A constraint is said to be disentailed when the constraint is f alse. The next two theorems show when �X �m �Y is disen-
tailed and what conditions ensure GAC on �X �m �Y .

Theorem 2. �X �m �Y is disentailed iff {{floor(�X)}} >m {{ceiling(�Y)}}.

Proof. (⇒) Since �X �m �Y is disentailed, any combination of assignments, including �X ← floor(�X) and �Y ← ceiling(�Y),
does not satisfy �X �m �Y . Hence, {{floor(�X)}} >m {{ceiling(�Y)}}.

(⇐) Any �x ∈ �X is greater than any �y ∈ �Y under the multiset ordering. Hence, �X �m �Y is disentailed. �
Theorem 3. GAC(�X �m �Y) iff for all i in [0,n):

{{floor(�X Xi←max(Xi))}} �m {{ceiling(�Y)}} (1)

{{floor(�X)}} �m {{ceiling(�YYi←min(Yi))}} (2)

Proof. (⇒) As the constraint is GAC, all values have support. In particular, Xi ← max(Xi) has a support �x1 ∈ {�x | xi =
max(Xi) ∧ �x ∈ �X} and �y1 ∈ �Y where {{ �x1}} �m {{ �y1}}. Any �x2 ∈ {�x | xi = max(Xi) ∧ �x ∈ �X} less than or equal to �x1,
and any �y2 ∈ �Y greater than or equal to �y1, under multiset ordering, support Xi ← max(Xi). In particular, min{�x | xi =
max(Xi) ∧ �x ∈ �X} and max{�y | �y ∈ �Y } support Xi ← max(Xi). We get min{�x | xi = max(Xi) ∧ �x ∈ �X} if all the other
variables in �X take their minimums, and we get max{�y | �y ∈ �Y } if all the variables in �Y take their maximums. Hence,
{{floor(�X Xi←max(Xi))}} �m {{ceiling(�Y)}}.

A dual argument holds for the variables of �Y . As the constraint is GAC, Yi ← min(Yi) has a support �x1 ∈ �X and �y1 ∈
{�y | yi = min(Yi) ∧ �y ∈ �Y } where {{ �x1}} �m {{ �y1}}. Any �x2 ∈ �X less than or equal to �x1, and any �y2 ∈ {�y | yi = min(Yi) ∧ �y ∈

A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328 307
�Y } greater than or equal to �y1, in particular min{�x | �x ∈ �X} and max{�y | yi = min(Yi) ∧ �y ∈ �Y } support Yi ← min(Yi). We
get min{�x | �x ∈ �X} if all the variables in �X take their minimums, and we get max{�y | yi = min(Yi) ∧ �y ∈ �Y } if all the other
variables in �Y take their maximums. Hence, {{floor(�X)}} �m {{ceiling(�YYi←min(Yi))}}.

(⇐) Eq. (1) ensures that for all 0 � i < n, max(Xi) is supported, and Eq. (2) ensures that for all 0 � i < n, min(Yi) is
supported. By Theorem 1, the constraint is GAC. �

In Theorems 2 and 3, we need to check whether two ground vectors are multiset ordered. The following theorem shows
that we can do this by lexicographically comparing the occurrence vectors associated with these vectors.

Theorem 4. {{�x}} �m {{�y}} iff occ(�x) �lex occ(�y).

Proof. (⇒) Suppose {{�x}} = {{�y}}. Then the occurrence vectors associated with �x and �y are the same. Suppose {{�x}} <m {{�y}}.
If max{{�x}} < max{{�y}} then the leftmost index of �ox = occ(�x) and �oy = occ(�y) is max{{�y}}, and we have oxmax{{�y}} = 0 and
oymax{{�y}} > 0. This gives �ox <lex �oy. If max{{�x}} = max{{�y}} = a then we eliminate one occurrence of a from each multiset and
compare the resulting multisets.

(⇐) Suppose occ(�x) = occ(�y). Then {{�x}} and {{�y}} contain the same elements with equal occurrences. Suppose occ(�x) <lex
occ(�y). Then a value a occurs more in {{�y}} than in {{�x}}, and the occurrence of any value b > a is the same in both multisets.
By deleting all the occurrences of a from {{�x}} and the same number of occurrences of a from {{�y}}, as well as any b > a
from both multisets, we get max{{�x}} < max{{�y}}. �

Theorems 2 and 3 together with Theorem 4 yield to the following propositions:

Proposition 1. �X �m �Y is disentailed iff occ(floor(�X)) >lex occ(ceiling(�Y)).

Proposition 2. GAC(�X �m �Y) iff for all i in [0,n):

occ(floor(�X Xi←max(Xi))) �lex occ(ceiling(�Y)) (3)

occ(floor(�X)) �lex occ(ceiling(�YYi←min(Yi))) (4)

A naive way to enforce GAC on �X �m �Y is going through every variable in the vectors, constructing the appropriate
occurrence vectors, and checking if their bounds satisfy 3 and 4. If they do, then the bound is consistent. Otherwise, we try
the nearest bound until we obtain a consistent bound. We can, however, do better than this by building only the vectors
occ(floor(�X)) and occ(ceiling(�Y)), and then defining some pointers and Boolean flags on them. This saves us from the
repeated construction and traversal of the appropriate occurrence vectors. Another advantage is that we can find consistent
bounds without having to explore the values in the domains.

We start by defining our pointers and flags. We write �ox for occ(floor(�X)), and �oy for occ(ceiling(�Y)). We assume
�ox and �oy are indexed from u to l, and �ox �lex �oy.3

Definition 5. Given �ox = occ(floor(�X)) and �oy = occ(ceiling(�Y)) indexed as u..l where �ox �lex �oy, the pointer α is set
either to the index in [u, l] such that:

oxα < oyα ∧
∀i u � i > α . oxi = oyi

or (if this is not the case) to −∞.

Informally, α points to the most significant index in [u, l] such that oxα < oyα and all the variables above it are pairwise
equal. If, however, �ox = �oy then α points to −∞.

Definition 6. Given �ox = occ(floor(�X)) and �oy = occ(ceiling(�Y)) indexed as u..l where �ox �lex �oy, the pointer β is set
either to the index in (α, l] such that:

oxβ > oyβ ∧
∀i α > i > β . oxi � oyi

or (if α � l or for all α > i � l we have oxi � oyi) to −∞.

3 In the context of occurrence vector indexing, u..l and [u, l] imply u � l. The exact meaning of the these abused notations will be clear from the context.

308 A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328
Informally, β points to the most significant index in (α, l] such that �oxβ→l >lex �oyβ→l . If, such an index does not exist, then
β points to −∞. Note that we have

∑
i oxi = ∑

i oyi = n, as �ox and �oy are both associated with vectors of length n. Hence,
α cannot be l, and we always have �oxα−1→l >lex �oyα−1→l when α �= −∞.

Definition 7. Given �ox = occ(floor(�X)) and �oy = occ(ceiling(�Y)) indexed as u..l where �ox �lex �oy, the flag γ is true iff:

β �= −∞ ∧ (β = α − 1 ∨ ∀i α > i > β . oxi = oyi)

Informally, γ is true if β �= −∞, and either β is jut next to α or the sub-vectors between α and β are equal. Otherwise, γ
is f alse.

Definition 8. Given �ox = occ(floor(�X)) and �oy = occ(ceiling(�Y)) indexed as u..l where �ox �lex �oy, the flag σ is true iff:

β > l ∧ �oxβ−1→l >lex �oyβ−1→l

Informally, σ is true if β > l and the sub-vectors below β are lexicographically ordered the wrong way. If, however, β � l,
or the sub-vectors below β are lexicographically ordered, then σ is f alse.

Using α, β , γ , and σ , we can find the tight upper bound for each D(Xi), as well as the tight lower bound for each D(Yi)

without having to traverse the occurrence vectors. In the next three theorems, we are concerned with Xi . When looking for
a support for a value v ∈ D(Xi), we obtain occ(floor(�X Xi←v)) by increasing oxv by 1, and decreasing oxmin(Xi) by 1. Since
�ox �lex �oy, min(Xi) is consistent. We therefore seek support for values greater than min(Xi).

Theorem 5. Given �ox = occ(floor(�X)) and �oy = occ(ceiling(�Y)) indexed as u..l where �ox �lex �oy, if max(Xi) � α and
min(Xi) < α then for all v ∈ D(Xi):

1. if v > α then v is inconsistent;
2. if v < α then v is consistent;
3. if v = α then v is inconsistent iff :

(oxα + 1 = oyα ∧ min(Xi) = β ∧ γ ∧ oxβ > oyβ + 1) ∨
(oxα + 1 = oyα ∧ min(Xi) = β ∧ γ ∧ oxβ = oyβ + 1 ∧ σ) ∨

(oxα + 1 = oyα ∧ min(Xi) < β ∧ γ)

Proof. If min(Xi) < α then α �= −∞ and �ox <lex �oy. Let v be a value in D(Xi) greater than α. Increasing oxv by 1 gives
�ox >lex �oy. By Proposition 2, v is inconsistent. Now let v be less than α. Increasing oxv by 1 does not change �ox <lex �oy. By

Proposition 2, v is consistent. Is α a tight upper bound? If any of the conditions in item 3 is true then we obtain �ox >lex �oy
by increasing oxα by 1 and decreasing oxmin(Xi) by 1. By Proposition 2, v = α is inconsistent and therefore the largest value
which is less than α is the tight upper bound. We now need to show that the conditions of item 3 are exhaustive. If v = α
is inconsistent then, by Proposition 2, we obtain �ox >lex �oy after increasing oxα by 1 and decreasing oxmin(Xi) by 1. This
can happen only if oxα + 1 = oyα because otherwise we still have oxα < oyα . Now, it is important where we decrease an
occurrence. If it is above β (but below α as min(Xi) < α) then we still have �ox <lex �oy because for all α > i > max{l − 1, β},
we have oxi � oyi . If it is on or below β (when β �= −∞) and γ is f alse, then we still have �ox <lex �oy because γ is f alse
when β < α − 1 and �oxα−1→β+1 <lex �oxα−1→β+1. Therefore, it is necessary to have oxα+1 + 1 = oyα ∧ min(Xi) � β ∧ γ
for α to be inconsistent. Two cases arise here. In the first, we have oxα+1 + 1 = oyα ∧ min(Xi) = β ∧ γ . Decreasing
oxβ by 1 can give �ox >lex �oy in two ways: either we still have oxβ > oyβ , or we now have oxβ = oyβ but the vectors
below β are ordered lexicographically the wrong way. Note that decreasing oxβ by 1 cannot give oxβ < oyβ . Therefore, the
first case results in two conditions for α to be inconsistent: oxα+1 + 1 = oyα ∧ min(Xi) = β ∧ γ ∧ oxβ > oyβ + 1 or
oxα+1 + 1 = oyα ∧ min(Xi) = β ∧ γ ∧ oxβ = oyβ + 1 ∧ σ . Now consider the second case, where we have oxα+1 + 1 =
oyα ∧ min(Xi) < β ∧ γ . Decreasing oxmin(Xi) by 1 gives �ox >lex �oy. Hence, if v = α is inconsistent then we have either of
the three conditions. �
Theorem 6. Given �ox = occ(floor(�X)) and �oy = occ(ceiling(�Y)) indexed as u..l where �ox �lex �oy, if max(Xi) < α then max(Xi)

is the tight upper bound.

Proof. If max(Xi) < α then we have α �= −∞ and �ox <lex �oy. Increasing oxmax(Xi) by 1 does not change this. By Proposition 2,
max(Xi) is consistent. �
Theorem 7. Given �ox = occ(floor(�X)) and �oy = occ(ceiling(�Y)) indexed as u..l where �ox �lex �oy, if min(Xi) � α then min(Xi)

is the tight upper bound.

A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328 309
Proof. Any v > min(Xi) in D(Xi) is greater than α. Increasing oxv by 1 gives �ox >lex �oy. By Proposition 2, any v > min(Xi)

in D(Xi) is inconsistent. �
In the next four theorems, we are concerned with Yi . When looking for a support for a value v ∈ D(Yi), we obtain

occ(ceiling(�YYi←v)) by increasing oyv by 1, and decreasing oymax(Yi) by 1. Since �ox �lex �oy, max(Yi) is consistent. We
therefore seek support for values less than max(Yi).

Theorem 8. Given �ox = occ(floor(�X)) and �oy = occ(ceiling(�Y)) indexed as u..l where �ox �lex �oy, if max(Yi) = α and
min(Yi) � β then for all v ∈ D(Yi)

1. if v > β then v is consistent;
2. if v < β then v is inconsistent iff oxα + 1 = oyα ∧ γ ;
3. if v = β then v is inconsistent iff :

(oxα + 1 = oyα ∧ γ ∧ oxβ > oyβ + 1) ∨
(oxα + 1 = oyα ∧ γ ∧ oxβ = oyβ + 1 ∧ σ)

Proof. If max(Yi) = α and min(Yi) � β then α �= −∞, β �= −∞, and �ox <lex �oy. Let v be a value in D(Yi) greater than β .
Increasing oyv by 1 and decreasing oyα by 1 does not change �ox <lex �oy. This is because for all α > i > β , we have oxi � oyi .
Even if now �oxα→v+1 = �oyα→v+1, at v we have oxv < oyv . By Proposition 2, v is consistent. Now let v be less than β . If the
condition in item 2 is true then we obtain �ox >lex �oy by decreasing oyα by 1 and increasing oyv by 1. By Proposition 2, v
is inconsistent. We now need to show that this condition is exhaustive. If v is inconsistent then by Proposition 2, we obtain
�ox >lex �oy after decreasing oyα by 1 and increasing oyv by 1. This is in fact the same as obtaining �ox >lex �oy after increasing

oxα by 1 and decreasing oxv by 1. We have already captured this case in the last condition of item 3 in Theorem 5.
Hence, it is necessary to have oxα + 1 = oyα ∧ γ for v to be inconsistent. What about β then? If any of the conditions
in item 3 is true then we obtain �ox >lex �oy by decreasing oyα by 1 and increasing oyβ by 1. By Proposition 2, v = β is
inconsistent. In this case, the values less than β are also inconsistent. Therefore, the smallest value which is greater than β

is the tight lower bound. We now need to show that the conditions of item 3 are exhaustive. If v = β is inconsistent then
by Proposition 2, we obtain �ox >lex �oy after decreasing oyα by 1 and increasing oyβ by 1. This is the same as obtaining
�ox >lex �oy after increasing oxα by 1 and decreasing oxβ by 1. We have captured this case in the first two conditions of

item 3 in Theorem 5. Hence, if v = β is inconsistent then we have either oxα+1 + 1 = oyα ∧ γ ∧ oxβ > oyβ + 1 or
oxα+1 + 1 = oyα ∧ γ ∧ oxβ = oyβ + 1 ∧ σ . �
Theorem 9. Given �ox = occ(floor(�X)) and �oy = occ(ceiling(�Y)) indexed as u..l where �ox �lex �oy, if max(Yi) = α and
min(Yi) > β then min(Yi) is the tight lower bound.

Proof. If max(Yi) = α then α �= −∞ and �ox <lex �oy. Increasing oymin(Yi) by 1 and decreasing oyα by 1 does not change
�ox <lex �oy. This is because for all α > i > max{l − 1, β}, we have oxi � oyi . Even if now �oxα→min(Yi)+1 = �oyα→min(Yi)+1, at

min(Yi) we have oxmin(Yi) < oymin(Yi) . By Proposition 2, min(Yi) is consistent. �
Theorem 10. Given �ox = occ(floor(�X)) and �oy = occ(ceiling(�Y)) indexed as u..l where �ox �lex �oy, if max(Yi) < α then
min(Yi) is the tight lower bound.

Proof. If max(Yi) < α then we have α �= −∞ and �ox <lex �oy. Decreasing oymax(Yi) by 1 does not change this. By Proposi-
tion 2, min(Yi) is consistent. �
Theorem 11. Given �ox = occ(floor(�X)) and �oy = occ(ceiling(�Y)) indexed as u..l where �ox �lex �oy, if max(Yi) > α then
max(Yi) is the tight lower bound.

Proof. Decreasing oymax(Yi) by 1 gives �ox >lex �oy. By Proposition 2, any v < max(Yi) in D(Yi) is inconsistent. �
4.3. Algorithm details and theoretical properties

In this subsection, we first explain MsetLeq as well as prove that it is correct and complete. We then discuss its time
complexity.

The algorithm is based on Theorems 5–11. The pointers and flags are recomputed every time the algorithm is called,
as maintaining them incrementally in an easy way is not obvious. Fortunately, incremental maintenance of the occurrence
vectors is trivial. When the minimum value in some D(Xi) changes, we update �ox by incrementing the entry corresponding
to new min(Xi) by 1, and decrementing the entry corresponding to old min(Xi) by 1. Similarly, when the maximum value

310 A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328
Algorithm 1. Initialise.

in some D(Yi) changes, we update �oy by incrementing the entry corresponding to new max(Yi) by 1, and decrementing the
entry corresponding to old max(Yi) by 1.

When the constraint is first posted, we need to initialise the occurrence vectors, and call the filtering algorithm MsetLeq
to establish the generalised arc-consistent state with the initial values of the occurrence vectors. In Algorithm 1, we show
the steps of this initialisation.

Theorem 12. Initialise initialises �ox and �oy correctly. Then it either establishes failure if �X �m �Y is disentailed, or prunes all
inconsistent values from �X and �Y to ensure GAC(�X �m �Y).

Proof. Initialise first computes the most and the least significant indices of the occurrence vectors as u and l (lines 1
and 2). An occurrence vector occ(�x) associated with �x is indexed in decreasing order of significance from max{{�x}} to min{{�x}}.
Our occurrence vectors are associated with floor(�X) and ceiling(�Y) but they are also used for checking support for
max(Xi) and min(Yi) for all 0 � i < n. We therefore need to make sure that there are corresponding entries. Also, to be
able to compare two occurrence vectors, they need to start and end with the occurrence of the same value. Therefore, u is
max({{ceiling(�X)}} ∪ {{ceiling(�Y)}}) and l is min({{floor(�X)}} ∪ {{floor(�Y)}}).

Using these indices, a pair of vectors �ox and �oy of length u − l + 1 are constructed and each entry in these vectors are
set to 0. Then, oxmin(Xi) and oymax(Yi) are incremented by 1 for all 0 � i < n. Now, for all u � v � l, oxv is the number of
occurrences of v in {{floor(�X)}}. Similarly, for all u � v � l, oyv is the number of occurrences of v in {{ceiling(�Y)}}. This
gives us �ox = occ(floor(�X)) and �oy = occ(ceiling(�Y)) (lines 3 and 4). Finally, in line 5, Initialise calls the filtering
algorithm MsetLeq which either establishes failure if �X �m �Y is disentailed, or prunes all inconsistent values from �X and
�Y to ensure GAC(�X �m �Y). �

Note that when �X �m �Y is GAC, every value in D(Xi) is supported by 〈min(X0), . . . ,min(Xi−1),min(Xi+1), . . . ,min(Xn−1)〉,
and 〈max(Y0), . . . ,max(Yn−1)〉. Similarly, every value in D(Yi) is supported by 〈min(X0), . . . ,min(Xn−1)〉 and 〈max(Y0), . . . ,

max(Yi−1),max(Yi+1), . . . ,max(Yn−1)〉. So, MsetLeq is also called by the event handler whenever min(Xi) or max(Yi) of
some i in [0,n) changes.

In Algorithm 2, we show the steps of MsetLeq. Since �ox and �oy are maintained incrementally, the algorithm first sets
the pointers and flags in line A1 via SetPointersAndFlags using the current state of these vectors.

Theorem 13. SetPointersAndFlags either sets α, β , γ , and σ as per their definitions, or establishes failure as �X �m �Y is
disentailed.

Proof. Line 2 of SetPointersAndFlags traverses �ox and �oy, starting at index u, until either it reaches the end of the
vectors (because �ox = �oy), or it finds an index i where oxi �= oyi . In the first case, α is set to −∞ (line 4) as per Definition 5.
In the second case, α is set to i only if oxi < oyi (line 5). This is correct by Definition 5 and means that �ox <lex �oy. If,
however, oxi > oyi then we have �ox >lex �oy. By Proposition 1, �X �m �Y is disentailed and thus SetPointersAndFlags
terminates with failure (line 3). This also triggers the filtering algorithm to fail.

If α � l then β is set to −∞ (line 6) as per Definition 6. Otherwise, the vectors are traversed in lines 9–11, starting at
index α − 1, until either the end of the vectors are reached (because �oxα−1→l �lex �oyα−1→l), or an index j where ox j > oy j
is found. In the first case, β is set to −∞ (line 12), and in the second case, β is set j (line 13) as per Definition 6. During
this traversal, the Boolean flag temp is set to true iff �oxα−1→max{l,β+1} = �oyα−1→max{l,β+1} . In lines 14 and 15, γ is set to
true iff β �= −∞, and either β = α − 1 or temp is true (because �oxα−1→β+1 = �oyα−1→β+1). This is correct by Definition 7.

In line 14, σ is initialised to f alse. If β � l then σ remains f alse (line 16) as per Definition 8. Otherwise, the vectors are
traversed in line 18, starting at index β − 1, until either the end of the vectors are reached (because �oxβ−1→l = �oyβ−1→l), or
an index k where oxk �= oyk is found. In the first case, σ remains f alse as per Definition 8. In the second case, σ is set to
true only if oxk > oyk (line 19). This is correct by Definition 8 and means that �oxβ−1→l >lex �oyβ−1→l . If, however, oxk < oyk
then σ remains f alse as per Definition 8. �

We now analyse the rest of MsetLeq, where the tight upper bound for Xi and the tight lower bound for Yi , for all
0 � i < n, are sought.

A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328 311
Algorithm 2. MsetLeq.

Theorem 14. MsetLeq either establishes failure if �X �m �Y is disentailed, or prunes all inconsistent values from �X and �Y to ensure
GAC(�X �m �Y).

Proof. If �X �m �Y is not disentailed then we have �ox �lex �oy by Proposition 1. This means that min(Xi) and max(Yi) for all
0 � i < n are consistent by Proposition 2. The algorithm therefore seeks the tight upper bound for Xi only if max(Xi) >

min(Xi) (lines B2–B11), and similarly the tight lower bound for Yi only if min(Yi) < max(Yi) (lines C2–C9).
For each D(Xi): (1) If min(Xi) � α then all values greater than min(Xi) are pruned, giving min(Xi) as the tight upper

bound (line B3). This is correct by Theorem 7. (2) If max(Xi) � α ∧ min(Xi) < α then:

• all values greater than α are pruned (line B5);
• α is pruned if oxα + 1 = oyα ∧ min(Xi) = β ∧ γ ∧ oxβ > oyβ + 1 (line B9), or oxα + 1 = oyα ∧ min(Xi) =

β ∧ γ ∧ oxβ = oyβ + 1 ∧ σ (line B8), or oxα + 1 = oyα ∧ min(Xi) < β ∧ γ (line B11).

All the values less than α remain in the domain. By Theorem 5, all the inconsistent values are removed. (3) If, however,
max(Xi) < α then max(Xi) is the tight upper bound by Theorem 6, and thus no pruning is necessary.

For each D(Yi): (1) If max(Yi) > α then all values less than max(Yi) are pruned, giving max(Yi) as the tight lower bound
(line C3). This is correct by Theorem 11. (2) If max(Yi) = α ∧ min(Yi) � β then:

• all values less than β are pruned if oxα + 1 = oyα ∧ γ (line C6);
• β is pruned if oxα + 1 = oyα ∧ γ ∧ oxβ > oyβ + 1 (line C9) or oxα + 1 = oyα ∧ γ ∧ oxβ = oyβ + 1 ∧ σ (line C8).

312 A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328
Procedure. SetPointersAndFlags.

All the values greater than β remain in the domain. By Theorem 8, all the inconsistent values are removed. (3) If, however,
max(Yi) = α ∧ min(Yi) > β or max(Yi) < α then min(Yi) is the tight lower bound by Theorems 9 and 10, and thus no
pruning is needed.

MsetLeq is a correct and complete filtering algorithm, as it either establishes failure if �X �m �Y is disentailed, or prunes
all inconsistent values from �X and �Y to ensure GAC(�X �m �Y). �

When we prune a value, we do not need to check recursively that previous support remains. The algorithm tightens
max(Xi) and min(Yi) without touching min(Xi) and max(Yi), for all 0 � i < n, which provide support for the values in
the vectors. The exception is if a domain wipe out occurs. As the constraint is not disentailed, we have �ox �lex �oy. This
means min(Xi) and max(Yi) for all 0 � i < n are supported. Hence, the prunings of the algorithm cannot cause any domain
wipe-out.

The algorithm works also when the vectors are of different length as we build and reason about the occurrence vectors
as opposed to the original vectors. Also, we do not assume that the original vectors are of the same length when we set the
pointer β .

The algorithm corrects a mistake that appears in [13]. We have noticed that in [13] we do not always prune the values
greater than α when we have max(Xi) � α and min(Xi) < α. As shown above, this algorithm is correct and complete.

To improve the time complexity, we assume that domains are transformed so that their union is a continuous interval.
Suppose, for instance, that we have variables with domains {1,5}, {1,100} and {5,100}. This transformation normalises the
domains to {1,2}, {1,3} and {2,3}. This technique is widely used (see for instance [19]) and does not change the worst-case
complexity of our propagator. It gives us a tighter upper bound on the complexity of our propagator in terms of the number
of distinct values as compared to the difference between the largest and smallest values.

Theorem 15. Initialise runs in time O (n + d), where d is the number of distinct values.

Proof. Initialise first constructs �ox and �oy of length d where each entry is zero, and then increments oxmin(Xi) and
oymax(Yi) by 1 for all 0 � i < n. Hence, the complexity of initialisation is O (n + d). �
Theorem 16. MsetLeq runs in time O (nb + d), where b is the cost of adjusting the bounds of a variable, and d is the number of
different values.

Proof. MsetLeq does not construct �ox and �oy, but rather uses their most up-to-date states. MsetLeq first sets the pointers
and flags which are defined on �ox and �oy. In the worst case both vectors are traversed once from the beginning until the
end, which gives an O (d) complexity. Next, the algorithm goes through every variable in the original vectors �X and �Y to
check for support. Deciding the tight bound for each variable is a constant time operation, but the cost of adjusting the
bound is b. Since we have O (n) variables, the complexity of the algorithm is O (nb + d). �

A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328 313
If d � n then the algorithm runs in time O (nb). Since a multiset is a set with possible repetitions, we expect that the
number of distinct values in a multiset is often less than the cardinality of the multiset, giving us a linear time filtering
algorithm.

5. Multiset ordering with large domains

MsetLeq is a linear time algorithm in the n given that d � n. If instead we have n � d then the complexity of the
algorithm is O (d), dominated by the cost of the construction of the occurrence vectors and the initialisation of the pointers
and flags. This can happen, for instance, when the vectors being multiset ordered are variables in the occurrence represen-
tation of a multiset [20]. Is there then an alternative way of propagating the multiset ordering constraint whose complexity
is independent of the domains?

5.1. Remedy

In case d is a large number, it could be costly to construct the occurrence vectors. We can instead sort floor(�X) and
ceiling(�Y), and compute α, β , γ , σ , and the number of occurrences of α and β in {{floor(�X)}} and {{ceiling(�Y)}} as
if we had the occurrence vectors by scanning these sorted vectors. This information is all we need to find support for the
bounds of the variables. Let us illustrate this on an example. To simplify presentation, we assume that the vectors are of the
same length. Consider �X �m �Y where �sx = sort(floor(�X)) and �sy = sort(ceiling(�Y)) are as follows:

�sx = 〈5, 4, 3, 2, 2, 2, 2, 1〉
�sy = 〈5, 4, 4, 4, 3, 1, 1, 1〉

We traverse �sx and �sy until we find an index i such that sxi < syi , and for all 0 � t < i we have sxt = syt . In our example, i
is 2:

↓ i
�sx = 〈5, 4, 3, 2, 2, 2, 2, 1〉
�sy = 〈5, 4, 4, 4, 3, 1, 1, 1〉

This means that the number occurrences of any value greater than syi are equal in {{floor(�X)}} and in {{ceiling(�Y)}}, but
there are more occurrence of syi in {{ceiling(�Y)}} than in {{floor(�X)}}. That is, ox5 = oy5 and ox4 < oy4. By Definition
5, α is equal to 4. We now move only along �sy until we find an index j such that sy j �= sy j−1, so that we reason about the
number of occurrences of the smaller values. In our example, j is 4:

↓ i
�sx = 〈5, 4, 3, 2, 2, 2, 2, 1〉
�sy = 〈5, 4, 4, 4, 3, 1, 1, 1〉

↑ j

We here initialise γ to true, and start traversing �sx and �sy simultaneously. We have sxi = sy j = 3. This adds 1 to ox3 and
oy3, keeping γ = true. We move one index ahead in both vectors by incrementing i to 3 and j to 5:

↓ i
�sx = 〈5, 4, 3, 2, 2, 2, 2, 1〉
�sy = 〈5, 4, 4, 4, 3, 1, 1, 1〉

↑ j

We now have sxi > sy j , which suggests that sxi occurs at least once in {{floor(�X)}} but does not occur in {{ceiling(�Y)}}.
That is, ox2 > 0 and oy2 = 0. By Definition 6, β points to 2. This does not change that γ is true. We now move only along
�sx by incrementing i until we find sxi �= sxi−1, so that we reason about the number of occurrences of the smaller values:

↓ i
�sx = 〈5, 4, 3, 2, 2, 2, 2, 1〉
�sy = 〈5, 4, 4, 4, 3, 1, 1, 1〉

↑ j

With the new value of i, we have sxi = syi = 1. This increases both ox1 and oy1 by one. Reaching the end of only �sx hints
the following: either 1 occurs more than once in {{ceiling(�Y)}}, or it occurs once but there are values in {{ceiling(�Y)}}
less than 1 and they do not occur in {{floor(�X)}}. By Definition 8, γ is f alse.

Finally, we need to know the number of occurrences of α and β in {{floor(�X)}} and {{ceiling(�Y)}}. Since we already
know what α and β are, another scan of �sx and �sy gives us the needed information: for all 0 � i < n, we increment oxα

(resp. oxβ) by 1 if sxi = α (resp. sxi = β), and also oyα (resp. oyβ) by 1 if syi = α (resp. syi = β).

314 A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328
Algorithm 4. Initialise.

5.2. An alternative filtering algorithm

As witnessed in the previous section, it suffices to sort floor(�X) and ceiling(�Y), and scan the sorted vectors to
compute α, β , γ , σ , oxα , oyα , oxβ , and oyβ . We can then directly reuse lines B1–B11 and C1–C9 of MsetLeq to obtain a
new filtering algorithm. As a result, we need to change only Initialise and SetPointersAndFlags.

In Algorithm 4, we show the new Initialise. Instead of constructing a pair of occurrence vectors associated with
floor(�X) and ceiling(�Y), we now sort floor(�X) and ceiling(�Y) and then call MsetLeq.

Similar to the original algorithm, we recompute the pointers and flags every time we call the filtering algorithm. Main-
taining the sorted vectors incrementally is trivial. When the minimum value in some D(Xi) changes, we update �sx by
inserting the new min(Xi) into, and removing the old min(Xi) from �sx. Similarly, when the maximum value in some D(Yi)

changes, we update �sy by inserting the new max(Yi) into, and removing the old max(Yi) from �sy. Since these vectors need
to remain sorted after the update, such modifications require binary search. The cost of incrementality thus increases from
O (1) to O (log(n)) compared to the original filtering algorithm.

Given the most up-to-date �sx and �sy, how do we set our pointers and flags? In line 2 of our new SetPointersAnd-
Flags, we traverse �sx and �sy, starting at index 0, until either we reach the end of the vectors (because the vectors are
equal), or we find an index i where sxi �= syi . In the first case, we first set α and β to −∞, and γ and σ to f alse, and then
return (line 4). In the second case, if sxi > syi then disentailment is detected and SetPointersAndFlags terminates
with failure (line 3). The reason of the return and failure is due to the following theoretical result.

Theorem 17. occ(�x) �lex occ(�y) iff sort(�x) �lex sort(�y).

Proof. (⇒) If occ(�x) <lex occ(�y) then a value a occurs more in {{�y}} than in {{�x}}, and the occurrence of any value b > a is
the same in both multisets. By deleting all the occurrences of a from {{�x}} and the same number of occurrences of a from
{{�y}}, as well as any b > a from both multisets, we get max{{�x}} < max{{�y}}. Since the leftmost values in sort(�x) and sort(�y)

are max{{�x}} and max{{�y}} respectively, we have sort(�x) <lex sort(�y). If occ(�x) = occ(�y) then we have {{�x}} = {{�y}}. By sorting
the elements in �x and �y, we obtain the same vectors. Hence, sort(�x) = sort(�y).

(⇐) Suppose �ox = occ(�x), �oy = occ(�y), �sx = sort(�x), �sy = sort(�y), and we have �sx = �sy. Then {{�x}} and {{�y}} contain the
same elements with equal occurrences. Hence, �ox = �oy. Suppose �sx <lex �sy. If sx0 < sy0 then the leftmost index of �ox and
�oy is sy0, and we have oxsy0 = 0 and oysy0 > 0. This gives �ox <lex �oy. If sx0 = sy0 = a then we eliminate one occurrence of

a from {{�x}} and {{�y}}, and compare the resulting multisets. �
Hence, whenever we have �sx �lex �sy, we proceed as if we had occ(floor(�X)) �lex occ(ceiling(�Y)). But then what

do we do if we have �sx <lex �sy? In line 5, we have sxi < syi and sxt = syt for all 0 � t < i. This means that the number
occurrences of any value greater than syi are equal in {{floor(�X)}} and in {{ceiling(�Y)}}, but there are more occurrence
of syi in {{ceiling(�Y)}} than in {{floor(�X)}}. Therefore, we here set α to syi .

After initialising γ to true in line 6, we start seeking a value for β . For the sake of simplicity, we here assume our
original vectors are of same length. Hence, β cannot be −∞ as α is not −∞. In line 8, we traverse �sy, starting at index
i +1, until either we reach the end of the vector (because all the remaining values in {{ceiling(�Y)}} are syi), or we find an
index j such that sy j �= sy j−1. In the first case, we set β to sxi (line 9) because sxi occurs at least once in {{floor(�X)}} but
does not occur in {{ceiling(�Y)}}. Since no value between α and β occur more in {{ceiling(�Y)}} than in {{floor(�X)}},
γ remains true. In the second case, sy j gives us the next largest value in {{ceiling(�Y)}}. In lines 11–14, we traverse �sx
starting from i, and �sy starting from j. If sxi > sy j then we set β to sxi (line 12) because sxi occurs more in {{floor(�X)}}
than in {{ceiling(�Y)}}. Having found the value of β , we here exit the while loop using break. If sxi < sy j then sy j occurs
more in {{ceiling(�Y)}} than in {{floor(�X)}}. Since we are still looking for a value for β , we set γ to f alse (line 13). We
then move to the next index in �sy to find the next largest value in {{ceiling(�Y)}}. If sxi = sy j then we move to the next
index both in �sx and �sy to find the next largest values in {{floor(�X)}} and {{ceiling(�Y)}} (line 14). As j is at least one
index ahead of i, j can reach to n before i does during this traversal. In such a case, we set β to sxi (line 15) due to the
same reasoning as in line 12.

The process of finding the value of σ (lines 16–25) is very similar to that of β . In line 17, we traverse �sx, starting at
index i + 1, until either we reach the end of the vector (because all the remaining values in {{floor(�X)}} are β), or we
find an index k such that sxk �= sxk−1. In the first case, we set σ to f alse (line 18) because either sy j occurs at least

A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328 315
Procedure. SetPointersAndFlags.

once in {{ceiling(�Y)}} but does not occur in {{floor(�X)}} (due to line 12), or there are no values less than β both in
{{floor(�X)}} and in {{ceiling(�Y)}} (due to line 15). In the second case, sxk gives us the next largest value in {{floor(�X)}}.
In lines 20–23, we traverse �sx starting from k, and �sy starting from j. The reasoning now is very similar to that of the
traversal for β . Instead of setting a value for β , we set σ to true, and instead of setting γ to f alse, we set σ to f alse, for
the same reasons. If k reaches n before j, then we set σ to f alse (line 24) due to the same reason as in line 22. If k and j
reach n together, then again we set σ to f alse, because we have the same number of occurrences of any value less than β

in {{floor(�X)}} and in {{ceiling(�Y)}}. If, however, j reaches n before k, then we set σ to true (line 25) due to the same
reason as in line 21.

Finally, we go through each of sxi and syi in lines 26–31, and find how many times α and β occur in {{floor(�X)}} and
in {{ceiling(�Y)}}, by counting how many times α and β occur in �sx and in �sy, respectively.

The complexity of this new algorithm is independent of the domains and is O (n log(n)), as the cost of sorting dominates.

6. Extensions

In this section, we answer two important questions. First, how can we enforce strict multiset ordering? Second, how can
we detect entailment?

6.1. Strict multiset ordering constraint

We can easily get a filtering algorithm for strict multiset ordering constraint by slightly modifying MsetLeq. This new
algorithm, called MsetLess, either detects the disentailment of �X <m �Y , or prunes inconsistent values to perform GAC on

316 A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328
�X <m �Y . Before showing how we modify MsetLeq, we first study �X <m �Y from a theoretical point of view. It is not difficult
to modify Theorems 2, 3 and 4 so as to exclude the equality and obtain the following propositions:

Proposition 3. �X <m �Y is disentailed iff occ(floor(�X)) �lex occ(ceiling(�Y)).

Proposition 4. GAC(�X <m �Y) iff for all i in [0,n):

occ(floor(�X Xi←max(Xi))) <lex occ(ceiling(�Y))

occ(floor(�X)) <lex occ(ceiling(�YYi←min(Yi)))

We can exploit the similarity between Propositions 2 and 4, and find the tight consistent bounds by making use of the
occurrence vectors �ox = occ(floor(�X)) and �oy = occ(ceiling(�Y)), the pointers, and the flags. In Theorems 5 to 11, we
have �ox �lex �oy. We decide whether a value v in some domain D is consistent or not by first increasing oxv /oyv by 1, and
then decreasing min(D)/max(D) by 1. The value is consistent for �X �m �Y iff the change gives �ox �lex �oy. In Theorems 7 and
11, changing the occurrences gives �ox >lex �oy. This means that v is inconsistent not only for �X �m �Y but also for �X <m �Y .
In Theorems 6, 9, and 10, however, we initially have �ox <lex �oy and changing the occurrences does not disturb the strict
lexicographic ordering. This suggests v is consistent also for �X <m �Y .

In Theorems 5 and 8, we initially have �ox <lex �oy, and after the change we obtain either of �ox >lex �oy, �ox = �oy, and
�ox <lex �oy. In the first case v is inconsistent, whereas in the third case v is consistent, for both constraints. In the second

case, however, v is consistent for �X �m �Y but not for �X <m �Y . This case arises if we get �oxu→β = �oyu→β by the change to
the occurrence vectors, and we have either β > l and �oxβ−1→l = �oyβ−1→l , or β = l. We therefore need to record whether
there are any sub-vectors below β , and if this is the case we need to know whether they are equal. This can easily be done
by extending the definition of σ which already tells us whether we have β > l and �oxβ−1→l >lex �oyβ−1→l .

Definition 9. Given �ox = occ(floor(�X)) and �oy = occ(ceiling(�Y)) indexed as u..l where �ox <lex �oy, the flag σ is true iff:

(β > l ∧ �oxβ−1→l �lex �oyβ−1→l) ∨ β = l

Theorems 5 and 8 now declare a value inconsistent if we get �oxu→β = �oyu→β when the occurrence vectors change, and
we have either β > l and �oxβ−1→l = �oyβ−1→l , or β = l.

How do we now modify MsetLeq to obtain the filtering algorithm MsetLess? Theorems 6, 7, 9, 10, and 11 are valid
also for �X <m �Y . Moreover, Theorems 5 and 8 can easily be adapted for �X <m �Y by changing the definition of σ . Hence, the
pruning part of the algorithm need not to be modified, provided that σ is set correctly. Also, by Proposition 3, we need to
fail under the new disentailment condition. These suggest we only need to revise SetPointersAndFlags, so that we fail
whenever we have �ox �lex �oy, and set σ to true also when we have β = l, or β > l and �oxβ−1→l = �oxβ−1→l . This corrects a
mistake in [13] which claims that failing whenever we have �ox �lex �oy and setting β to l − 1 as opposed to −∞ are enough
to achieve strict multiset ordering.

6.2. Entailment

MsetLeq is a correct and complete filtering algorithm. However, it does not detect entailment. Even though detecting
entailment does not change the semantics of the algorithm, it can lead to significant savings from an operational point of
view. We thus introduce another Boolean flag, called entailed, which indicates whether �X �m �Y is entailed. More formally:

Definition 10. Given �X and �Y , the flag entailed is set to true iff �X �m �Y is true.

The multiset ordering constraint is entailed whenever the largest value that �X can take is less than or equal to the
smallest value that �Y can take under the ordering in concern.

Algorithm 6. Initialise.

A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328 317
Algorithm 7. MsetLeq.

Theorem 18. �X �m �Y is entailed iff {{ceiling(�X)}} �m {{floor(�Y)}}.

Proof. (⇒) Since �X �m �Y is entailed, any combination of assignments, including �X ← ceiling(�X) and �Y ← floor(�Y),
satisfies �X �m �Y . Hence, {{ceiling(�X)}} �m {{floor(�Y)}}.

(⇐) Any �x ∈ �X is less than or equal to any �y ∈ �Y under multiset ordering. Hence, �X �m �Y is entailed. �
By Theorems 4 and 18, we can detect entailment by lexicographically comparing the occurrence vectors associated with

ceiling(�X) and floor(�Y).

Proposition 5. �X �m �Y is entailed iff occ(ceiling(�X)) �lex occ(floor(�Y)).

When MsetLeq is executed, we have three possible scenarios in terms of entailment: (1) �X �m �Y has already been
entailed in the past due to the previous modifications to the variables; (2) �X �m �Y was not entailed before, but after the
recent modifications which invoked the algorithm, �X �m �Y is now entailed; (3) �X �m �Y has not been entailed, but after
the prunings of the algorithm, �X �m �Y is now entailed. In all cases, we can safely return from the algorithm. We need to,
however, record entailment in our flag entailed in the second and the third cases, before returning.

To deal with entailment, we need to modify both Initialise and MsetLeq. In Algorithm 6, we show how we revise
Algorithm 1. We add line 0 to initialise the flag entailed to f alse. We replace line 5 of Algorithm 1 with lines 5–7. Before
calling MsetLeq , we now initialise our new occurrence vectors occ(ceiling(�X)) and occ(floor(�Y)) in a similar way to
that of occ(floor(�X)) and occ(ceiling(�Y)): we create a pair of vectors �ex and �ey of length u − l + 1 where each exi and
eyi are first set to 0. Then, for each value v in {{ceiling(�X)}}, we increment exv by 1. Similarly, for each v in {{floor(�Y)}},
we increment eyv by 1. These vectors are then used in MsetLeq to detect entailment. It is possible to maintain �ex and �ey

318 A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328
incrementally. When the maximum value in some D(Xi) changes, we update �ex by incrementing the entry corresponding
to new max(Xi) by 1, and decrementing the entry corresponding to old max(Xi) by 1. Likewise, when the minimum value
in some D(Yi) changes, we update �ey by incrementing the entry corresponding to new min(Yi) by 1, and decrementing the
entry corresponding to old min(Yi) by 1.

In Algorithm 7, we show how we modify the filtering algorithm given in Algorithm 2 to deal with the three possible
scenarios described above. We add line A0 where we return if the constraint has already been entailed in the past. Moreover,
just before setting our pointers and flags, we check whether the recent modifications that triggered the algorithm resulted
in entailment. If this is the case, we first set entailed to true and then return from the algorithm. Furthermore, we check
entailment after the algorithm goes through its variables. Lines B1–B11 visit the variables of �X and prune inconsistent values
from the upper bounds, affecting �ex. Even if we have �ex >lex �ey when the algorithm is called, we might get �ex �lex �ey just
before the algorithm proceeds to the variables of �Y . In such case, we return from the algorithm after setting entailed to true.
As an example, assume we have �X �m �Y , and MsetLeq is called with �X = 〈{1,2}, {1,2,4}〉 and �Y = 〈{2,3}, {2,3}〉. As 4 in
D(X1) lacks support, it is pruned. Now we have �ex = �ey. Alternatively, the constraint might be entailed after the algorithm
visits the variables of �Y and prunes inconsistent values from the lower bounds, affecting �ey. In this case, we return from
the algorithm by setting entailed to true. As an example, assume we also have 0 in D(Y1) in the previous example. The
constraint is entailed only after the variables of �Y are visited and 0 is removed.

Finally, before/after the algorithm modifies max(Xi) or min(Yi) of some i in [0,n), we keep our occurrence vectors �ex
and �ey up-to-date by decrementing/incrementing the necessary entries.

7. Alternative approaches

There are several alternative ways known for posting and propagating multiset ordering constraints. We can, for instance,
post arithmetic inequality constraints, or decompose multiset ordering constraints into other constraints. In this section, we
explore these approaches and argue why it is preferable to propagate multiset ordering constraints using our filtering
algorithms.

7.1. Arithmetic constraint

We can achieve multiset ordering between two vectors by assigning a weight to each value, summing the weights along
each vector, and then insisting the sums to be non-decreasing. Since the ordering is determined according to the maximum
value in the vectors, the weight should increase with the value. A suitable weighting scheme was proposed in [18], where
each value v gets assigned the weight nv , where n is the length of the vectors. �X �m �Y on vectors of length n can then be
enforced via the following arithmetic inequality constraint:

nX0 + · · · + nXn−1 � nY0 + · · · + nYn−1

Therefore, a vector containing one element with value v and n − 1 0s is greater than a vector whose n elements are only
v − 1. This is in fact similar to the transformation of a leximin fuzzy CSP into an equivalent MAX CSP [32]. Strict multiset
ordering constraint �X <m �Y is enforced by disallowing equality:

nX0 + · · · + nXn−1 < nY0 + · · · + nYn−1

BC on such arithmetic constraints does the same pruning as GAC on the original multiset ordering constraints. However,
such arithmetic constraints are feasible only for small n and u, where u is the maximum value in the domains of the
variables. As n and u get large, nXi or nYi will be a very large number and therefore it might be impossible to implement
the multiset ordering constraint. Consequently, it can be preferable to post and propagate the multiset ordering constraints
using our global constraints.

Theorem 19. GAC(�X �m �Y) and GAC(�X <m �Y) are equivalent to BC on the corresponding arithmetic constraints.

Proof. We just consider GAC(�X �m �Y) as the proof for GAC(�X <m �Y) is entirely analogous. As �X �m �Y and the corresponding
arithmetic constraint are logically equivalent, BC(�X �m �Y) and BC on the arithmetic constraint are equivalent. By Theorem 1,
BC(�X �m �Y) is equivalent to GAC(�X �m �Y). �
7.2. Decomposition

Global ordering constraints can often be built out of the logical connectives (∧, ∨, →, ↔, and ¬) and existing (global)
constraints. We can thus compose other constraints between �X and �Y so as to obtain the multiset ordering constraint
between �X and �Y . We refer to such a logical constraint as a decomposition of the multiset ordering constraint.

The multiset view of two vectors of integers �x and �y are multiset ordered {{�x}} �m {{�y}} iff occ(�x) �lex occ(�y) by The-
orem 4. One way of decomposing the multiset ordering constraint �X �m �Y is thus insisting that the occurrence vectors
associated with the vectors assigned to �X and �Y are lexicographically ordered. Such occurrence vectors can be constructed

A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328 319
via an extended global cardinality constraint (gcc). Given a vector of variables �X and a vector of values �d, the constraint
gcc(�X, �d, �O X) ensures that O Xi is the number of variables in �X assigned to di . To ensure multiset ordering, we can enforce
lexicographic ordering constraint on a pair of occurrence vectors constructed via gcc where �d is the vector of values that
the variables can be assigned to, arranged in descending order, without any repetition:

gcc(�X, �d, �O X) ∧ gcc(�Y , �d, �O Y) ∧ �O X �lex �O Y

In order to decompose the strict multiset ordering constraint �X <m �Y , we need to enforce strict lexicographic ordering
constraint on the occurrence vectors:

gcc(�X, �d, �O X) ∧ gcc(�Y , �d, �O Y) ∧ �O X <lex �O Y

We call this way of decomposing a multiset ordering constraint as gcc decomposition.
The gcc constraint is available in, for instance, ILOG Solver 5.3 [17], SICStus Prolog 3.10.1 [33], and the FaCiLe constraint

solver 1.0 [9]. These solvers propagate the gcc constraint using the algorithm proposed in [28]. Among the various filtering
algorithms of gcc, which maintain either GAC [26,28] or BC [19,26], only the algorithms in [19] prune values from �O X and
�O Y . Even though the algorithm integrated in ILOG Solver 5.3 may also prune the occurrence vectors, this may not always

be the case. For instance, when we have gcc(〈{1}, {1,2}, {1,2}, {2}, {3,4}, {3,4}〉, 〈4,3,2,1〉, 〈{1}, {1}, {1,2}, {1,2,3}〉, ILOG
Solver 5.3 leaves �O X unchanged even though 1 in D(O X3) is not consistent. This shows that there is currently very limited
support in the constraint toolkits to propagate the multiset ordering constraint using the gcc decomposition. Also, as the
following theorems demonstrate, the gcc decomposition of a multiset ordering constraint hinders constraint propagation.

Theorem 20. GAC(�X �m �Y) is strictly stronger than GAC(gcc(�X, �d, �O X)), GAC(gcc(�Y , �d, �O Y)), and GAC(�O X �lex �O Y), where �d is
the vector of values that the variables can take, arranged in descending order, without any repetition.

Proof. Since �X �m �Y is GAC, every value has a support �x and �y where occ(�x) �lex occ(�y), in which case all the three
constraints posted in the decomposition are satisfied. Hence, every constraint imposed is GAC, and GAC(�X �m �Y) is as strong
as its decomposition. To show strictness, consider �X = 〈{0,3}, {2}〉 and �Y = 〈{2,3}, {1}〉. The multiset ordering constraint
�X �m �Y is not GAC as 3 in D(X0) has no support. By enforcing GAC(gcc(�X, 〈3,2,1,0〉, �O X)) and GAC(gcc(�Y , 〈3,2,1,0〉, �O Y))
we obtain the following occurrence vectors:

�O X = 〈{0,1}, {1}, {0}, {0,1}〉
�O Y = 〈{0,1}, {0,1}, {1}, {0}〉

Since we have GAC(�O X �lex �O Y), �X and �Y remain unchanged. �
Theorem 21. GAC(�X <m �Y) is strictly stronger than GAC(gcc(�X, �d, �O X)), GAC(gcc(�Y , �d, �O Y)), and GAC(�O X <lex �O Y), where �d is
the vector of values that the variables can take, arranged in descending order, without any repetition.

Proof. The example in Theorem 20 shows the strictness. �
In Theorem 17, we have established that occ(�x) �lex occ(�y) iff sort(�x) �lex sort(�y). Putting Theorems 4 and 17 together,

the multiset view of two vectors of integers �x and �y are multiset ordered {{�x}} �m {{�y}} iff sort(�x) �lex sort(�y). This suggests
another way of decomposing a multiset ordering constraint �X �m �Y : we insist that the sorted versions of the vectors
assigned to �X and �Y are lexicographically ordered. For this purpose, we can use the constraint sorted which is available
in, for instance, ECLiPSe constraint solver 5.6 [8], SICStus Prolog 3.10.1 [33], and the FaCiLe constraint solver 1.0 [9]. Given
a vector of variables �X , sorted(�X, �S X) ensures that �S X is of length n and is a sorted permutation of �X . To ensure multiset
ordering, we can enforce lexicographic ordering constraint on a pair of vectors which are constrained to be the sorted
versions of the original vectors in descending order:

sorted(�X, �S X) ∧ sorted(�Y , �SY) ∧ �S X �lex �SY

A strict multiset ordering constraint �X <m �Y is then achieved by enforcing strict lexicographic ordering constraint on the
sorted vectors:

sorted(�X, �S X) ∧ sorted(�Y , �SY) ∧ �S X <lex �SY

We call this way of decomposing a multiset ordering constraint as the sort decomposition.
The sorted constraint has previously been studied and some BC filtering algorithms have been proposed [2,3,24]. Unfor-

tunately, we lose in the amount of constraint propagation also by the sort decomposition of a multiset ordering constraint.

Theorem 22. GAC(�X �m �Y) is strictly stronger than GAC(sorted(�X, �S X)), GAC(sorted(�Y , �SY)), and GAC(�S X �lex �SY).

320 A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328
Proof. Since �X �m �Y is GAC, every value has a support �x and �y where sort(�x) �lex sort(�y), in which case all the three
constraints posted in the decomposition are satisfied. Hence, every constraint imposed is GAC, and GAC(�X �m �Y) is as strong
as its decomposition. To show strictness, consider �X = 〈{0,3}, {2}〉 and �Y = 〈{2,3}, {1}〉. The multiset ordering constraint
�X �m �Y is not GAC as 3 in D(X0) has no support. By enforcing GAC(sorted(�X, �S X)) and GAC(sorted(�Y , �SY)) we obtain the
following vectors:

�S X = 〈{2,3}, {0,2}〉
�SY = 〈{2,3}, {1}〉

Since we have GAC(�S X �lex �SY), �X and �Y remain unchanged. �
Theorem 23. GAC(�X <m �Y) is strictly stronger than GAC(sorted(�X, �S X)), GAC(sorted(�Y , �SY)), and GAC(�S X <lex �SY).

Proof. The example in Theorem 22 shows strictness. �
How do the two decompositions compare? Assuming that GAC is enforced on every n-ary constraint of a decomposition,

the sort decomposition is superior to the gcc decomposition.

Theorem 24. The sort decomposition of �X �m �Y is strictly stronger than the gcc decomposition of �X �m �Y .

Proof. Assume that a value is pruned from �X due to the gcc decomposition. Then, there is an index α such that ¬(O Xα
.=

O Yα) and for all i > α we have O Xi
.= O Yi . Moreover, we have min(O Xi) = max(O Yi) and max(O Xi) > max(O Yi). The

reason is that, only in this case, GAC(�O X �lex �O Y) will not only prune values from O Xα but also from �X . In any other case,
we will either get no pruning at O Xα , or the pruning at O Xα will reduce the number of occurrences of α in �X without
deleting any of α from �X . Now consider the vectors �S X and �SY . We name the index of �S X and �SY , where α first appears
in the domains of �S X and �SY , as i. Since the number of occurrences of any value greater than α is already determined and
is the same in both �X and �Y , the sub-vectors of �S X and �SY above i are ground and equal. For all i � j < i + min(O Xi),
we have S X j

.= SY j ← α. Since max(O Xi) > max(O Yi), at position k = i + min(O Xi) we will have α in D(S Xk) but not
in D(SYk) whose values are less than α. To have �S X �lex �SY , α in D(S Xk) is eliminated. This propagates to the pruning
of α from the remaining variables of �S X , as well as from domains of the uninstantiated variables of �X . Hence, any value
removed from �X due to the gcc decomposition is removed from �X also by the sort decomposition. The proof can easily be
reverted for values being removed from �Y .

To show that the sort decomposition dominates the gcc decomposition, consider �X = 〈{1,2}〉 and �Y = 〈{0,1,2}〉 where 0
in D(Y0) is inconsistent and therefore �X �m �Y is not GAC. We have �S X = 〈{1,2}〉 and �SY = 〈{0,1,2}〉 by GAC(sorted(�X, �S X))
and GAC(sorted(�Y , �SY)), and �O X = 〈{0,1}, {0,1}, {0}〉 and �O Y = 〈{0,1}, {0,1}, {0,1}〉 by GAC(gcc(�X, 〈2,1,0〉, �O X)) and
GAC(gcc(�Y , 〈2,1,0〉, �O Y)). To achieve GAC(�S X �lex �SY), 0 in D(SY0) is pruned. This leads to the pruning of 0 also from
D(Y0) so as to establish GAC(sorted(�Y , �SY)). On the other hand, we have GAC(�O X �lex �O Y), in which case no value is
pruned from any variable. �
Theorem 25. The sort decomposition of �X <m �Y is strictly stronger than the gcc decomposition of �X <m �Y .

Proof. The example in Theorem 24 shows strictness. �
Even though the sort decomposition of �X �m �Y is stronger than the gcc decomposition of �X �m �Y , GAC on �X �m �Y can

lead to more pruning than any of the two decompositions. A similar argument holds also for �X <m �Y . Hence, it can be
preferable to post and propagate multiset ordering constraints via our global constraints.

8. Multiple vectors

We often have multiple multiset ordering constraints. For example, we post multiset ordering constraints on the rows
or columns of a matrix of decision variables because we want to break row or column symmetry. We can treat such a
problem as a single global ordering constraint over the whole matrix. Alternatively, we can decompose it into multiset
ordering constraints between adjacent or all pairs of vectors. In this section, we demonstrate that such decompositions
hinder constraint propagation.

The following theorems hold for n vectors of m constrained variables.

Theorem 26. GAC(�Xi �m �X j) for all 0 � i < j � n − 1 is strictly stronger than GAC(�Xi �m �Xi+1) for all 0 � i < n − 1.

A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328 321
Proof. GAC(�Xi �m �X j) for all 0 � i < j � n − 1 is as strong as GAC(�Xi �m �Xi+1) for all 0 � i < n − 1, because the former
implies the latter. To show strictness, consider the following 3 vectors:

�X0 = 〈{0,3}, {2}〉
�X1 = 〈{0,1,2,3}, {0,1,2,3}〉
�X2 = 〈{2,3}, {1}〉

We have GAC(�Xi �m �Xi+1) for all 0 � i < 2. The assignment X0,0 ← 3 forces �X0 to be 〈3,2〉, and we have ceiling(�X2) =
〈3,1〉. Since {{3,2}} >m {{3,1}}, GAC(�X0 �m �X2) does not hold. �
Theorem 27. GAC(�Xi <m �X j) for all 0 � i < j � n − 1 is strictly stronger than GAC(�Xi <m �Xi+1) for all 0 � i < n − 1.

Proof. The example in Theorem 26 shows strictness. �
Theorem 28. GAC(∀i j 0 � i < j � n − 1. �Xi �m �X j) is strictly stronger than GAC(�Xi �m �X j) for all 0 � i < j � n − 1.

Proof. GAC(∀i j 0 � i < j � n − 1 . �Xi �m �X j) is as strong as GAC(�Xi �m �X j) for all 0 � i < j � n − 1, because the former
implies the latter. To show strictness, consider the following 3 vectors:

�X0 = 〈{0,3}, {1}〉
�X1 = 〈{0,2}, {0,1,2,3}〉
�X2 = 〈{0,1}, {0,1,2,3}〉

We have GAC(�Xi �m �X j) for all 0 � i < j � 2. The assignment X0,0 ← 3 is supported by X0 ← 〈3,1〉, X1 ← 〈2,3〉, and
X2 ← 〈1,3〉. In this case, �X1 �m �X2 is f alse. Therefore, GAC(∀i j 0 � i < j � 2. �Xi �m �X j) does not hold. �
Theorem 29. GAC(∀i j 0 � i < j � n − 1 . �Xi <m �X j) is strictly stronger than GAC(�Xi <m �X j) for all 0 � i < j � n − 1.

Proof. GAC(∀i j 0 � i < j � n − 1 . �Xi <m �X j) is as strong as GAC(�Xi <m �X j) for all 0 � i < j � n − 1, because the former
implies the latter. To show strictness, consider the following 3 vectors:

�X0 = 〈{0,3}, {1}〉
�X1 = 〈{1,3}, {0,1,3}〉
�X2 = 〈{0,2}, {0,1,2,3}〉

We have GAC(�Xi <m �X j) for all 0 � i < j � 2. The assignment X0,0 ← 3 is supported by X0 ← 〈3,1〉, X1 ← 〈3,3〉, and
X2 ← 〈2,3〉. In this case, �X1 <m �X2 is f alse. Therefore, GAC(∀i j 0 � i < j � 2 . �Xi <m �X j) does not hold. �
9. Experiments

We implemented our global constraints �m and <m in C++ using ILOG Solver 5.3 [17]. Due the absence of the sorted
constraint in Solver 5.3, the multiset ordering constraint is decomposed via the gcc decomposition using the IloDistribute
constraint. This constraint is the gcc constraint but it does not always prune completely the occurrence vectors as described
before.

In the experiments, we have a matrix of decision variables where the rows and/or columns are (partially) symmetric. To
break the symmetry, we post multiset ordering constraints on the adjacent symmetric rows or columns, and address several
questions in the context of looking for one solution or the optimal solution. First, does our filtering algorithm(s) do more
inference in practice than its decomposition? Similarly, is the algorithm more efficient in practice than its decomposition?
Second, is it feasible to post the arithmetic constraint? How does our algorithm compare to BC on the arithmetic constraint?
Even though studying the effectiveness of the multiset ordering constraints in breaking symmetry is out of the scope of this
paper, we provide experimental evidence of their value in symmetry breaking.

We report experiments on three problem domains: the progressive party problem, the rack configuration problem, and
the sport scheduling problem. The decisions made when modelling and solving a problem are tuned by our initial experi-
mentation. The results are shown in tables where a “-” means no result is obtained in 1 hour (3600 secs). The best result
of each entry in a table is typeset in bold. If posing an ordering constraint on the rows (resp. columns) is done via a tech-
nique called Tech then we write Tech R (resp. T ech C). The ordering constraints are enforced just between the adjacent rows
and/or columns as we have found it not worthwhile to post them between all pairs.

Finally, the hardware used for the experiments is a 1 Ghz pentium III processor with 256 Mb RAM running Windows XP.

322 A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328
Fig. 2. The matrix model of the progressive party problem in [31].

9.1. Progressive party problem

The progressive party problem arises in the context of organising the social programme for a yachting rally (prob013 in
CSPLib). We consider a variant of the problem proposed in [31]. There is a set Hosts of host boats and a set G uests of guest
boats. Each host boat i is characterised by a tuple 〈hci, ci〉, where and hci is its crew size and ci is its capacity; and each
guest boat is described by gci giving its crew size. The problem is to assign hosts to guests over p time periods such that:

• a guest crew never visits the same host twice;
• no two guest crews meet more than once;
• the spare capacity of each host boat, after accommodating its own crew, is not exceeded.

A matrix model of this problem is given in [31]. It has a 2-d matrix H to represent the assignment of hosts to guests in
time periods (see Fig. 2). The matrix H is indexed by the set P eriods of time periods and G uests, taking values from Hosts.
The first constraint enforces that two guests can meet at most once by introducing a new set of 0/1 variables:

∀i ∈ P eriods. ∀ j1, j2, j1 < j2 ∈ G uests. Mi, j1, j2 = 1 ↔ Hi, j1 = Hi, j2

The sum of these new variables are then constrained to be at most 1. The all-different constraints on the rows of this matrix
ensure that no guest revisits a host. Additionally, a 3-d 0/1 matrix C of P eriods × G uests × Hosts is used. A variable Ci, j,k
in this new matrix is 1 iff the host boat k is visited by guest j in period i. Even though C replicates the information held
in the 2-d matrix, it allows capacity constraints to be stated concisely. The sum constraints on C ensure that a guest is
assigned to exactly one host on a time period. Finally, channelling constraints are used to link the variables of H and C .

The time periods as well as the guests with equal crew size are indistinguishable. Hence, this model of the problem has
partial row symmetry between the indistinguishable guests of H , and column symmetry. In the following we first show that
multiset ordering constraints are useful in breaking index symmetry.

To break the row and column symmetries, we can utilise both lexicographic ordering and multiset ordering constraints,
as well as combine lexicographic ordering constraints in one dimension of the matrix with multiset ordering constraints
in the other. Due to the problem constraints, no pair of rows/columns can have equal assignments, but they can be equal
when viewed as multisets. This gives us the models <lex RC, �m RC, �m R �m C, �m R <lex C, �m R >lex C, <lex R �m C,
and <lex R �m C. As the matrix H has partial row symmetry, the ordering constraints on the rows are posted on only the
symmetric rows. The ordering constraints on the columns are, however, posted on all the columns.

In our experiments, we compare the models described above in contrast to the initial model of the problem in which no
symmetry breaking ordering constraints are imposed. We consider the original instance of the progressive party problem
described in [31], with 5 and 6 time periods. As in [31], we give priority to the largest crews, so the guest boats are ordered
in descending order of their size. Also, when assigning a host to a guest, we try a value first which is most likely to succeed.
We therefore order the host boats in descending order of their spare capacity. We adopt two static variable orderings, and
instantiate H either along its rows from top to bottom, or along its columns from left to right.

A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328 323
Table 1
Progressive party problem with row-wise labelling of H .

Model
Problem

5 time periods 6 time periods

Fails Choice points Time (secs.) Fails points Choice points Time (secs.)

No symmetry breaking 180,738 180,860 75.9 – – –
<lex RC 2720 2842 2.7 – – –
�m RC – – – – – –
�m R �mC 9,207 9329 8.0 – – –
�m R <lexC 10,853 10,977 8.6 – – –
�m R >lexC 2289 2405 2.6 – – –
<lex R �mC 2016 2137 2.0 – – –
<lex R �mC – – – – – –

Table 2
Progressive party problem with column-wise labelling of H .

Model
Problem

5 time periods 6 time periods

Fails Choice points Time (secs.) Fails points Choice points Time (secs.)

No symmetry breaking 20,546 20,676 9.0 20,722 20,871 12.3
<lex RC 20,546 20,676 9.0 20,722 20,871 12.4
�m RC – – – – – –
�m R �mC – – – – – –
�m R <lexC – – – – – –
�m R >lexC – – – – – –
<lex R �mC 7038 7168 3.4 7053 7202 4.6
<lex R �mC – – – – – –

Table 3
Instance specification for the progressive party problem.

Instance # Host boats Total host spare capacity Total guest size %Capacity

1 2-12, 14, 16 102 92 .90
2 3-14, 16 100 90 .90
3 3-12, 14, 15, 16 101 91 .90

4 3-12, 14, 16, 25 101 92 .91
5 3-12, 14, 16, 23 99 90 .91
6 3-12, 15, 16, 25 100 91 .91

7 1, 3-12, 14, 16 100 92 .92
8 3-12, 16, 25, 26 100 92 .92
9 3-12, 14, 16, 30 98 90 .92

The results of the experiments are shown in Tables 1 and 2. With row-wise labelling of H , we cannot solve the problem
with 6 time periods with or without the symmetry breaking ordering constraints. As for the other instance, whilst many of
the models we have considered give significantly smaller search trees and shorter run-times, �mRC and <lexR �mC cannot
return an answer within an hour time limit. The smallest search tree and also the shortest solving time is obtained by <lexR
�mC, in which case the reduction in the search effort is noteworthy compared to the model in which no ordering constrains
are imposed. This supports our conjecture that lexicographic ordering constraints in one dimension of a matrix combined
with multiset ordering constraints in the other can break more symmetry than lexicographic ordering or multiset ordering
constraints on both dimensions.

Next, we show that our filtering algorithm is the best way to propagate multiset ordering constraints. To simplify the
presentation, we address only the row symmetry. Given a set of indistinguishable guests {gi, gi+1, . . . , g j}, we insist that the
rows corresponding to such guests are multiset ordered: �Ri �m �Ri+1 �m · · · �m �R j . We impose such constraints by either
using our filtering algorithm MsetLeq, or the gcc decomposition, or the arithmetic constraint.

We now consider several instances of the problem using the problem data given in CSPLib. We randomly select the host
boats in such a way that the total spare capacity of the host boats is sufficient to accommodate all the guests. Table 3 shows
the data. The last column of Table 3 gives the percentage of the total capacity used, which is a measure of constrainedness
[38]. We instantiate H row-wise following the same protocol described previously.

The results of the experiments are shown in Table 4. Note that all the problem instances are solved for 5 time periods.
The results show that MsetLeq maintains a significant advantage over the gcc decomposition and the arithmetic constraint.
The solutions to the instances, which can be solved within an hour limit, are found quicker and compared to the gcc

324 A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328
Table 4
Progressive party problem: MsetLeq vs gcc decomposition and the arithmetic constraint with row-wise labelling.

Instance
#

MsetLeq R Arithmetic constraint R gcc R

Fails Choice points Time (secs.) Time (secs.) Fails Choice points Time (secs.)

1 10,839 10,963 8.3 16 20,367 20,491 11.6
2 56,209 56,327 46.8 123.7 57,949 58,067 48.6
3 27,461 27,575 17.1 39.1 42,741 42,855 20.5

4 420,774 420,888 280.5 621.7 586,902 587,016 298.1
5 – – – – – – –
6 5052 5170 3.8 7.3 8002 8123 4.3

7 86,432 86,547 65.5 135.2 128,080 128,195 75.7
8 – – – – – – -
9 – – – – – – -

decomposition with much less failures. Note that MsetLeq and the arithmetic constraint methods create the same search
tree.

9.2. Rack configuration problem

The rack configuration problem consists of plugging a set of electronic cards into racks with electronic connectors
(prob031 in CSPLib). Each card is a certain card type. A card type i in the set C types is characterised by a tuple 〈cpi,di〉,
where cpi is the power it requires, and di is the demand, which designates how many cards of that type have to be plugged.
In order to plug a card into a rack, the rack needs to be assigned a rack model.

Each rack model i in the set RackModels is characterised by a tuple 〈rpi, ci, si〉, where rpi is the maximal power it can
supply, ci is its number of connectors, and si is its price. Each card plugged into a rack uses a connector. The problem is to
decide how many among the set Racks of available racks are needed, and which model the racks are in order to plug all
the cards such that:

• the number of cards plugged into a rack does not exceed its number of connectors;
• the total power of the cards plugged into a rack does not exceed its power;
• all the cards are plugged into some rack;
• the total price of the racks is minimised.

A matrix model of this problem is given in [17] and shown in Fig. 3. The idea is to assign a rack model to every available
rack. Since some of the racks might not be needed in an optimal solution, a “dummy” rack model is introduced (i.e., a rack
is assigned the dummy rack model when the rack is not needed). Furthermore, for every available rack, the number of cards
of a particular card type plugged into the rack has to be determined. The assignment of rack models to racks is represented
by a 1-d matrix R , indexed by Racks, taking values from RackModels which includes the dummy rack model. In order to
represent the number of cards of a particular card type plugged into a particular rack, a 2-d matrix C of C types × Racks is
introduced. A variable in this matrix takes values from {0, . . . ,maxConn} where maxConn is the maximum number of cards
that can be plugged into any rack.

The dummy rack model is defined as a rack model where the maximal power it can supply, its number of connectors,
and its price are all set to 0. The constraints enforce that the connector and the power capacity of each rack is not exceeded
and every card type meets its demand. The objective is then to minimise the total cost of the racks.

The 2-d matrix C has partial row symmetry, because racks of the same rack model are indistinguishable and therefore
their card assignments can be interchanged. To break this symmetry, we post multiset ordering constraints on the rows
conditionally. Given two racks i and j, we enforce that the rows corresponding to such racks are multiset ordered if the
racks are assigned the same rack model. That is:

Ri = R j → 〈C0,i, . . . , Cn−1,i〉 �m 〈C0, j, . . . , Cn−1, j〉
where n is the number of card types. We impose such constraints by either using our filtering algorithm MsetLeq or the
arithmetic constraint. Unfortunately, we are unable to compare MsetLeq against the gcc decomposition in this problem, as
Solver 5.3 does not allow us to post IloDistribute constraint conditionally.

We consider several instances of the rack configuration problem, which are described in Tables 5 and 6. In the ex-
periments, we use the rack model and card type specifications given in [17], but we vary the demand of the card types
randomly. As in [17], we search for the optimal solution by exploring the racks in turn. For each rack, we first instantiate its
model and then determine how many cards from each card type are plugged into the rack.

The results of the experiments are shown in Table 7. MsetLeq is clearly much more efficient than the arithmetic
constraint on every instance considered. Note that the two methods create the same search tree.

A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328 325
Fig. 3. The matrix model of the rack configuration problem in [17].

Table 5
Rack model and card type specifications in the rack configuration problem [17].

Rack model Power Connectors Price

1 150 8 150
2 200 16 200

Card type Power

1 20
2 40
3 50
4 75

Table 6
Demand specification for the cards in the rack configuration problem.

Instance #
Demand

Type 1 Type 2 Type 3 Type 4

1 10 4 2 2
2 10 4 2 4
3 10 6 2 2
4 10 4 4 2
5 10 6 4 2
6 10 4 2 4

Table 7
Rack configuration problem: MsetLeq vs the arithmetic constraint.

Inst.
#

MsetLeq R Arithmetic constraint R

Fails Choice points Time (secs.) Time (secs.)

1 3052 3063 0.2 2.8
2 15,650 15,657 0.6 15.6
3 3990 3999 0.2 2.6
4 8864 8872 0.4 7.1
5 40,851 40,858 1.5 41.3
6 42,013 42,026 1.6 35.2

326 A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328
Table 8
Sport scheduling problem: MsetLess vs gcc decomposition and the arithmetic constraint with column-wise
labelling. For one column, we first label the first slots; for the other, we first label the second slots.

n Model Fails Choice points Time (sec.)

5 MsetLess C 1 10 0.8
Arithmetic constraint C 1 10 0.9
gcc C 2 11 1.2

7 MsetLess C 69 87 0.8
Arithmetic constraint C 69 87 1.3
gcc C 74 92 1.3

9 MsetLess C 760,973 761,003 121.3
Arithmetic constraint C 760,973 761,003 2500
gcc C 2,616,148 2,616,176 656.4

9.3. Sport scheduling problem

This problem was introduced in Section 2. Fig. 1 shows a matrix model. The (extended) weeks over which the tournament
is held, as well the periods of a week are indistinguishable. The rows and the columns of T and G are therefore symmetric.
Note that we treat T as a 2-d matrix where the rows represent the periods and columns represent the (extended) weeks,
and each entry of the matrix is a pair of values. The global cardinality constraints posted on the rows of T ensure that
each of 1 . . .n occur exactly twice in every row. In any solution to the problem, the rows when viewed as multisets are
therefore equal. The all-different constraints posted on the columns state that each column is a permutation of 1 . . .n. Thus,
the columns are also equal when viewed as multisets. Therefore, we cannot utilise multiset ordering constraints to break
row and/or column symmetry of this model of the problem.

Scheduling a tournament between n teams means arranging n(n − 1)/2 games. The model described in Fig. 1 assumes n
is an even number. If n is an odd number instead, then we can still schedule n(n − 1)/2 games provided that the games are
played over n weeks and each week is divided into (n − 1)/2 periods. The problem now requires that each team plays at
most once a week, and every team plays exactly twice in the same period over the tournament. This version of the problem
can be modelled using the original model in Fig. 1, as the all-different constraints on the rows and the cardinality constraints
on the columns enforce the new problem constraints.

We can now post multiset ordering constraints on the columns of T to break column symmetry. Since the games are all
different, no pair of columns can be equal, when viewed as multisets. Hence, we insist that the columns corresponding to
the n weeks are strict multiset ordered: �C0 <m �C1 <m · · · <m �Cn−1. We enforce such constraints by either using our filtering
algorithm MsetLess, or the gcc decomposition, or the arithmetic constraint. Since the multiset ordering constraints are
posted on the columns, we instantiate T column-by-column. For one column, we first label the first slots; for the other, we
first label the second slots. The results are shown in Table 8.

We observe that MsetLess is superior to the gcc decomposition. As the problem gets more difficult, MsetLess does
more pruning and solves the problem quicker. The results moreover indicate a substantial gain in efficiency by using Mset-
Less in preference to the arithmetic constraint. Even though the same search tree is created by the two, constructing
and propagating the arithmetic constraints is much more costly than running MsetLess to solve the multiset ordering
constraints.

10. Conclusions

We have developed filtering algorithms for the multiset ordering (global) constraint �X �m �Y defined on a pair of vectors
of variables. It ensures that the values taken by the vectors �X and �Y , when viewed as multisets, are ordered. This global
constraint is useful for breaking row and column symmetries of a matrix model and when searching for leximin solutions
in fuzzy constraints. The filtering algorithms either prove that �X �m �Y is disentailed, or ensure GAC on �X �m �Y .

The first algorithm MsetLeq is useful when d � n and runs in O (n) where n is the length of the vectors and d
is the number of distinct values. This is often the case as the number of distinct values in a multiset is typically less
than its cardinality to permit repetition. We further proposed another variant of the algorithm suitable when d � n. This
identifies support by lexicographically ordering suitable sorted vectors. The complexity is then independent of the number
of distinct values and is O (n log(n)), as the cost of sorting dominates. We also have shown that MsetLeq can easily be
modified for �X <m �Y by changing the definition of one of the flags. Moreover, the ease of maintaining the occurrence
vectors incrementally helps detect entailment in a simple and dual manner to detecting disentailment.

Our experiments on the progressive party problem, the rack configuration problem, and the sport scheduling problem
support the usefulness of multiset ordering constraints in the context of symmetry breaking and support our theoretical
studies: even if it is feasible to post the arithmetic constraint, it is much more efficient to propagate the multiset ordering
constraint using our filtering algorithm; furthermore, decomposing the multiset constraint carries a penalty either in the
amount or the cost of constraint propagation.

A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328 327
In our future work, we plan to investigate whether the incremental cost for propagation can be made less than linear
time. Moreover, we plan to understand whether it is worthwhile to a propate a chain of multiset ordering constraints and
if that is the case devise an efficient filtering algorithm.

Acknowledgements

The authors would like to thank the anonymous reviewers for their useful comments on the presentation and Chris
Jefferson for fruitful discussions on the work described in the article. B. Hnich is supported by Scientific and Technological
Research Council of Turkey (TUBITAK) under Grant No: SOBAG-108K027. I. Miguel is supported by a UK Royal Academy of
Engineering/EPSRC Research Fellowship.

References

[1] K.R. Apt, Principles of Constraint Programming, Cambridge University Press, 2003.
[2] N. Bleuzen-Guernalec, A. Colmerauer, Narrowing a block of sortings in quadratic time, in: G. Smolka (Ed.), Proceedings of the 3rd International Confer-

ence on Principles and Practice of Constraint Programming (CP-97), in: Lecture Notes in Computer Science, vol. 1330, Springer, 1997, pp. 2–16.
[3] N. Bleuzen-Guernalec, A. Colmerauer, Optimal narrowing of a block of sortings in optimal time, Constraints 5 (1–2) (2000) 85–118.
[4] N. Beldiceanu, M. Carlsson, J.-X. Rampon, Global constraints catalog, Technical Report T2005/08, Swedish Institute of Computer Science (SICS), 2005,

Available at http://www.emn.fr/x-info/sdemasse/gccat/.
[5] S. Bouveret, M. Lemaître, Computing leximin-optimal solutions in constraint networks, Artificial Intelligence 173 (2) (2009) 343–364, this issue.
[6] J. Crawford, G. Luks, M. Ginsberg, A. Roy, Symmetry breaking predicates for search problems, in: Proceedings of the 5th International Conference on

Knowledge Representation and Reasoning (KR ’96), 1996, pp. 148–159.
[7] R. Debruyne, C. Bessière, Some practicable filtering techniques for the constraint satisfaction problem, in: M.E. Pollack (Ed.), Proceedings of the 15th

International Joint Conference on Artificial Intelligence (IJCAI-97), Morgan Kaufmann, 1997, pp. 412–417.
[8] P. Brisset, H. El Sakkout, T. Frühwirth, C. Gervet, W. Harvey, M. Meier, S. Novello, T. Le Provost, J. Schimpf, K. Shen, M.G. Wallace, ECLiPSe Constraint

Library Manual Release 5.6, 2003. Available at http://www.icparc.ic.ac.uk/eclipse/doc/doc/libman/libman.html.
[9] N. Barnier, P. Brisset, FaCiLe: A Functional Constraint Library Release 1.0, 2001. Available at http://www.recherche.enac.fr/opti/facile/doc/.

[10] H. Fargier, Problèmes de satisfaction de constraintes flexibles: application à l’ordonnancement de production, PhD thesis, University of Paul Sabatier,
Tolouse, 1994.

[11] P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, T. Walsh, Breaking row and column symmetry in matrix models, in: P. van Hentenryck
(Ed.), Proceedings of the 8th International Conference on Principles and Practice of Constraint programming (CP-02), in: Lecture Notes in Computer
Science, vol. 2470, Springer, 2002, pp. 462–476.

[12] P. Flener, A.M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, T. Walsh, Matrix modelling: Exploiting common patterns in constraint programming, in: A.M.
Frisch (Ed.), Proceedings of the International Workshop on Reformulating Constraint Satisfaction Problems, 2002, pp. 27–41.

[13] A.M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, T. Walsh, Multiset ordering constraints, in: G. Gottlob, T. Walsh (Eds.), Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJCAI-03), Morgan Kaufmann, 2003, pp. 221–226.

[14] A.M. Frisch, C. Jefferson, I. Miguel, Constraints for breaking more row and column symmetries, in: F. Rossi (Ed.), Proceedings of the 9th International
Conference on Principles and Practice of Constraint Programming (CP-03), in: Lecture Notes in Computer Science, vol. 2833, Springer, 2003, pp. 318–
332.

[15] P. Flener, J. Pearson (Eds.), Notes of the 2nd International Workshop on Symmetry in Constraint Satisfaction Problems (SymCon-02), CP-02 Post-
conference Workshop, 2002. Available at http://www.it.uu.se/research/group/astra/SymCon02/.

[16] R.M. Haralick, G.L. Elliot, Increasing tree search efficiency for constraint satisfaction problems, Artificial Intelligence 14 (1980) 263–313.
[17] ILOG S.A., ILOG Solver 5.3 Reference and User Manual, 2002.
[18] Z. Kiziltan, B.M. Smith, Symmetry breaking constraints for matrix models, in: [15], 2002.
[19] I. Katriel, S. Thiel, Complete bound consistency for the global cardinality constraint, Constraints 10 (3) (2005) 191–217.
[20] Z. Kiziltan, T. Walsh, Constraint programming with multisets, in: [15], 2002.
[21] A.K. Mackworth, Consistency in networks of relations, Artificial Intelligence 8 (1) (1977) 99–118.
[22] A.K. Mackworth, On reading sketch maps, in: Proceedings of the 5th International Joint Conference on Artificial Intelligence (IJCAI-77), William Kauf-

mann, 1977, pp. 598–606.
[23] K. Marriott, P.J. Stuckey, Programming with Constraints, The MIT Press, 1998.
[24] K. Mehlhorn, S. Thiel, Faster algorithms for bound-consistency of the sortedness and the alldifferent constraint, in: R. Dechter (Ed.), Proceedings of

the Sixth International Conference on Principles and Practice of Constraint Programming (CP-00), in: Lecture Notes in Computer Science, vol. 1894,
Springer, 2000, pp. 306–319.

[25] J.F. Puget, On the satisfiability of symmetrical constrained satisfaction problems, in: H.J. Komorowski, Z.W. Ras (Eds.), Proceedings of the 7th Interna-
tional Symposium on Methodologies for Intelligent Systems (ISMIS-93), in: Lecture Notes in Computer Science, vol. 689, Springer, 1993, pp. 350–361.

[26] C.-G. Quimper, P. van Beek, A. Lopez-Ortiz, A. Golynski, S.B. Sadjad, An efficient bounds consistency algorithm for the global cardinality constraint,
in: F. Rossi (Ed.), Proceedings of the 9th International Conference on Principles and Practice of Constraint Programming (CP-03), in: Lecture Notes in
Computer Science, vol. 2833, Springer, 2003, pp. 600–614.

[27] J.C. Régin, A filtering algorithm for constraints of difference in CSPs, in: Proceedings of the 12th National Conference on Artificial Intelligence (AAAI-94),
AAAI Press, 1994, pp. 362–367.

[28] J.C. Régin, Generalized arc consistency for global cardinality constraints, in: Proceedings of the 13th National Conference on Artificial Intelligence and
the 8th Innovative Applications of Artificial Intelligence Conference (AAAI/IAAI-96), AAAI Press/The MIT Press, 1996, pp. 209–215.

[29] F. Rossi, Constraint (logic) programming: a survey on research and applications, in: K.R. Apt, A.C. Kakas, E. Monfroy, F. Rossi (Eds.), New Trends in
Constraints, in: Lecture Notes in Computer Science, vol. 1865, Springer, 2000, pp. 40–74.

[30] F. Rossi, P. van Beek, T. Walsh (Eds.), Handbook of Constraint Programming, Elsevier, 2006.
[31] B.M. Smith, S.C. Brailsford, P.M. Hubbard, H.P. Williams, The progressive party problem: integer linear programming and constraint programming

compared, Constraints 1 (1996) 119–138.
[32] T. Schiex, H. Fargier, G. Verfaille, Valued constraint satisfaction problems: hard and easy problems, in: C.S. Mellish (Ed.), Proceedings of the 14th

International Joint Conference on Artificial Intelligence (IJCAI-95), Morgan Kaufmann, 1995, pp. 631–637.
[33] Swedish Institute of Computer Science, SICStus Prolog User’s Manual, Release 3.12.0, November 2004. Available at http://www.sics.se/sicstus/docs/

latest/pdf/sicstus.pdf.
[34] E.P.K. Tsang, Foundations of Constraint Satisfaction, Academic Press, 1993.

http://www.emn.fr/x-info/sdemasse/gccat/
http://www.icparc.ic.ac.uk/eclipse/doc/doc/libman/libman.html
http://www.recherche.enac.fr/opti/facile/doc/
http://www.it.uu.se/research/group/astra/SymCon02/
http://www.sics.se/sicstus/docs/latest/pdf/sicstus.pdf
http://www.sics.se/sicstus/docs/latest/pdf/sicstus.pdf

328 A.M. Frisch et al. / Artificial Intelligence 173 (2009) 299–328
[35] P. van Hentenryck, L. Michel, L. Perron, J.C. Régin, Constraint programming in OPL, in: G. Nadathur (Ed.), Proceedings of the International Conference
on the Principles and Practice of Declarative Programming (PPDP-99), in: Lecture Notes in Computer Science, vol. 1702, Springer, 1999, pp. 98–116.

[36] P. van Hentenryck, V.A. Saraswat, Y. Deville, Design, implementation and evaluation of the constraint language cc(FD), Journal of Logic Program-
ming 37 (1–3) (1998) 139–164.

[37] M.G. Wallace, Practical applications of constraint programming, Constraints 1 (1–2) (1996) 139–168.
[38] J.P. Walser, Integer Optimization by Local Search—A Domain-Independent Approach, Lecture Notes in Artificial Intelligence, vol. 1637, Springer, 1999.

	Filtering algorithms for the multiset ordering constraint
	Introduction
	Formal background
	Constraint satisfaction problems and constraint programming
	Notation
	Search, local consistency and propagation
	Modelling
	Symmetry

	The multiset ordering constraint and its applications
	Breaking index symmetry
	Searching for leximin optimal solutions

	A filtering algorithm for multiset ordering constraint
	A worked example
	Theoretical background
	Algorithm details and theoretical properties

	Multiset ordering with large domains
	Remedy
	An alternative filtering algorithm

	Extensions
	Strict multiset ordering constraint
	Entailment

	Alternative approaches
	Arithmetic constraint
	Decomposition

	Multiple vectors
	Experiments
	Progressive party problem
	Rack configuration problem
	Sport scheduling problem

	Conclusions
	Acknowledgements
	References

