Global constraints for lexicographic orderings®

Alan Frisch!, Brahim Hnich?, Zeynep Kiziltan?, Ian Miguel!, and Toby Walsh®

! Department of Computer Science, University of York, Heslington, York, United
Kingdom. {frisch, ianm }@cs.york.ac.uk
2 Computer Science Division, Department of Information Science, Uppsala
University, Uppsala, Sweden. {Brahim.Hnich, Zeynep.Kiziltan}@Qdis.uu.se
3 Cork Constraint Computation Center, University College Cork, Ireland.
twQ4c.ucc.ie

Abstract. We propose some global constraints for lexicographic order-
ings on vectors of variables. These constraints are very useful for breaking
a certain kind of symmetry arising in matrices of decision variables. We
show that decomposing such constraints carries a penalty either in the
amount or the cost of constraint propagation. We therefore present a
global consistency algorithm which enforces a lexicographic ordering be-
tween two vectors of n variables and domains of size d in O(nd) time. The
algorithm can be modified very slightly to enforce a strict lexicographic
ordering. Our experimental results on a number of domains (balanced in-
complete block design, social golfer, and sports tournament scheduling)
confirm the efficiency and value of these new global constraints.

1 Introduction

Global (or non-binary) constraints are one of the most important and powerful
aspects of constraint programming. Specialized propagation algorithms for global
constraints are vital for efficient and effective constraint solving. A number of
consistency algorithms for global constraints have been developed by several
researchers (see [1] for examples). To continue this line of research, we propose
a new family of efficient global constraints for lexicographic orderings on vectors
of variables.

These global constraints are especially useful for breaking a certain kind of
symmetry arising in matrices of decision variables. Dealing efficiently and effec-
tively with symmetry is one of the major difficulties in constraint programming,.
Symmetry occurs in many scheduling, assignment, routing and supply chain
problems. These can often be modelled as constraint programs with matrices
of decision variables [6] in which the matrices have symmetry along their rows

% Submitted in confidence. Only for distribution to those members of the programme
committee who have a need to read this. We are very thankful to Warwick Harvery,
Nicolas Beldiceanu, the members of the APES research group (especially Ian Gent,
Patrick Prosser, and Barbara Smith), and Pierre Flener for valuable discussions on
this work. This research was made possible by VR grant 221-99-369, EPSRC grant
GR/N16129 and an EPSRC advanced research fellowship.

and/or columns [5]. For instance, a natural model of the sports tournament
scheduling problem has a matrix of decision variables, each of which is assigned
a value corresponding to the match played in a given week and period [10]. In this
problem, weeks and periods are indistinguishable so we can freely permute rows
and columns. To break this symmetry, we can add an additional constraint that
the rows and columns are lexicographically ordered [5]. These global constraints
can also be used in multi-criteria optimization problems where the objective
function consists of features which are ranked [4].

2 Formal background

A constraint satisfaction problem (CSP) consists of a set of variables, each with
a finite domain of values, and a set of constraints that specify the allowed values
for given subsets of variables. The solution to a CSP is an assignment of values to
the variables which satisfies all the constraints. To find such solutions, constraint
solvers often explore the space of partial assignment enforcing some level of
consistency like (generalized) arc-consistency or bounds consistency. A CSP is
generalized arc-consistent (GAC) iff, when a variable in a constraint is assigned
any of its values, there exist compatible values for all the other variables in the
constraint. When the constraints are binary, we talk about arc-consistency (AC).
For totally ordered domains, like integers, a weaker level of consistency is bounds
consistency. A CSP is bounds consistent (BC) iff, when a variable in a constraint
is assigned its maximum or minimum value, there exist compatible values for all
the other variables in the constraint. If a constraint ¢ is AC or GAC then we
write AC(c) or GAC(c) respectively.

In this paper, we are interested in lexicographic ordering constraints on vec-
tors of distinct variables and having the same length. Throughout, we assume
finite integer domains, which are totally ordered. Given two vectors, T and y of
n variables, (zo,z1,...,Zn—1) and (Yo,y1,...,Yn—1), We write a lexicographical
ordering constraint as T <jex ¥ and a strict lexicographic ordering constraint
as T <jex §. Indexing is from left to right with the most significant index for
the lexicographic ordering at 0. The lexicographic ordering constraint <jex ¥
ensures that: o < yo; 1 < y1 when xg = yo; 2 < y2 when z¢o = yo and z1 = y1;

e} Tpo1 < Yn_1 When zg =yo, 1 =y1, ..., and £, o = y,_». The strict lexi-
cographic ordering constraint & <jex ¥ ensures that: <jex ¥; and z,—1 < Yp—1
when zy = Yo, T1 = Y15 -+, and T, » = Yn—2.

We are also interested in multiple lexicographic ordering constraints. For
example, all rows or columns in a matrix of variables might be lexicographically
ordered. We denote m vectors of n domain variables by:

Tg = <£UO70, To,1, --- ,5[707n_1>
T = <56170, T1,1, --- ,5[717n_1>
Tm—1 = (Tm=1,0, Tm—1,15 - - - » Tm—1,n—1)

We write Zg <jex Z1 - - - <lex Tm—1 for the single global constraint on these m.n
variables which ensures that each pair of vectors is in lexicographic order. Also,

we write Tp <lex T1--- <lex Tm—1 for the single global constraint on the m.n
variables which ensures that each pair of vectors is in strict lexicographic order.

We need the following additional notation. The sub-vector of with start in-
dex a and last index b inclusive is denoted by %,_,5. The minimum element in the
domain of z; is denoted by min(dom(z;)), and the maximum by maz(dom(z;)).
Given a binary constraint ¢, if any assignment of values to x; and y; guaran-
tees that ¢ holds then we write x; c*y;, whilst if any assignment of values to x;
and y; fails to satisfy ¢ then we write —(z; ¢*y;). Hence, xz; <* y; is equivalent
to maz(dom(z;)) < min(dom(y;)), ; <* y; to maz(dom(z;)) < min(dom(y;)),
z; >* y; to min(dom(z;)) > max(dom(y;)), and =(z; >* y;) to min(dom(z;)) <
maz(dom(y;)). If z; and y; are ground and equal then we write x; = y;, other-
wise we write —(z; = y;). Finally, the function floor(Zz) assigns all unassigned
variables in a vector Z to their minimum values, whilst ceiling(Z) assigns all
to their maximum values.

3 GAC algorithms for lexicographic ordering

We sketch the main features of a family of linear time algorithms for enforcing
GAC on a (strict or non-strict) lexicographic ordering constraint. Consider the
lexicographic ordering constraint & <jex § with:

z= ({1}, {0,1},{0,1},{1})

Y= <{07 1}) {0}) {0)]-}7 {0}>
The key idea is to have two pointers, a and § which save us from repeatedly
traversing the vectors. The pointer a points to the index such that all variables
above it are ground and equal. The pointer 3 points either to the most signifi-
cant index starting from which the sub-vectors are lexicographically ordered the
wrong way whatever the remaining assignments are (that is, floor(Zg_n_1) >lex
ceiling(yg—n—1)), or (if this is not the case) to infinity. As variables are as-
signed, a and (are moved inwards, and we terminate when 8 = «a + 1. The
algorithm restricts domain prunings to the index «, and as « is strictly increas-
ing and bounded by n, and as at most d values from any variable are pruned,
the algorithm runs in O(nd) time.

In this example, we initialize a to point to the index 0 since yq is not ground.

We initialize S to the index 3 since the sub-vectors starting at index 3 are ordered
the wrong way round (i.e. T3_y3 >1ex Y33):

T = <{1}7 {07 1}7 {07 1}7 {1}>
Y= <{Ov 1}7 {0}7 {07 1}7 {0}>
o't Y

Since « is at 0, the start of the vectors, there can be no support for any value
in the domain of y, which is less than the minimum value in the domain of z,,.
We can therefore remove 0 from the domain of y, and increment « to 1:

T = <{1}) {07 1}) {0) 1}7 {1}>
y= ({1}7 {0}7 {07 1}7 {0}>
at 8

As the vectors above a are ground and equal, there can be no support for any
value in the domain of z, which is more than the maximum value in the domain
of y,. We can therefore remove 1 from the domain of z, and increment « to 2:

T = ({1}, {0}, {0,1},{1})
= <{1}7 {0}) {07 1}) {0}>
at 15

Since a has now reached — 1, there can be no support for any value in the
domain of z, (resp. y,) which is greater (resp. less) than or equal to the maxi-
mum (resp. minimum) value in the domain of y, (resp. z,). We must therefore
strictly order the index a. That is, we can assign 0 to z2 and 1 to ya:

z = ({1}, {0}, {0}, {1})
7= {1}, {0}, {1}, {0})
at 14

We now terminate as § = a+ 1. Enforcing GAC has, in this case, assigned all the
variables. Of the 16 possible assignments for the two vectors, this is the unique
one which satisfies the lexicographic ordering constraint.

3.1 GAC on <jex

We now define more formally the algorithm for enforcing GAC on the constraint
T <lex §. As we have seen, the pointers a and § play a central role in the algo-
rithm. The pointer a points to an index of Z and 7 such that for all j < a we
have z; = y;, and =(z4 = yo). The pointer 3 points either to the most signifi-
cant index starting from which the sub-vectors are lexicographically ordered the
wrong way whatever the remaining assignments are:

floor(Za_n—1) >lex ceiling(§s—n—1)
Vi 0<i<B.(floor(Zisn—1) >lex ceiling(Jin—1))

or (if this is not the case) to co. Consider two vectors Z and ¢ of length 1 and g
and yo both have the domain {0,1}. The pointer « is set to 0 and if we set the
pointer 8 to 1, then our rule would assign 0 to x, and 1 to y,, which is wrong.
To avoid such situations, the pointer § is set to a value bigger than the length of
the vectors. It is not hard to show that generalised arc-inconsistent values can
exist only in the interval [, 8) where 8 < n. Indeed, we can restrict pruning to
the index «, and show that GAC(Z <je, 9) iff: AC(xy < yo) when = a + 1,
and AC(zo < yo) when 8 > a + 1. The algorithm also has a flag, consistent
which indicates that all possible assignments satisfy the lexicographic ordering
constraint. That is, ceiling(Z) <jex floor (7). We first give the procedure to
initialise the two pointers (« and () and the flag (consistent).

1. Procedure Initialise()
2. consistent := false

3.0:=0

4. WHILE (i<n A x;=y;)i:=i+1

5. IF (i = n) consistent := true, Return

6. ELSE o :=

7. IF (Check_Lex(i)) consistent := true, Return
8. B:=-1

9. WHILE (i # n A =(z; >* y;))
10. IF (min(dom(z;)) = maz(dom(y;)))
11. IF(3 = —1) B:=1i
12. ELSE 5 := -1
13. ir=i+1

14. IF (i=n) 1=
15. ELSE IF (8 = —1) 8 :=1i
16. IF (a >) FAIL
17. GACLexLeq(x)

Line 4 traverses Z and g, starting at index 0, until either it reaches the end of the
vectors (all pairs of variables are ground and equal), or it reaches an index where
the pair of variables are not ground and equal. In the first case, ceiling (%) <jex
floor(y). Hence, consistent is set to true and the algorithm returns (line 5). In
the second case, « is set to the most significant index where the pair of variables
are not ground and equal (line 6). In line 7, consistent is set to true if the call
to Check_Lex(i) succeeds. This call checks whether the lexicographic ordering
constraint is satisfied for all possible assignments:

1. Boolean Check_Lex(7)
2. IF (i =n — 1) Return(z; <* y;)
3. ELSE Return(z; <* y;)

Line 9 traverses and j, starting at index «, until either it reaches the end
of the vectors (none of the pairs of variables satisfy x; >* y;), or it reaches
an index ¢ where the pair of variables satisfy x; >* y;. In the first case, 5 is
set to co (line 14). In the second case, 8 is guaranteed to be at most i (line
15). If, however, there exist a pair of sub-vectors, Z,—;—1 and §n—;—1 such that
min(dom(z;)) = maz(dom(y;)) for all h < j < i —1, then § can be revised to
h (lines 10-11).

The complexity of the initialisation is O(n) since both vectors are traversed
in the worst case. Initialization terminates either with failure (if @« >) or
by calling GACLexLeq(«). GACLexLeq(i) is also called by the event handler
whenever a value is removed from a variable at index 3.

. Procedure GACLexLeq(7)
. IF (i > BV consistent) Return
IF i=a A i+1=0)
AC(CEz < yi)
IF (Check_Lex(i)) consistent := true, Return
IF i=a A i+1<p)

N

8. IF (Check_Lex(i)) consistent := true, Return

9. IF (z; = y;) UpdateAlpha(i + 1)
10. IF (a < i < f)
11. IF (i =8 -1 A min(dom(z;)) = max(dom(y;))) V x; >* y;)
12. UpdateBeta(i — 1)

In the GACLexLeq procedure, lines 2, 3-5, 6-9, and 10-12 are mutually exclu-
sive, and will be referred as parts A, B, C, and D respectively.

Part A: Generalised arc-inconsistent values exist only in [a, §) where § < n.
Therefore, no inconsistent value can exist at an index greater than or equal to
B. Hence, if i > [, the vectors are already GAC and the algorithm returns. If
the flag consistent is true, ceiling(Z) <jex floor(y) so the algorithm returns.
The complexity of this step is constant.

Part B: AC(z; < y;) stands for maintaining arc-consistency on z; < y;.
This is implemented as follows: If maz(dom(z;)) (resp. min(dom(y;))) is sup-
ported by max(dom(y;)) (resp. min(dom(x;))) then all the other elements in
the domain of x; (resp. y;) are supported. Otherwise, the upper (resp. lower)
bound of the domain of x; (resp. y;) is tightened. The worst-case complexity
of maintaining arc-consistency on z; < y; is thus O(d), where d is the domain
size of the variables. If 3 = a + 1 then we need to ensure that AC(z, < yq).
If a domain wipe-out occurs then the algorithm fails, and the vectors cannot be
made GAC. Otherwise, the vectors are now GAC. After the propagation carried
out by maintaining arc-consistency, Check_Lex(7) is called. This part of the
algorithm thus has an O(d) complexity.

Part C: If § > a + 1 then we need to ensure AC(z, < yo). If a domain
wipe-out occurs then the algorithm fails, and the vectors cannot be made GAC.
Otherwise, the vectors are now GAC. After the pruning carried out by main-
taining arc-consistency, Check_Lex(7) is called and « updated if necessary.

1. Procedure UpdateAlpha(i)

2. IF (i = B) FAIL

3. IF (i = n) consistent := true, Return
£ TF (~(o; = yy)

9. =1

6 GACLexLeq(7)

7. ELSE UpdateAlpha(i + 1)

In lines 4 and 7 of UpdateAlpha(i), the vectors are traversed until the most
significant index k where —(z = yi) is found. If such an index does not exist,
ceiling (%) <jex floor(y), so consistent is set to true (line 3). Otherwise, « is
set to k (line 5). GACLexLeq is then called with this new value of «. In the
worst case, a moves one index at a time, and on each occasion AC is enforced.
Hence, this part of the algorithm gives an O(nd) complexity.

Part D: 3 is updated by calling UpdateBeta(i — 1) when we set a variable
at an index i between « and §, and either x; now must be greater than y; (i.e
x; >* y;), or i is adjacent to S (i.e. i = § — 1) and y; can at best only equal x;.

Procedure UpdateBeta(i)
IF (i +1 = a) FAIL
IF (min(dom(z;)) < maz(dom(y;)))
B:=i+1
IF —(z; <* y;) GACLexLeq(7)
ELSE IF (min(dom(z;)) = maz(dom(y;))) UpdateBeta(i — 1)

In lines 3 and 6 of UpdateBeta(i), the vectors are traversed until the most
significant index k where min(dom(zy,)) < maz(dom(yy)) is found. The pointer
B is set to k + 1 (line 4). GACLexLeq(S — 1) is then called in case § = a + 1,
and we need to ensure AC(z, < yo). If 8 = a+1 and z, <* y, then consistent
would already have been set to true. The algorithm, however, always terminates
after one more step. The worst case complexity of the algorithm remains O(nd).

When updating a or 3, failure is established if these pointers meet. This
situation can only arise if the event queue contains several domain prunings due
to other constraints, for the following reasons. After initialisation, the constraint
is GAC. Hence, we can find a single consistent value for all variables. If after
every assignment we enforce GAC on this constraint, this property persists.
Therefore, we can only fail when the queue contains a series of updates which
must be dealt with simultaneously.

SR

3.2 GAC on <jex

With very little effort, GACLexLeq() can be adapted to give an algorithm,
GACLexLess() that enforces GAC on a strict lexicographic ordering constraint
between two vectors. The reason that the two algorithms are so similar is that,
as soon as [is assigned a value other than oo, GACLexLeq() enforces strict
inequality in subvectors above . In the GACLexLess() algorithm, § again
points either to the most significant index starting from which the sub-vectors
must be ordered the wrong way:

floor(Za_yn—1) Zlex ceiling(Js—n_1)
Vi 0<i<B.-(floor(Timsn—1) >lex ceiling(Yi—n—1))

or (if this is not the case) to n (so that equality of the vectors is not allowed).
There are only two other changes. When « is initialized, we fail if o gets set to
n (as the vectors are ground and equal so cannot be strictly ordered). Finally,
for obvious reasons, all calls to Check_Lex(i) are replaced by (z; <* y;).

Given two vectors £ and y with non-empty domains, executing the two al-
gorithm GACLexLeq and GACLexLess maintain generalised arc-consistency
on T <jex ¥ and T <jex ¥, respectively.

Theorem 1. Given a pair of vectors T and §j of domain variables, GACLexLeq
(resp. GACLexLess) either establishes failure if T <jex § (resp. T <iex J) i
unsatisfiable, or prunes elements from T and § such that GAC(T <iex §) (resp.
GAC(Z <iex §)) and the set of solutions is preserved.

Proof. For reasons of space, we are unable to give the correctness proofs of the
algorithms. These can, however, be found in an accompanying technical report
[8]-

4 Alternative approaches

There are at least two other ways of posting global lexicographic ordering con-
straints: by decomposing them into smaller constraints, or by posting an arith-
metic inequality constraint. We show here that such decomposition usually in-
creases the runtime or decreases the amount of constraint propagation. The
experimental results in Section 6 support this observation.

A lexicographic ordering constraint <jex ¥ can be decomposed it into n
non-binary constraints:

{zo <wo, zo=yo =21 <y1, To=yYo N 1 =y1 = T2 < Ya,...,
To=Yo N T1=Y1 AN.e. N Tp2=Yn—2 > Tp-1 < Yn_1}

Similarly a strict lexicographic ordering constraint T <jex ¥ can be decomposed
into n non-binary constraints:

{0 <%0, zo=yo =21 <y, To=Yo AN 1 =y1 = 22 <Y,...,
To=Yo N T1=Y1 AN.e. N Tp2=Yn-2 = Tp-1 <Yn_1}

As the following theorem shows, such decompositions do not affect the pruning
of GAC. However, in many solvers (e.g. Solver 5.0), only nFCO0 ! is enforced on
such non-binary decompositions. Our linear time GAC algorithm will clearly do
more propagation. In addition, the experiments in Section 6 show that, despite
enforcing a weaker consistency like nFC0, a state of the art system like ILOG’s
Solver 5.0 handles such decompositions inefficiently.

Theorem 2. GAC(Z <iex §) is equivalent to GAC on the decomposition, but
strictly stronger than nFCO0 on the decomposition. Similarly, GAC(T <iex §) is
equivalent to GAC the decomposition, but strictly stronger than nFCO0 on the
decomposition.

Proof. (Outline) We just consider GAC(Z <jex §) as the proof for GAC(Z <jex
y) is entirely analogous. Clearly GAC on T <jex ¥ is as strong as GAC on
the decomposition. To show the reverse, suppose that every constraint in the
decomposition is GAC but that the undecomposed constraint is not. There is
some index a such that for all j < @ we have z; = y; and =(zo = ya), and z,
or y, has a value that is not GAC. The two cases are dual so we just consider
the first. There exists a value @ in the domain of z, that has no support in
the domain of y,. Hence, all values in the domain of y, are smaller than a.
However, this is not possible if the decomposed constraint, g = yo A x1 =
Yr Ao o A To1 = Ya—1 = Ta < Yo is GAC.

Clearly GAC on the decomposition is as strong as nFCO0. To show strictness,
consider ({0,1},{1}) <jex ({0,1},{0}). This problem is not GAC. However,

! Forward checking (FC) has been generalised to non-binary constraints [2]. nFCO
makes every k-ary constraint with k — 1 variables instantiated AC. nFCO0 usually
denotes the search algorithm, but we overload notation here to use nFCO0 to describe
the level of local consistency that it enforces at each node in its search tree.

nFCO0 leaves the problem unchanged as more than one variable is uninstantiated.
a
Note that naively enforcing GAC on the decomposition of a global lexico-
graphic ordering constraint will usually be expensive as the decomposition con-
tains non-binary constraints, some of which are large in size. Suppose we use an
optimal algorithm like GAC-schema [3]. For e constraints of arity &k and variables
with domains of size d, GAC-schema takes O(ed*) time. As the decomposition
introduce n constraints with arity up to 2n, GAC-schema on the decomposition
takes O(nd*") time.
A second way of enforcing a lexicographic ordering is via an arithmetic con-
straint. To ensure that T <jex ¥ with domains of size d, we post the arithmetic
constraint:

A" lsxzo+d" s+ A d o <A xyo+d" Exy 4+ +d xyy
And to ensure that T <jex § we post the arithmetic constraint:
A" lszg+d" sz 4+ Az <AV lxyo+d P xy 4+ +d xyy

Maintaining BC on such arithmetic constraints does the same pruning as GAC.

Theorem 3. GAC(Z <iex §J) and GAC(T <iex §) are equivalent to BC on the
corresponding arithmetic constraints.

Proof. (Outline) We just consider GAC(Z <jex §) as the proof for GAC(Z <jex §)
is entirely analogous. Suppose that the arithmetic constraint is BC, but that
Z <jex ¥ is not GAC. There is some index « such that for all j < a we have
zj = y; and ~(ro = Yo), and x4 Or y, has a value that is not GAC. The two
cases are analogous so we just consider the first. There exits a value a in the
domain of z, that has no support in the domain of y,. Hence, all the values in
the domain of y, are smaller than a. However, this contradicts the arithmetic
constraint being BC. O
Maintaining BC on such arithmetic constraints can be achieved in O(ndc)
where n is the length of the vectors, d is the domain size, and c¢ is the time
required to check that a particular (upper or lower) bound of a variable is BC.
At best, c is a constant time operation. However, when n and d get large, d" !
will be much more than the word size of the computer and computing BC will
be significantly more expensive. Hence, this method is only feasible when the
vectors and domain sizes are small. For instance, on the BIBD problem in Section
6 with vectors of length 120 and domain size 2, the coefficients in the arithmetic
constraint would exceed 23!, the maximum integer size allowed in Solver 5.0.

5 Extensions

We often have multiple lexicographic ordering constraints. For example, all rows
or columns in a matrix of decision variables might be lexicographically ordered.
We can treat such a problem as a single global ordering constraint over the

whole matrix. Alternatively, we can decompose it into lexicographic ordering
constraints between all pairs of vectors. We can decompose this further by post-
ing lexicographic ordering constraints just between immediate pairs of vectors
(and calling upon the transitivity of the orderings). The following theorems
demonstrate that such decompositions hinder constraint propagation in general.
However, we identify the special case of a (non-strict) lexicographical ordering
on 0/1 variables where it does not.

Theorem 4. GAC(Zo <iex T1 - - - <lex Tm—1) 18 strictly stronger than GAC(ZT; <jex
Zj) for all i < j. Similarly, GAC(To <iex Z1 ... <lex Tm—1) is strictly stronger
than GAC(Z; <iex T;) for all i < j.

Proof. Consider the following 3 vectors:

zo = ({0,2}, {1}) & = ({1,2},{0,3}) 2> = ({2}, {0,2})

Although GAC(Z; <iex Zj), and GAC(Z; <iex ;) for alli < j, neither GAC(Zo <iex
Z1 <iex T2) nor GAC(Zo <iex T1 <iex 2) holds as xg o = {2} cannot be consis-
tently extended. O

A simple corollary is that enforcing GAC on (strict) lexicographic ordering
constraints between neighbouring pairs of vectors does less pruning than enforc-
ing GAC on a single global ordering constraint. Indeed, GAC on neighbouring
pairs does less pruning than GAC on each pair of vectors.

Theorem 5. GAC(Z; <iex ;) for alli < j is strictly stronger than GAC(Z; <iex
Zigp1) for alli. Similarly, GAC(Z; <iex &) for all i < j is strictly stronger than
GAC(HZ <lex ii—i—l) fO?" all 7.

Proof. Consider the following 3 vectors:

Ty = <{0)]-}7 {1}) {07 1}> T = <{07 1}) {0)]-}7 {0) 1}> Ty = ({0) 1}7 {0}7 {0) 1}>

Although GAC(Z; <jex Tit+1), and GAC(Z; <jex Tit1) for all i, neither GAC(Zg <jex
Z) nor GAC(Zo <iex T2) holds as x99 = {1} cannot be consistently extended.
a

In the special case that the domains of the vectors are 0/1, enforcing GAC on
lexicographic ordering constraints between every pair of vectors achieves global
consistency. This is not true, however, for the strict lexicographic ordering con-
straint, nor for non-strict lexicographic ordering constraints between neighbour-
ing pairs of vectors.

Theorem 6. For 0/1 variables, GAC(Z; <iex T;) for all i < j is equivalent to
GAC(IEO Slex Ty..- Slex i’m—l)-

Proof. (Outline) We assume that we have a problem in which GAC(Zp <jex
Z1... <lex Tm—1) does not hold and show that there exist i < j such that
GAC(Z; <iex Z;) does not hold. As GAC(Zo <iex ZT1... <iex Tm—1) does not
hold, there is variable with a value which lacks support. With this value of the

10

variable, there exist indices p, ¢, and k such that p < ¢,z =1, and x4 = 0.
Also, for all k' < k any assignment of values to the variables guarantees that
either zop = @1 g ... = Tym—1,8, Or there exist two indices p’ and ¢’ such that
P <, xyp =1, and x4 p = 0. Hence, there exist a pair of vectors Z; and Z;
such that £loor(Z;) >, ceiling(Z;). a
This result, however, does not hold for a strict lexicographical ordering.

Theorem 7. For 0/1 wvariables, GAC(Zy <iex T1... <lex Tm-—1) 18 strictly
stronger than GAC(ZT; <iex Z;) for all i < j.

Proof. Consider 5 vectors I, . . ., Z4, where Z; = ({0,1},{0,1}) for all ¢ € [0,4].
Although GAC(Z; <iex Z;) for all ¢ < j there is no globally consistent solution
as there are only 4 possible distinct vectors. O

6 Experimental results

We tested our global constraints on three problem domains: the balanced in-
complete block design (prob028 in CSPLib: www.csplib.org), the social golfer
(prob010in CSPLib), and the sports tournament scheduling (prob026 in CSPLib).
Each is naturally modelled by matrices of decision variables which exhibit a high
degree of symmetry. The rows and columns of these matrices can therefore be
ordered lexicographically to break much of this symmetry. Throughout, we com-
pare the performance of the global constraints developed here with FC on the
decomposed form described in Section 4 using ILOG’s Solver 5.0 on a 750Mhz
PentiumIII, 128 Mb RAM, but not with GAC-schema as it is computationally
expensive.

When using symmetry-breaking constraints, the variable and value ordering
(VVO) is very important. In particular, if the VVO moves right to left along the
rows, it will increasingly conflict with the lexicographic ordering constraints. We
can then expect to gain from both the lower complexity and increased pruning
achieved by our global constraints. Given a VVO that agrees with the lexico-
graphic ordering constraints, we can expect to gain more from the lower com-
plexity of our global constraint than from the increased pruning.

6.1 The balanced incomplete block design problem

Balanced Incomplete Block Design (BIBD) generation is a standard combina-
torial problem from design theory with applications in cryptography and ex-
perimental design. A BIBD is specified by a binary matrix of b columns and
v rows, with exactly r ones per row, k ones per column, and a scalar product
of A between any pair of distinct rows. Our model consists of sum constraints
on each row and each column as well as the scalar product constraint between
every pair of rows. Trivially, we can exchange any pair of rows, and any pair
of columns of a solution to obtain another symmetrical solution. We therefore
impose lexicographic ordering constraints on rows and columns.

We used a static variable ordering, tuned by initial experimentation, which
gives the best results we have found so far on this problem. This ordering begins

11

Problem GACLexLeq (Adjacent Pairs)] GACLexLeq (All Pairs) Decomposition
v,b,r k, A Fails Choice-points Time | Fails Choice-points Time | Fails Choice-points Time
6,50,25,3,10 | 2738 2787 1.7 2738 2787 1.8 2758 2807 10.7
6,60,30,3,12 5924 5982 4.6 5924 5982 4.9 5959 6017 45
6,70,35,3,10 | 11731 11798 11.4 11731 11798 11.7 | 11787 11854 137.6
10,90,27,3,6 | 90610 90827 111 90610 90827 120.4 | 90610 90827 742.2
9,108,36,3,9 2428 2619 8.4 2428 2619 7.6 2428 2619 73.3
15,70,14,3,2 | 2798 3080 6.2 2798 3080 8.4 2798 3080 20.7
12,88,22,3,4 (139988 140236 249 139988 140236 317 |139988 140236 1153.6
9,120,40,3,10| 1646 1858 8 1646 1858 7.2 1646 1858 81.5
10,120,36,3,8(577280 577532 1316.3 577280 577532 1132.3| — — —
13,104,24,3,4(114666 114999 397.6 [114666 114999 448.3 |114666 114999 1666.9

Table 1. BIBDs: Time is in seconds and a dash means no result is obtained in 1 hour.

by filling the first row left to right. Our value ordering is to try 0 then 1. Hence,
this gives a first row with b —r 0’s followed by r 1’s (by the row sum constraint).
We then fill from top to bottom, the rightmost r columns from right to left. This
is the most constrained part of the problem due to the A constraints. Finally
we fill the remaining rows alternately right to left, then left to right from top to
bottom. Alternating directions favours the updating of & and # in GACLexLeq,
and pruning in the decomposition.

Results are presented in Table 1. They indicate a substantial gain in efficiency
by using GACLexLeq in preference to the decomposition. The similar size of
the search trees explored indicates that the variable ordering is highly compatible
with lexicographic ordering, and it is rare for the global constraint to be able to
prune more than the decomposition. However, we report lower runtimes due to
the increased efficiency of our GACLexLeq algorithm.

Although we have shown that, in theory, enforcing lexicographic ordering
between all pairs of rows or columns can increase pruning, we do not see any
evidence of it on these problems. In most cases, the increased overhead results
in increased run-times. However, in three cases, enforcing lexicographic ordering
between all pairs reduces the run-time. Since the size of the search tree remains
the same, we conjecture that this is a result of a complex dead-end being detected
more quickly with the extra global constraints.

6.2 The social golfer problem

The social golfer problem is to schedule a golf tournament over w weeks. In each
week, the golfers must be divided into g groups of size s. Every golfer must play
once in every week, and every pair of players can meet at most once. Our model
consists of a 3-dimensional 0/1 matrix of groups x weeks x golfers. Assigning
1 to an entry at index [g,w,p] means that golfer p plays in group g in week
w. Sum constraints ensure that every golfer plays once in every week and that
every group contains s players. A constraint similar in form to the A constraint
described above ensures that every pair of players meet only once.

Each of the weeks, golfers and groups are symmetrical and cannot be equal. In
the first two cases, we impose a strict lexicographic ordering constraint between
the planes of the matrix that represent weeks and the planes of the matrix that

12

Problem|GACLexLess (Adjacent Pairs)] GACLexLess (All Pairs) Decomposition
w,g,s Fails Choice-points Time | Fails Choice-points Time | Fails Choice-points Time
11,6,2 166 305 0.7 116 305 0.8 314 453 7
13,7,2 1525 1792 9.7 1525 1792 10.4 | 16584 16851 547.2
5,6,3 2090342 2090435 2976.1 (2090342 2090345 3120.6| — — —
4,7,3 248 371 0.7 248 371 0.8 340 463 8.2
5,8,3 625112 625328 2450.9 | 625112 625328 2655 — — —
4,5,4 1410774 1410825 1675 |1410774 1410825 1865.3| — — —
3,6,4 2777416 2777486 2771.7|2777416 2777486 3073 — — —
3,7,4 646124 646235 1147.9| 646124 646235 1173.7] — — —
9,8,4 27 380 3.3 27 380 3.6 32 385 68.9
2,7,5 32944 33029 53.2 32944 33029 55.7 | 58512 58597 959.1
2,8,5 42008 42123 93.2 42008 42123 91.2 [122271 122386 3462.5
9,8,8 19 373 16 19 373 18.7 — — —

Table 2. Golfers: Time is in seconds and a dash means no result is obtained in 1 hour.

represent golfers. However, the contents of a group from one week to the next
are independent of each other. Hence, we impose a strict lexicographic ordering
between groups within each week. A static variable ordering was again used,
filling the matrix a player at a time, assigning each week in turn. The results are
presented in Table 2.

The more complex interactions resulting from 3-dimensional symmetry break-
ing result in more pruning with the global constraint than with the decomposi-
tion. Hence, we observe a reduction in the size of the search tree in many cases.
As expected, this leads to an even larger reduction in run-times. Given the size of
the vectors involved, the machine on which these experiments were run started
to run low on memory using the decomposition. Better run times may be possi-
ble using a machine with more memory, but as we try to model larger problems
this is a clear disadvantage of using decompositions.

Again, we see no evidence that enforcing lexicographic ordering between all
pairs of vectors leads to increased pruning. Indeed, given the relatively large size
of the vectors compared to those found in the BIBD models, we usually observe
a small increase in overhead.

6.3 The sports tournament scheduling problem

In the sports tournament scheduling problem we have n teams playing over n—1
weeks. Each week is divided into n/2 periods, and each period divided into two
slots. The first team in each slot plays at home, whilst the second plays the first
team away. Every team must play once a week, every team plays at most twice in
the same period over the tournament and every team plays every other team. We
use a model consisting of two matrices proposed by Van Hentenryck et al. [10].
The first matrix, teams is a 3-dimensional matrix of periods x (extended) weeks
x slots, each element of teams can take a value between 1 and n expressing that a
team plays in a particular period in a particular week, in the home or away slot.
Weeks are extended to include a dummy week to makes posting some constraints
easier. The second matrix, games is a 2-dimensional matrix of periods x weeks,
each element of which has a domain in [1, n?], recording a particular unique

13

GACLexLess (Adjacent Pairs) GACLexLess (All Pairs) Decomposition
n Fails Choice-points Time Fails Choice-points Time Fails Choice-points Time
6 285 295 0.2 285 295 0.2 285 295 0.2
8 53 81 0.2 53 81 0.2 53 81 0.2
10 4931 4979 0.6 4931 4979 0.6 4933 4982 0.9
12| 433282 433357 38.6| 433282 433357 48.2| 433283 433358 92.7
14(20404472 20404581 2016.7|20404472 20404581 2643.7|20439055 20439164 6516.8

Table 3. Sports: Time is in seconds.

combination of home and away teams. All-different and occurrence constraints
are then used to enforce the problem constraints.

Symmetry on the slots is broken by specifying that the home team must be
less than the away team (this is in fact essential for the game matrix to work
correctly). In addition, the periods and the weeks are symmetrical and cannot
be equal. Hence, we post a strict lexicographic ordering constraint between pe-
riods and weeks in teams. A static variable ordering on teams, tuned by initial
experiments, is used as follows. We fill the first row left to right. We fill the
2nd row right to left. We fill the 1st column top to bottom. From then on we
fill the remainder of the rows left to right, right to left from top to bottom.
Again, alternating directions appears to help both the global constraint and the
decomposition.

The results are presented in Table 3. They show that GACLexLess main-
tains a significant advantage over the decomposition on multi-valued domains.
The variable ordering chosen is compatible with lexicographic ordering, so there
is no difference in the size of the search tree. However, the benefits of having an
efficient global constraint are again apparent.

7 Related work

Beldiceanu has classified many global constraints in terms of simple graph prop-
erties [1]. This classification provides hints at ways to implement pruning al-
gorithms for the global constraints. However, our algorithms are developed by
taking a different approach.

For ordering constraints, Gent et al. show that, GAC on a global monotonicity
constraint on n variables (e.g. g < 1 < ... < Tp—1) is equivalent to AC on its
decomposition into binary ordering constraints [9]. This is based on a result of
Freuder as the decomposed constraint graph is a tree [7]. As arc-consistency can
be efficiently enforced on the decomposed binary ordering constraints, there is
no need for global consistency algorithms for simple orderings like monotonicity
constraints. However, our results show both theoretically and empirically the
value of global consistency algorithms for more complex orderings.

The ECLiPSe constraint solver provides a global constraint for lexicograph-
ically ordering two vectors. However, it is not documented what level of con-
sistency is enforced with this constraint, nor the complexity of enforcement. It
does no pruning on ({0,1},{0,1}, {1}) <iex ({0,1},{0},{0}), even though the
problem is not GAC.

14

8 Conclusions

We have proposed some global constraints for lexicographic orderings. These
constraints are very useful for breaking symmetry. We show that decomposing
such global constraints carries a penalty either in the amount or the cost of
constraint propagation. We have therefore developed an O(nd) global consis-
tency algorithm which enforces a lexicographic ordering between two vectors of
n variables and domains of size d. The algorithm can be modified very slightly
to enforce a strict lexicographical ordering. Our experimental results confirm the
efficiency and value of these new global constraints.

In our future work, we plan to use our global constraints in multi-criteria
optimization problems. We also hope to develop algorithms for GAC on Zg <jex
Z1 ... <jex Tm—1 and GAC on Ty <jex T1 - - - <lex Tm—1- The example in the proof
of Theorem 7 suggests that this may be quite challenging. Such algorithms need
to be able to perform sophisticated counting arguments and solve pigeonhole
problems quickly. Global constraints for lexicographic orderings simultaneously
along both rows and columns of a matrix would also present a significant chal-
lenge. Finally, we intend to look at global constraints for other orderings like the
multiset ordering. Such orderings are also very useful for breaking symmetry.

References

1. N. Beldiceanu. Global constraints as graph properties on a structured network
of elementary constraints of the same type. In Proc. of CP’2000, pages 52-66.
Springer, 2000.

2. C. Bessiere, P. Meseguer, E.C. Freuder, and J. Larrosa. On forward checking for
non-binary constraint satisfaction. In Proc. of CP’99, pages 88-102. Springer, 1999.

3. C. Bessiere and J.C. Régin. Arc consistency for general constraint networks: Pre-
liminary results. In Proc. of IJCAI'97, pages 398-404. Morgan Kaufmann, 1997.

4. M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of multiob-
jective combinatorial optimization. OR Spektrum, 22:425-460, 2000.

5. P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh.
Symmetry in matrix models. Technical Report APES-30-2001, APES group, 2001.
Available from http://www.dcs.st-and.ac.uk/~apes/reports/apes-30-2001.ps.gz.
Presented at SymCon’01, CP’2001 post-conference workshop.

6. P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh. Ma-
trix modelling. Technical Report APES-36-2001, APES group, 2001. Available
from http://www.dcs.st-and.ac.uk/~apes/reports/apes-36-2001.ps.gz. Presented
at Formul’01, CP’2001 post-conference workshop.

7. E. Freuder. A sufficient condition for backtrack-bounded search. Journal of the
Association for Computing Machinery, 32(4):755-761, 1985.

8. A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh. Global constraints for
lexicographical ordering. Technical Report. This paper is confidential, but will be
made available to the CP program chair upon request.

9. LP. Gent, K. Stergiou, and T. Walsh. Decomposable constraints. Artificial Intel-
ligence, 123(1-2):133-156, 2000.

10. P. Van Hentenryck, L. Michel, L. Perron, and J.C. Regin. Constraint programming
in OPL. In Proc. of PPDP’99, pages 98-116. Springer, 1999.

15

