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Abstract. Many constraint satisfaction problems can be naturally and
efficiently modelled using non-binary constraints like the “all-different”
and “global cardinality” constraints. Certain classes of these non-binary
constraints are “network decomposable” as they can be represented by
binary constraints on the same set of variables. We compare theoretically
the levels of consistency which are achieved on non-binary constraints to
those achieved on their binary decomposition. We present many new re-
sults about the level of consistency achieved by the forward checking
algorithm and its various generalizations to non-binary constraints. We
also compare the level of consistency achieved by arc-consistency and
its generalization to non-binary constraints, and identify special cases of
non-binary decomposable constraints where weaker or stronger conditi-
ons, than in the general case, hold. We also analyze the cost, in consi-
stency checks, required to achieve certain levels of consistency.

1 Introduction

Constraint satisfaction problems occur in many real-life applications such as re-
source allocation, time tabling, vehicle routing, frequency allocation, etc. Many
constraint satisfaction problems can be naturally and efficiently modelled using
non-binary constraints like the “all-different” and “global cardinality” con-
straints [15,16,17]. Certain classes of these non-binary constraints are “network
decomposable” [14,6] as they can be represented by binary constraints on the
same set of variables. Throughout this paper, we will abbreviate this to decom-
posable. For example, an all-different constraint is decomposable into a clique of
binary not-equals constraints. As a second example, a monotonicity constraint is
decomposable into a sequence of ordering constraints on pairs of variables. Not
all non-binary constraints are decomposable into binary constraints on the same
set of variables. For example, the parity constraint even(x1 +x2 +x3) cannot be
represented as a binary constraint satisfaction problem without the introduction
of additional variables.

In this paper, we compare theoretically the levels of consistency which are
achieved on non-binary constraints to those achieved on their binary decompo-
sition. We extend the results of [17] and include material that covers several new
topics. To be precise, we present many new results about the level of consistency
achieved by the forward checking algorithm and its various generalizations to

K.R. Apt et al. (Eds.): New Trends in Constraints, LNAI 1865, pp. 134–149, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



Decomposable Constraints 135

non-binary constraints. We also compare the level of consistency achieved by
arc-consistency and its generalization to non-binary constraints, and identify
special cases of non-binary decomposable constraints where weaker or stronger
conditions, than in the general case, hold. We correct an error in [17] that sug-
gested that neighborhood inverse consistency on the binary decomposition is an
upper bound on the level of consistency achieved by generalized arc-consistency
on decomposable non-binary constraints. We also analyze the cost, in terms of
consistency checks, required to achieve certain levels of consistency. A few of the
results presented here have appeared in [17] but are repeated to make this paper
a more complete survey.

The remainder of this paper is organized as follows. In Section 2, we give
formal background on constraint satisfaction problems and define various levels
of consistency. In Section 3, we compare the level of consistency achieved by
the forward checking algorithm and its generalizations on decomposable non-
binary constraints. In Section 4, we repeat this analysis for arc-consistency and
its generalization. In Section 5, we make an analysis of the number of consistency
checks required to achieve certain levels of consistency. In Section 6, we discuss
related work, and finally, in Section 7, we conclude and discuss future work.

2 Formal Background

A constraint satisfaction problem (Csp) is a triple (X, D, C). X is a set of va-
riables. For each xi ∈ X, Di is the domain of the variable. Each k-ary constraint
c ∈ C is defined over a set of variables (x1, . . . xk) by the subset of the cartesian
product D1 × . . . Dk which are consistent values. A solution is an assignment of
values to variables that is consistent with all constraints. Many lesser levels of
consistency have been defined for binary constraint satisfaction problems (see [5]
for full references). A problem is (i, j)−consistent iff it has non-empty domains
and any consistent instantiation of i variables can be extended to a consistent
instantiation involving j additional variables [9]. A problem is arc-consistent
(AC) iff it is (1, 1)-consistent. A problem is path-consistent (PC) iff it is (2, 1)-
consistent. A problem is strong path-consistent iff it is (j, 1)-consistent for j ≤ 2.
A problem is path inverse consistent (PIC) iff it is (1, 2)-consistent. A problem
is neighbourhood inverse consistent (NIC) iff any value for a variable can be
extended to a consistent instantiation for its immediate neighbourhood [10]. A
problem is restricted path-consistent (RPC) iff it is arc-consistent and if a va-
riable assigned to a value is consistent with just a single value for an adjoining
variable then for any other variable there exists a value compatible with these
instantiations. A problem is singleton arc-consistent (SAC) iff it has non-empty
domains and for any instantiation of a variable, the problem can be made arc-
consistent. Many of these definitions can be extended to non-binary constraints.
For example, a (non-binary) constraint satisfaction problem is generalized arc-
consistent (GAC) iff for any variable in a constraint and value that it is assigned,
there exist compatible values for all the other variables in the constraint [13].

Following [5], we call a consistency property A stronger than B (A ≥ B) iff
in any problem in which A holds then B holds, and strictly stronger (A > B) iff
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it is stronger and there is at least one problem in which B holds but A does not.
We call a local consistency property A incomparable with B (A ∼ B) iff A is not
stronger than B nor vice versa. Finally, we call a local consistency property A
equivalent to B iff A implies B and vice versa. The following identities summarize
results from [5] and elsewhere: strong PC > SAC > PIC > RPC > AC, NIC >
PIC, NIC ∼ SAC, and NIC ∼ strong PC.

Backtracking based algorithms perform depth-first search in a tree of variable
assignments. Each node of the tree corresponds to a different set of assignments.
Leaf nodes in a search tree are also called branches. Many algorithms enforce
a certain level of consistency at every node in a search tree. For example, the
forward checking algorithm (FC) maintains a restricted form of AC that ensures
that the most recently instantiated variable and those that are uninstantiated are
arc-consistent. If all remaining values for a variable are removed, a domain wipe-
out occurs and the algorithm backtracks. Forward checking can be generalized to
an algorithm for non-binary constraints (called nFC0 in [2]) which makes every
k-ary constraint with k − 1 variables instantiated arc-consistent. No pruning is
performed on k-ary constraints with less than k − 1 variables instantiated. As
required, this reduces to forward checking algorithm, FC when applied to purely
binary constraints.

Alternative and stronger generalizations of forward checking to non-binary
constraints are studied in [2]. nFC1 applies (one pass of) AC on each constraint
or constraint projection involving the current variable and exactly one future
variable (by comparison, nFC0 does not use the constraint projections). nFC2
applies (one pass of) GAC on each constraint involving the current variable
and at least one future variable. nFC3 makes the set of constraints involving
the current variable and at least one future variable GAC. nFC4 applies (one
pass of) GAC on each constraint involving at least one past variable and at
least one future variable. nFC5 makes the set of constraints involving at least
one past variable and at least one future variable GAC. As required, all these
generalizations reduce to FC when applied to binary constraints.

Even higher levels of consistency can be maintained at each nodes in the
search tree. For example, the maintaining arc-consistency algorithm (MAC) en-
forces AC at each node in the search tree [11]. If enforcing AC removes all
remaining values for a variable, a domain wipe-out occurs and the algorithm
backtracks. For non-binary constraints, the algorithm that maintains generali-
zed arc-consistency (MGAC) on a (non-binary) constraint satisfaction problem
enforces GAC at each node in the search tree. When comparing the amount of
search performed by different backtracking algorithms, we assume that we are
looking for all solutions and there is a static variable ordering. We say that al-
gorithm A dominates algorithm B (A ≥ B) if when A visits a node then B also
visits the equivalent node in its search tree, and strictly dominates (A > B)
if it dominates and there is one problem on which it visits strictly fewer nodes.
Algorithm A and B are incomparable if neither A dominates B or vice versa
(A ∼ B). The following identities summarize results from [2]: nFC2 > nFC1 >
nFC0, nFC5 > nFC3 > nFC2, nFC5 > nFC4 > nFC2, nFC3 ∼ nFC4.
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3 Forward Checking on Decomposable Constraints

We will compare the level of consistency achieved by FC (and its generalizations)
on decomposable non-binary constraints. We repeat this analysis for AC in the
next section. We first identify a lower bound on the performance of FC applied
to the binary decomposition.

Theorem 1. For a decomposable non-binary constraint satisfaction problem,
the forward checking algorithm, FC on the binary decomposition strictly domi-
nates the generalized forward checking algorithm, nFC0.

Proof. Consider a node in the search tree explored by the nFC0 algorithm. As-
sume that forward checking removes the value a for some variable x. Then x
occurs in an k-ary constraint in which all k − 1 other variables have been as-
signed values. In the binary decomposition, not all arcs between x and these
k − 1 variables can support assigning x the value of a otherwise this would be
a consistent extension in the non-binary representation. Hence forward checking
on at least one of these binary arcs will remove the value a.

To show strictness, consider a ternary constraint x < y < z with x, y and
z all having the domains {1, 2}. Assume a lexicographic variable ordering and
a numerical value ordering (similar results are obtained with other variable and
value orderings). FC first assigns 1 to x. Forward checking then reduces the
domain of y to 2. After assigning this unit, forward checking discovers a domain
wipeout for z. We therefore backtrack to the root of the search tree and assign
2 to x. Forward checking then discovers a domain wipeout for y. The problem
is therefore insoluble, and FC shows this in 2 branches. The nFC0 algorithm
takes longer to solve this problem as it must assign 2 values before the ternary
constraint is checked. It therefore takes 4 branches to show insolubility. ut

We can generalize the example in the last proof to show that nFC0 applied to
non-binary constraints can explore exponentially more branches than FC on the
binary decomposition. This proof holds for a wide variety of variable orderings.
A variable ordering which instantiates variables with unit domains before those
without is called an unit preference ordering.

Theorem 2. There exists a decomposable non-binary constraint satisfaction
problem in n variables on which the forward checking algorithm, FC applied to the
binary decomposition explores 2 branches, but the generalized forward checking
algorithm, nFC0 explores 2n−1 branches using any value ordering and any unit
preference variable ordering.

Proof. Consider the n-ary constraint x1 < x2 < . . . < xn with each variable
xi having the domain {1, 2}. The variable and value ordering heuristics in the
forward checking algorithm, FC first assign a value, 1 or 2 to some variable xi.
The proof divides into four cases. If 1 < i ≤ n and the value assigned to i is 1
then forward checking discovers a domain wipeout for xi−1. If 1 ≤ i < n and
the value assigned to i is 2 then forward checking discovers a domain wipeout
for xi+1. If i = 1 and the value assigned to i is 1 then forward checking reduces



138 I. Gent, K. Stergiou, and T. Walsh

x2 to an unit domain, the unit preference variable ordering assigns this variable
next and discovers a domain wipeout for x3. In the final case, i = n and the
value assigned to i is 2. Forward checking then reduces xn−1 to an unit domain,
the unit preference variable ordering assigns this variable next and discovers a
domain wipeout for xn−2. After each case, we backtrack, assign the alternative
value to i and discover a domain wipeout. FC thus shows that the problem is
insoluble in 2 branches. On the other hand, the nFC0 algorithm takes longer
to solve this problem as it must assign n − 1 values before the n-ary constraint
is checked. It therefore takes 2n−1 branches to show insolubility whatever the
variable and value ordering. ut

We can also give a simple upper bound on the performance of FC on the
binary decomposition.

Theorem 3. For a decomposable non-binary constraint satisfaction problem,
nFC1 strictly dominates the forward checking algorithm, FC on the binary de-
composition.

Proof. Since the problem is decomposable, the constraint projections between
the current and one future variable are a superset of the arcs that FC applied
to the binary decomposition makes arc-consistent. Hence, if FC on the binary
decomposition prunes a value, so will the nFC1 algorithm.

To show strictness, consider an all-different constraint on four variables each
with the same domain of three elements. FC shows that the binary decompo-
sition is insoluble in 6 branches whatever the variable and value ordering. By
comparison, nFC1 take just 3 branches. ut

We can generalize the example in the last proof to show that FC on the
binary decomposition and nFC0 may explore exponentially more branches than
algorithms nFC1-nFC5. This proof holds for any variable and value ordering
heuristics.

Theorem 4. There exists a decomposable non-binary constraint satisfaction
problem in n variables on which the nFC1-nFC5 algorithms explore just n − 1
branches, but on which the forward checking algorithm, FC applied to the binary
decomposition takes (n−1)! branches, and the nFC0 algorithm explores (n−1)n−1

branches.

Proof. Consider an n-ary all-different constraint on the variables x1, x2, . . .xn,
each with the domain {1, 2, . . . n − 1}. FC explores (n − 1)! branches to show
that the problem is insoluble. The nFC0 algorithm assigns n − 1 values to the
xi (1 ≤ i ≤ n) before the n-ary all-different constraint is checked. It therefore
takes (n−1)n−1 branches to prove that the problem is insoluble. By comparison,
algorithms nFC1-nFC5 show that the problem is insoluble in n−1 branches since
as soon as the first variable is instantiated with any one of its n − 1 values, we
enforce GAC (AC in the projections for nFC1) and discover that the current
subproblem (the constraint projections) admit no satisfying tuples. ut
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These results, as well as those from [2], are summarized in Figure 1.

incomparable

nFC0nFC1 FCnFC2

nFC4

nFC3

nFC5

strictly dominates

Fig. 1. The performance of the forward checking algorithm, FC on the binary de-
composition of a set of decomposable non-binary constraints compared to the various
generalizations of forward checking, nFC0 to nFC5 applied to the non-binary con-
straints.

4 Arc-Consistency on Decomposable Constraints

Algorithms that enforce even higher levels of consistency than forward checking
have been shown to be highly effective at solving binary and non-binary con-
straint satisfaction problems (see, for example, [3,17]). In this section, we cha-
racterize the level of consistency achieved by (generalized) AC on decomposable
constraints. The following theorem (from [17]) puts a lower bound on the level
of consistency achieved by GAC on decomposable constraints with respect to
the binary decomposition.

Theorem 5. Generalized arc-consistency on decomposable constraints is strictly
stronger than arc-consistency on the binary decomposition.

Proof. See [17]. ut
As we show later on in this section, this lower bound is strict since we can

exhibit a large class of problems on which GAC is equivalent to AC on the binary
decomposition. In [17], we claimed that NIC (on the binary decomposition) was
an upper bound on the level of consistency achieved by GAC on decomposable
non-binary constraints. This was wrong as the following theorem shows (see
Theorem 8 for one condition under which NIC becomes strictly stronger than
GAC).

Theorem 6. Generalized arc-consistency on decomposable constraints is incom-
parable to neighbourhood inverse consistency on the binary decomposition.

Proof. Consider a problem with three all-different constraints on {x1, x2, x3},
on {x1, x3, x4}, and on {x1, x4, x2}, in which x1 has the unitary domain {1}
and every other variable has the domain {2, 3}. This problem is generalized
arc-consistent, but enforcing neighbourhood inverse consistency shows that it is
insoluble.
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Consider the following 2-colouring problem. We have 5 variables, x1 to x5
which are arranged in a ring. Each variable has the same domain of size 2.
Between each pair of neighbouring variables in the binary decomposition, there
is a not-equals constraint. In the non-binary representation, we post a single
constraint on all 5 variables. This problem is neighbourhood inverse consistent
but enforcing GAC on the non-binary representation shows that the problem is
insoluble. ut

The upper bounds we can give for GAC tend to be rather weak. This is
perhaps not surprising as we can post very large arity non-binary constraints.
GAC may therefore achieve very high levels of consistency. The first upper bound
we give is rather trivial. If the largest (non-binary) constraints involve k or fewer
variables, then (1, k − 1)-consistency is strictly stronger than GAC.

Theorem 7. For decomposable non-binary constraints of arity k or less, (1, k−
1)-consistency on the binary decomposition is strictly stronger than generalized
arc-consistency on the non-binary constraints.

Proof. Consider any variable and value assignment. (1, k − 1)-consistency ensu-
res that we can assign consistent values to the (at most) k − 1 variable’s that
appear with this variable in any given (non-binary) constraint. Hence, this con-
straint is generalized arc-consistent. Thus, (1, k − 1)-consistency of the binary
decomposition implies GAC of the original problem.

To prove strictness, consider a non-binary problem in 4 variables: x1, x2 and
x3 each with domains {1, 2}, and x4 with domain {2, 3}. We post a ternary
all-different constraint on x2, x3 and x4, and not-equals constraints between
x1 and x2, and x1 and x3. Now each of these constraints is generalized arc-
consistent, so no values are removed. However enforcing (1, 2)-consistency shows
that the problem is insoluble because of the constraints on x1, x2 and x3. (In
this example, x4 is only there to guarantee that there is a ternary constraint in
the problem.) ut

A second upper bound can be given when the non-binary constraints decom-
pose into cliques of binary constraints. For example, an all-different constraint
decomposes into a clique of binary not-equals constraints. Under such a restric-
tion, NIC on the binary decomposition is strictly stronger than GAC on the
original (non-binary) problem.

Theorem 8. If each non-binary constraint decomposes into a clique of binary
constraints then neighbourhood inverse consistency on the binary decomposition
is strictly stronger than generalized arc-consistency on decomposable constraints.

Proof. Consider any variable and value assignment. NIC ensures that we can
assign consistent values to the variable’s neighbours. However, as the decompo-
sition is into a clique, any (non-binary) constraint including this variable has all
its variables in the neighbourhood. Hence, the (non-binary) constraint is gene-
ralized arc-consistent.
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To prove strictness, consider again the problem with three all-different con-
straints from the proof of Theorem 6. This problem is generalized arc-consistent,
but enforcing neighbourhood inverse consistency shows that it is insoluble. ut

We had hoped to give weaker conditions under which NIC is strictly stronger
than GAC. For example, we considered adding the binary constraints implied
by path consistency to the binary decomposition. However, this is not enough to
ensure that NIC implies GAC. In general, you may need any of the implied binary
constraints. This may lead to prohibitively large neighbourhoods in the binary
decomposition, with any variable that has a value removable by GAC connected
to every other variable. On a minor note, this last upper bound is strict since we
can exhibit a class of problems in which the non-binary constraints decompose
into cliques of binary constraint and on which GAC is equivalent to NIC on the
binary decomposition.

GAC on decomposable constraints is incomparable to all levels of consistency
between strong path-consistency and restricted path-consistency on the binary
decomposition [17].

Theorem 9. Generalized arc-consistency on decomposable constraints is incom-
parable to strong path-consistency, to singleton arc-consistency, to path inverse
consistency, and to restricted path-consistency on the binary decomposition.

Proof. See [17]. ut
These results are summarized in Figure 2.

PIC RPC AC

strictly stronger

SACstrong PC

incomparable

GAC

NIC

Fig. 2. The consistency of GAC on a set of decomposable non-binary constraints com-
pared to various consistency techniques stronger than or equal to AC on the binary
decomposition.

Not surprisingly an algorithm that maintains GAC on decomposable con-
straints also strictly dominates the forward checking algorithm, FC applied to
the binary decomposition (as well strictly dominating any of the generalizations
of FC to non-binary constraints).

Theorem 10. For a decomposable non-binary constraint satisfaction problem,
an algorithm that maintains generalized arc-consistency strictly dominates the
forward checking algorithm, FC on the binary decomposition, as well as strictly
dominating any of the generalized algorithms, nFC0 to nFC5.
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Proof. Algorithms nFC2-nFC5 enforce GAC in subsets of the problem and are
therefore dominated by an algorithm that maintains GAC in the whole problem.
From Theorems 1 and 3 it trivially follows that such an algorithm also dominates
FC on the binary decomposition, nFC0 and nFC1.

To show strictness we only need to give an example where maintaining GAC
explores less branches than nFC5. Consider an all-different constraint on the
variables x, y and z, each with the domain {1, 2}. Assume a lexicographic variable
ordering and a numerical value ordering (similar results are obtained with other
variable and value orderings). nFC5 first assigns 1 to x, and then discovers there
are no satisfying tuples for the all-different constraint. We therefore backtrack
to the root of the search tree and assign 2 to x. This branch ends in failure
by a similar argument. The problem is thus insoluble and FC5 shows this in 2
branches. All the other forward checking algorithms also explore 2 branches. By
comparison, enforcing GAC immediately shows the problem is insoluble without
any search. ut

We can generalize the example in the last proof to show that FC on the binary
decomposition can explore exponentially more branches than an algorithm that
maintains GAC. This proof holds for any variable and value ordering heuristics.

Theorem 11. There exists a decomposable non-binary constraint satisfaction
problem in n variables on which the forward checking algorithm, FC applied to
the binary decomposition explores (n− 1)! branches, whilst GAC shows that it is
insoluble without search.

Proof. Consider an n-ary all-different constraint on the variables x1, x2, . . .xn,
each with the domain {1, 2, . . . n − 1}. At each level in the search tree of the
forward checking algorithm, one more value is removed from the domain of the
remaining uninstantiated variables. The branching rate therefore decreases from
n − 1 to 1. When the n − 1th variable is instantiated, the remaining variable
suffers a domain wipeout and backtracking occurs. Forward checking therefore
visits (n − 1)! branches before the problem is shown insoluble. By comparison,
enforcing GAC immediately shows that the problem is insoluble. ut

4.1 Tree Decomposable

We next identify a class of decomposable non-binary constraints on which GAC
meets its lower bound (viz. AC on the binary decomposition). A special case of
decomposable constraints are “tree decomposable” constraints in which the con-
straint graph of the binary decomposition forms a tree (or forest of independent
trees). For example, the non-binary constraint that a list of variables is monoto-
nically increasing is tree decomposable into a set of binary inequality constraints.
Such monotonicity constraints are frequently used when we model real problems
as they can be made to break unwanted symmetries. As the next two theorems
demonstrate, tree decomposability topologically characterizes when GAC may
be of benefit. If the constraint graph is a tree then GAC performs no more pru-
ning than AC on the binary decomposition. On the other hand, if the constraint
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graph is not a tree, then GAC can be more pruningful. We first prove that GAC
on tree decomposable constraints is no more effective than AC on the binary
decomposition.

Theorem 12. Generalized arc-consistency on tree decomposable constraints is
equivalent to arc-consistency on the binary decomposition.

Proof. (⇒) Consider a tree decomposable problem that is generalized arc-
consistent. Consider two variables, xi and xj , and a value for xi. The proof
divides into two cases. Either xi and xj are directly connected to each other in
some tree, or they are not. If they are connected, since the problem is generalized
arc-consistent, there is a consistent value for xj . If they are not connected then
any value for xj is consistent. Thus, the tree decomposition is arc-consistent.

(⇐) Consider the tree decomposition of a problem that is arc-consistent. Con-
sider a variable, xi and a value from its arc-consistent domain. We now show how
to find consistent values for all the other variables. We take the parent and each
of the children of xi. As the tree decomposition of the problem is arc-consistent,
we can find consistent values for these variables. We repeat this process until
we reach the root and the leaves. We now consider any uninstantiated children
of the root. Again, as the tree decomposition of the problem is arc-consistent,
we can find consistent values for these variables. We then consider the children
of these variables and repeat until all variables are instantiated. Hence, there
exists a consistent extension for the value assigned to xi, and the problem is
generalized arc-consistent. ut

This result is perhaps rather unsurprising. Freuder has shown that when
the constraint graph of a binary constraint satisfaction problem is a tree, we can
solve problems by enforcing AC and then instantiating the variables in a suitable
order [8]. Hence, as AC essentially determines global consistency, GAC is unable
to achieve anything higher. In fact, even AC is too much since a restricted form
of AC called “directional arc-consistency” is enough to ensure backtrack free
solutions in constraint trees [7]. What is perhaps more surprising is that tree
decomposition precisely characterizes when GAC can do more pruning than AC
on the binary decomposition. To be more precise, as soon as the constraint graph
of the binary decomposition is no longer a tree (or forest of trees) but contains
one or more cycles, there are problems on which GAC performs more pruning
than AC on the binary decomposition.

Theorem 13. Given a binary constraint graph which has one or more cycles,
then there exists a non-binary problem with this decomposition on which gene-
ralized arc-consistency is strictly stronger than arc-consistency on the binary
decomposition.

Proof. By Theorem 5, GAC is stronger than AC on the binary decomposition. To
show strictness, given a binary constraint graph containing one or more cycles, we
construct a non-binary problem with this decomposition on which GAC performs
more pruning than AC on the binary decomposition. We first find a cycle in
the binary decomposition. We then construct a non-binary constraint on the
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variables in this cycle. Each variable is given a domain with the same two values.
If the cycle found is of odd length, then we construct a non-binary constraint
that ensures that neighbouring variables in the chain take different values. If the
cycle found is of even length, then we construct a non-binary constraint that
ensures that neighbouring variables in the chain take different values except for
one pair of variables which must take equal values. Enforcing GAC on this non-
binary constraint will show that the problem is insoluble. By comparison, the
binary decomposition is arc-consistent. ut

In the next section, we characterize a large class of problems which are not
tree decomposable and on which GAC is guaranteed to achieve levels of consi-
stency much higher than AC on the binary decomposition.

4.2 Triangle Preserving Constraints

By imposing some slightly stronger conditions on the type of non-binary con-
straints, we can prove that generalized AC is significantly stronger than AC
on the binary decomposition. One such condition (first studied in [17]) is when
the non-binary constraints contain all length 3 cycles (triangles). The intuition
is that the constraints then capture an inherent non-binary aspect of the pro-
blem. We say that a set of decomposable constraints is triangle preserving if all
triangles of variables in the constraint graph of the binary decomposition occur
together in non-binary constraints. For example, an all-different constraint is tri-
angle preserving as it decomposes into a clique of binary not-equals constraints.
Binary constraints can still occur in a triangle preserving set of non–binary con-
straints, but only if they do not form part of a triangle. A triangle preserving
set of non-binary constraints is trivially not tree decomposable. Under the re-
striction to triangle preserving constraints, GAC is strictly stronger than path
inverse consistency, which itself is strictly stronger than AC.

Theorem 14. On a triangle preserving set of constraints, generalized arc-
consistency is strictly stronger than path inverse consistency on the binary de-
composition.

Proof. See [17]. ut
A corollary of this result is that GAC on a triangle preserving set of con-

straints is strictly stronger than restricted path-consistency or AC on the binary
decomposition. Even when restricted to triangle preserving sets of constraints,
GAC remains incomparable to strong path-consistency, singleton AC, and neig-
hbourhood inverse consistency.

Theorem 15. On a triangle preserving set of constraints, generalized arc-
consistency is incomparable to strong path-consistency, to singleton arc-
consistency and to neighbourhood inverse consistency on the binary decompo-
sition.

Proof. See [17]. ut
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These results are summarized in Figure 3.

PIC RPC ACGAC

NIC

strong PC SAC incomparable

strictly stronger

Fig. 3. The consistency of GAC on a triangle preserving set of non-binary constraints
compared to various consistency techniques stronger than or equal to AC on the binary
decomposition.

5 Consistency Checks

In the previous two sections we compared the levels of consistency achieved by
generalized algorithms on decomposable constraints to the levels achieved by FC
and AC on the binary decomposition. We now analyze the relative numbers of
consistency checks required to achieve these consistencies.

5.1 Forward Checking

FC performs O(d) consistency checks between the currently assigned variable and
each future variable, where d is the maximum domain size. If Cc,f is the number
of constraints between the current variable and future variables then FC performs
O(Cc,fd) consistency checks at each node. [2] gives upper bounds in the number
of consistency checks that algorithms nFC0-nFC5 perform at each node of the
search tree. nFC0 forward checks an n−ary constraint when n−2 variables have
been assigned and the n − 1th variable is the current one. If Cc,1 is the number
of constraints that involve the current variable and only one future variable then
nFC0 performs at maximum O(Cc,1d) consistency checks at each node. The
complexities of algorithms nFC1-nFC5 depend on the levels of consistency that
they enforce, and also on the complexity of the AC algorithm they use. We should
note that nFC1 has the requirement that all the n−consistent tuples of the n−ary
constraint have been precomputed. This, in general, adds an exponential, to the
arity of the constraint, number of consistency checks when the constraint is not
defined by the allowed tuples. There are cases, like the all-different constraint,
where computing the allowed tuples can be done in polynomial time. However,
since the number of tuples is exponential, there can be space restrictions if we
want to explicitly store all the tuples of all-different constraints with high arity.

The main observation regarding the complexities of the forward checking
algorithms is that there can only be a polynomial difference in the number of
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consistency checks performed by any two algorithms at any node. This means
that the results of Sections 3 and 4 regarding exponential differences between
algorithms in terms of visited nodes are also true in terms of consistency checks.
However, the dominance results do not carry through to consistency checks. The
following examples show that for a decomposable non-binary constraint satis-
faction problem, FC on the binary decomposition is incomparable to algorithms
nFC0 and nFC1 in terms of consistency checks. As in [1], we count n primitive
consistency checks to check if an n-tuple of an n−ary constraint is consistent,
which means that 2 checks are counted for a binary constraint.

Example 1. Consider a ternary constraint x < y < z with x having the domain
{0, 1, 2}, y having the domain {1, 2, 3} and z having the domain {2, 3, 4}. Assume
a lexicographic variable ordering and a numerical value ordering. FC on the
binary decomposition first assigns 0 to x and forward checks it against y. This
takes 6 consistency checks (2 for each value of y). Then, 1 is assigned to y and
the assignment is forward checked against z taking 6 more consistency checks.
nFC0 assigns x to 0, y to 1, and then forward checks taking 9 consistency checks
(3 for each value of z), which is 3 checks less than FC.

Now consider the same constraint with the variables having domains {0, 1}.
FC will show insolubility in two branches, performing 12 consistency checks.
nFC0 will explore 4 branches and perform 24 consistency checks in total.

Example 2. To prove that FC and nFC1 are incomparable in terms of consistency
checks, consider a ternary constraint x1 < x2 < x3, with x1 having the domain
{0, 1, 2}, x2 having the domain {3, 4, 5} and x3 having the domain {6, 7, 8}. FC
will take 12 consistency checks to solve the problem while nFC1 will take 18
consistency checks.

Now consider the example in the proof of Theorem 3. FC on the binary
decomposition takes 28 consistency checks to prove insolubility while nFC1 takes
only 18.

We can also show that algorithms nFC2-nFC5 are incomparable in consi-
stency checks to FC on the binary decomposition and also incomparable with
one another using more complicated examples.

5.2 Arc-Consistency

For any non-binary constraint C, specified by a predicate, GAC can be esta-
blished by the best known algorithm, GAC-schema [4], with O(dk) worst-case
complexity, where d is the maximum domain size of the variables and k is the
arity of the constraint. AC can be enforced on the binary decomposition of a
decomposable constraint with O(ed2) optimal worst-case complexity, where e is
the number of binary constraints that the initial constraint decomposes into.
We can identify a cross-over point in the size, e, of the binary decomposition.
That is, if e > dk−2 then GAC is asympotically cheaper than AC on the binary
decomposition. In practice, e is O(k2), and therefore, GAC is cheaper than AC,
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in the worst case, only when the arity of the constraints and the domain size of
the variables are small. However, for certain types of non-binary constraints, like
the all-different constraint, there exist algorithms that achieve GAC with much
lower cost than O(dk).

An all-different constraint on k variables can be decomposed into a clique
of O(k2) binary constraints. AC can be achieved on the decomposition of an
all-different constraint in O(k2d2) checks, when a generic AC algorithm is used.
However, since we are dealing with “not equals” constraints, AC can be achieved
with O(k2) worst-case complexity. This is a correction on the bound for such
constraints given in [18] and it is based on the following observations: First, for
a network of “not equals” constraints, an AC-3 like algorithm will revise each
edge at most once. And second, for a “not equals” constraint, AC may remove
a value from the domain of one of the variables if and only if the other variable
has a unary domain. As a result, AC has O(e) worst-case complexity, which
is O(k2) for the decomposition of all-different constraints. This is better than
Regin’s specialized filtering algorithm which achieves GAC on the non-binary
representation with O(k2d2) worst-case complexity. However, as we demonstra-
ted in Section 4, GAC on the non-binary representation is stronger than AC on
the decomposition. Also, experimental results presented in the following section
strongly suggest that Regin’s algorithm is much more efficient than an AC al-
gorithm. Finally, If we use GAC-schema to achieve GAC then the complexity
depends on the number of allowed tuples which is O( d!

(d−k)! ) for one constraint.
If we compare that with the complexity of Regin’s algorithm it is obvious that
GAC-schema is inferior. Even for ternary constraints the difference is substan-
tial as GAC-schema would perform O(d3) consistency checks on one constraint,
compared to the O(d2) checks of Regin’s algorithm.

6 Related Work

Montanari looked at the approximation of non-binary constraints by binary con-
straints on the same set of variables [14]. He constructs a “minimal network”
of binary constraints by projecting each non-binary constraint onto the pairs of
variables it contains. The minimal network has a set of solutions that is a su-
perset of the set of solutions of the original non-binary constraints. It is the best
upper bound to the set of solutions of the non-binary constraints as no other
binary approximation has fewer solutions. The minimal network of a decompos-
able non-binary constraint is simply the binary decomposition.

Dechter has studied the representation of non-binary constraints by binary
constraints with additional (hidden) variables [6]. She identifies a trade-off bet-
ween the number of additional variables required and the size of their domains.
In particular, any non-binary constraint can be expressed by binary constraints
with the addition of hidden variables with three or more values. By compari-
son, with domains of size 2, additional variables do not improve the expressive
power. Bacchus and van Beek compared the forward checking algorithm, nFC0
on non-binary constraints with the forward checking algorithm FC applied to
binary encodings that introduce extra (hidden) variables [1].
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7 Conclusions

We have performed a detailed theoretical comparison of the effects of binary and
non-binary constraint propagation on decomposable non-binary constraints. We
proved that the number of nodes visited by the forward checking algorithm,
FC applied to the binary decomposition lies between the number visited by
the generalized forward checking algorithms, nFC1 and nFC0 when applied to
the non-binary constraints (assuming equivalent variable and value ordering).
We also proved that generalized arc-consistency on decomposable constraints
is strictly stronger than arc-consistency on the binary decomposition. Indeed,
under a simple restriction, it is strictly stronger than path inverse consistency
on the binary decomposition. By generalizing the arguments of [12], these re-
sults show that a search algorithm that maintains generalized arc-consistency on
decomposable constraints strictly dominates a search algorithm that maintains
arc-consistency on the binary decomposition, which itself strictly dominates the
forward checking algorithm, FC and any of its generalizations, nFC0 to nFC5.

We corrected a result of [17] that claims that neighbourhood inverse con-
sistency on the binary decomposition is strictly stronger than generalized arc-
consistency. In general, neighbourhood inverse consistency on the binary de-
composition is incomparable to generalized arc-consistency. However, we iden-
tify a simple condition under which neighbourhood inverse consistency on the
binary decomposition is guaranteed to be strictly stronger than generalized arc-
consistency. We also defined a class of decomposable non-binary constraints on
which generalized arc-consistency collapses down onto AC on the binary decom-
position.

What general lessons can be learnt from this study? First, the representa-
tion of problems can have a very large impact on the efficiency of search. Our
results show that the comparison of different representations is very complex,
even when restricted to a limited set of consistency properties and algorithms.
The study of different representations thus deserves further work, both theore-
tical and practical. Second, a non-binary representation can offer considerable
advantages over a binary representation. Decomposing non-binary constraint
into binary constraints can significantly reduce the level of consistency achieved
by our constraint propagation techniques.
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