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t theoremproving, planning.Abstra
tThis paper analyses a te
hnique (
alled Gazing) forunfolding de�nitions on the basis of a global plan builtin an abstra
t spa
e. Gazing's logi
al properties arestudied inside a formal framework whi
h relies on amore general theory of abstra
tion. Some experimen-tal results 
on�rming the theoreti
al ones are also pre-sented.1 Introdu
tionThe use of de�nitions is listed by Larry Wos as the30th of the 33 basi
 resear
h questions fa
ing au-tomated reasoning, the solution of whi
h would \...mark one of the more signi�
ant advan
es in the �eldof automated reasoning ..." [Wos88℄. De�nitions aremu
h more than synta
ti
 sugar; used well, they rep-resent meaningful 
on
epts that determine the natureof the theory. Of 
ourse, their use enlarges the sear
hspa
e by in
reasing the bran
hing rate. However, theyallow the 
onstru
tion of shorter and more stru
turedproofs. Just as we wouldn't expe
t a mathemati
ianto prove a diÆ
ult theorem from \�rst prin
iples", weshouldn't expe
t our theorem provers.Most previous attempts at using de�nitions in theo-rem proving 
an be 
riti
ised as lo
al strategies. See,for instan
e, [Ern73, Pas78℄, or (more 
losely relatedto this work) the peeking heuristi
 used in the UTtheorem prover [BT75℄. Peeking unfolds a predi
ateo

urring in the hypothesis of a sequent with its def-inition only if this introdu
es a predi
ate name men-tioned in the 
on
lusion. The underlying assumption�Supported by SERC grant GR/E/4459.8. Current addressis IRST, Lo
. Pant�e di Povo, I 38100 Trento, Italy.ySupported by a SERC studentship.

is that to 
omplete the proof we want the hypothesisand 
on
lusion to be about the same 
on
epts. Peek-ing is a lo
al strategy sin
e it only looks one unfoldingahead. For example, given the de�nitions p$ q andq $ r, peeking fails to suggest unfolding p by its def-inition in the proof of p ` r.Gazing extends peeking by produ
ing a global plan;this method signi�
antly out performs the above lo
alstrategies. Gazing was originally implemented insidea rational re
onstru
tion of the UT prover [Plu87℄;variants of it have also been developed for a 
on-ne
tion method prover (MT [War87℄), and a proofdevelopment system based on Martin-L�of type the-ory [Sim88℄. The resear
h des
ribed in this paper fur-ther extends the above work, rationally re
onstru
t-ing gazing1, making it more powerful (more theoremsare proved), modifying the way fun
tions are dealtwith and, most importantly, giving it a sound logi
alfoundation. From now on, we will refer to the ratio-nally re
onstru
ted gazing simply as \gazing", and tothe original gazing [Plu87℄ as \old gazing".The paper is stru
tured as follows. We �rst de�newhat we mean by de�nitions (se
tion 2), and des
ribeold gazing (se
tion 3). In se
tion 4 we present aninformal a

ount of our re
onstru
tion of gazing. Wethen develop a theory of abstra
tion with whi
h toformalise gazing and prove some of the properties itpossesses (se
tion 5). In se
tion 6 we brie
y dis
usshow gazing 
an be extended to take fun
tion symbolsinto a

ount. Finally the results of an implementationof gazing (se
tion 7) and our 
on
lusions (se
tion 8)are reported.2 De�nition of de�nitionsFollowing Suppes [Sup57℄, we will 
onsider de�nitions
onsisting of an expression being de�ned related by1That is, our re
onstru
tion is faithful to the ideas thoughnot the details or a
tual implementation of the original.1



De�nition 1 : a � b $ 8 x . ( x 2 a ! x 2 b )De�nition 2 : a =set b $ 8 x . ( x 2 a $ x 2 b )De�nition 3 : a � b $ a � b ^ :( a =set b)De�nition 4 : a 2 2b $ a � bDe�nition 5 : a 2 � $ ?Figure 1: Set theory de�nitions from [Plu87℄an equivalen
e to the de�ning expression. Predi
atede�nitions are of the form8x1; :::; xn p(x1; :::; xn)$ Q(x1; :::xn)and fun
tion de�nitions of the form8x1; ::xn r(f(x1; ::xn); z)$ S(x1; ::xn; z)where Q and S 
ontain no new symbols, r is not anew symbol (it may be \="), x1; :::; xn and z (whenit exists) are the only free variables of Q, S, r and p,and ` 8x1; ::xn 9! z S(x1; ::xn; z). If �0 is the formalsystem 
reated by adding a new de�nition to �, thenthe following two fa
ts hold:Criterion 1 (eliminability) if �0 is any wellformed formula (w� from now on) of �0 then thereexists a w� � of � su
h that `�0 �0 $ �.Criterion 2 (non-
reativity) if � is any w� of �su
h that `�0 � then `� �.A 
onsequen
e of this non-
reativity is that de�ni-tions 
annot introdu
e in
onsisten
y into a theory.Examples of predi
ate and fun
tion de�nitions (whi
hwill be used throughout the paper) are given in �g-ure 1.3 An informal a

ount of old gaz-ingThe idea underlying old gazing (whi
h generalises thepeeking heuristi
) is to unfold only the de�nitionsne
essary to �nd a 
ommon language of 
on
epts22Con
ept is used here to des
ribe both predi
ates andfun
tions.

between the hypotheses and 
on
lusion. We des
ribethis as the pro
ess of building the 
ommon 
urren
y.For example, to 
onstru
t a proof about set equality(\=set") and subset (\�") we need to unfold their def-initions into the 
ommon 
urren
y of set membership,(\2"). Old gazing �nds this 
ommon 
urren
y byplanning ahead in a hierar
hy of abstra
tion spa
es:the predi
ate spa
e and the fun
tion/polarity spa
e.In the predi
ate spa
e, the hypotheses and 
on
lusionare abstra
ted to give the set of predi
ate names they
ontain, whilst the de�nitions of the theory are simi-larly abstra
ted to give dire
ted rewrite rules; the di-re
tion of the rewrite rules ensure that predi
ates areonly unfolded in terms of more \primitive" predi
ates(that is, predi
ates de�ned earlier in the theory).For example, given the predi
ate de�nitions in �g-ure 1, and the following theorem to prove:a =set b ` a � bold gazing abstra
ts this problem and the de�nitionsin �gure 1 to the problem3:f=setg ` f�gand the rewrite rules:f�g ) f2gf=setg ) f2gf�g ) f�;=setgFor every predi
ate name in the 
on
lusion set, wetry to �nd a 
ommon rewriting of this and predi
atename(s) in the hypotheses set. In this 
ase, we justunfold both =set and � in terms of 2.The problem with this abstra
tion is that there is noguarantee that we will be able to �nd an abstra
tsolution for every theorem (for example, ` p_:p but6` fpg), and that there will be an abstra
t solutionwhi
h unfolds all the de�nitions ne
essary to 
ompletethe proof (for example, given the de�nitions p$ (q !q) and p$ (r^s), old gazing will not suggest the rightunfolding of p in the proof of r _ s ` p be
ause the
onne
tive stru
ture is ignored).Finally, in the fun
tion/polarity spa
e, old gazing
he
ked the plan of rewritings to see if the predi
ates3In this informal introdu
tion, we use the same provabilitysymbol ` for the abstra
t and unabstra
t problem; later on, wewill very 
learly distinguish between the two uses.



have the 
orre
t polarity4. Che
king the polarity ofpredi
ates guarantees that they appear equivalentlynegated in hypothesis and 
on
lusion. The plan isalso 
he
ked to see if the predi
ates mention the samefun
tion symbols; preferen
e is given to plans thatkeep the predi
ate symbols the same but, as a last re-sort, the predi
ate symbols may have to be rewritten.4 Rationally re
onstru
ted gazingOur re
onstru
tion of gazing generalises old gazingby keeping the 
onne
tive stru
ture of the formu-lae. The abstra
t spa
e is 
onstru
ted by rewritingboth the theorem to prove and the de�nitions avail-able with the same abstra
tion. The language usedin the abstra
t spa
e is propositional; gazing therebyshifts problem solving from an unde
idable �rst ordertheory into a de
idable propositional theory. The ab-stra
tion keeps the predi
ate symbols and the 
onne
-tive stru
ture but throws away the quanti�ers and thepredi
ate arguments. For example, given the sametheorem to prove:̀ a =set b! a � bgazing abstra
ts it to the problem:`=set ! �given the abstra
ted predi
ate de�nitions of �gure 1:� $ (2!2)=set $ (2$2)� $ (� ^: =set)The above theorem holds in the abstra
t spa
e (if wesimply just unfold �); however, it is only the longerproof of the abstra
ted formula, involving unfoldingthe de�nition of � and =set, that guides the proofof the unabstra
ted formula. The unabstra
ted theo-rem has a proof whi
h uses the same de�nitions andwhi
h, though signi�
antly more 
ompli
ated, has avery similar shape (see �gures 2 and 3). Indeed, theproof in �gure 3 has been obtained from the proofin �gure 2 just by applying quanti�er inferen
e ruleswhi
h were unne
essary in the abstra
t spa
e. This isa general phenomenon: the pat
hing up whi
h must4The polarity of a formula is +(-) if it appears within thes
ope of an even(odd) number of negation signs. As p ! q isequivalent to :p _ q, p appears impli
itly negated in an impli-
ation; similarly in p ` q.

=set =set $ (2$2)2$22!2 � $ (2!2)�=set! �Figure 2: Proof of the abstra
t theorembe performed on the abstra
t proof �xes the detailswhi
h have been left out of the abstra
t spa
e.Nothing is, of 
ourse, free and the abstra
tion losessome information. In this 
ase, the major 
onse-quen
e is that the existen
e of a proof in the abstra
tspa
e does not guarantee the existen
e of a proof ofthe original goal. For instan
e the w� a =set 
! a �b has the same abstra
tion as the w� above, its ab-stra
tion is a theorem in the abstra
t spa
e but it isnot a theorem in the original spa
e. However, as weprove in the following se
tion, in our re
onstru
tion ofgazing, if a w� is a theorem in the original spa
e thenits abstra
tion is a theorem in the abstra
t spa
e.5 A formal a

ount of gazingIn order to give a formal a

ount of gazing we have de-veloped a general theory of abstra
tion. This frame-work seems very powerful and has allowed us to for-malise and analyse all the (informally des
ribed) workin \abstra
tion" of whi
h we are aware (for example,GPS, ABSTRIPS, Plaisted's work ...); a full des
rip-tion of this framework is given in [GW90℄. In thispaper, however, only the details needed to analysegazing are given. In parti
ular the theorems not di-re
tly 
on
erning gazing and its extensions will begiven but not proved. The �nal goal of the exer
iseis:� to prove that there is a plan for every theorem andthat� the plan unfolds all the de�nitions ne
essary to
omplete the proof.These two properties were not possessed by old gaz-ing. We begin be de�ning what we mean by a formalsystem.



a =set b $a =set b 8x:x 2 a$ x 2 b8x:x 2 a$ x 2 bh 2 a$ h 2 bh 2 a! h 2 b8x:x 2 a! x 2 b a � b $8x:x 2 a$ x 2 b 8x:x 2 a! x 2 ba � ba =set b! a � bFigure 3: Proof of the unabstra
ted theoremDe�nition 6 (Formal system) : A formal sys-tem � is an ordered pair (�;�), where � is the Lan-guage and � is the Dedu
tive Ma
hinery of �.The language � is 
omposed of an alphabet, the setof (well formed) terms and the set of well formed for-mulae (w�s from now on). The dedu
tive ma
hineryis 
omposed of a set of inferen
e rules and a, possiblyempty, set of axioms 
. 
 is a subset of the w�s of�. Examples of formal systems are Natural dedu
tionsystems, Sequent 
al
ulus systems, and Hilbert-stylesystems. The languages we 
onsider are languagesof �rst order logi
 formulated in the usual way. Wegive the proofs inside a natural dedu
tion dedu
tivema
hinery and use standard natural dedu
tion 
on-ventions 5, but the results 
ould be equally well gen-eralised to other formal systems [GW90℄.De�nition 7 (Abstra
tion) : If �1 = (��1 ;��1)and �2 = (��2 ;��2) are two formal systems, an ab-stra
tion f , written as f : �1 7! �2, is an orderedpair of total fun
tions (f�; f�) su
h that:f� : ��1 7! ��2f� : ��1 7! ��2.When no 
onfusion arises we drop the sub�xes. Gaz-ing 
an be formally de�ned as fgaze : �1 7! �2 where:�1: A �rst order 
al
ulus, de�ned as follows:��1 : �rst order language;��1 : natural dedu
tion rules of inferen
e plus ax-ioms de�ning a theory (eg. set theory).5The reader is referred to [Pra65℄ for a formal de�nition ofthe 
on
epts assumed in this paper.

�2: A formal system, de�ned as follows:��2 : propositional language 
ontaining denumer-ably many (new) 
onstants. As it will be seenlater, ��1 \ ��2 = ;.��2 : any 
omplete propositional de
ision pro
edurewith axioms formed by applying fgaze� to all theaxioms of �1.fgaze� is not expli
itly de�ned sin
e we rely on thevarious 
ompleteness results for �rst order and propo-sitional 
al
ulus. Any ��2 is a

eptable provided theaxioms are mapped appropriately and we are guaran-teed 
ompleteness.fgaze�('�1) 2 ��2 is de�ned as follows (�, � are twow�s in ��1 , and Pl is a propositional 
onstant):De�nition 8 :1. fgaze(�) = Pk, where � is an atomi
 formula. O
-
urren
es of atomi
 formulae with the same predi-
ate symbol are rewritten to o

urren
es of the samepropositional 
onstant;2. fgaze(9x:�) = fgaze(�);3. fgaze(8y:�) = fgaze(�);4. fgaze(� ^ �) = fgaze(�) ^ fgaze(�);5. fgaze(� _ �) = fgaze(�) _ fgaze(�);6. fgaze(:�) = :fgaze(�);7. fgaze(�! �) = fgaze(�)! fgaze(�);8. fgaze(�$ �) = fgaze(�)$ fgaze(�).For example, fgaze(8x:(x 2 a ^ a � b) ! x 2 b) =((2 ^ �)! 2)The notion of abstra
tion given in de�nition 7 is verygeneral. Our next step is to 
hara
terise the variousforms of abstra
tions. The main idea underlying theuse of abstra
tions is to swit
h from one formal sys-tem �1 to a new formal system �2 whi
h preserves
ertain desirable properties and is simpler to handle.The notion of simpli
ity depends on the appli
ation;for example, we may require that we map from a semi-de
idable theory (eg. �rst order predi
ate logi
) to ade
idable theory (eg. propositional logi
). The de-sirable property we 
onsider preserving is provability;for example:De�nition 9 : An Abstra
tion f : �1 7! �2 is saidto be truthful i�, for any w� '�1 , if `�1 '�1 then`�2 f('�1).



Many of the abstra
tions de�ned in the past are nottruthful (see [GW90℄ for a 
omplete dis
ussion). Usu-ally (for example, in old gazing) there is at least onew� whi
h is a theorem in the original spa
e whose ab-stra
tion is not a theorem in the abstra
t spa
e. Theauthors 
laim that truthfulness is the one propertyyou want your abstra
tion mapping to have. Notethat one 
ould also require the opposite property,namely that if a w� is a theorem in the abstra
tspa
e then its unabstra
ted version is a theorem inthe original spa
e. The union of two requirementsis very strong and amounts to require that a w� is atheorem in the original spa
e i� its abstra
ted versionis a theorem in the abstra
t spa
e. In this 
ase it isvery diÆ
ult to satisfy the simpli
ity requirement; forexample. it is impossible for �1 to be semide
idableand �2 de
idable [GW90℄.The �rst important result is that gazing is truthful.Theorem 1 fgaze is truthful.Proof: By proving that, given a dedu
tion tree ��1of `�1 '�1 in �1, we 
an build a dedu
tion tree ��2of `�2 fgaze('�1) in �2.The proof pro
eeds by indu
tion on the weight N of��16.For N = 1, we 
an have only an axiom '�1 and ��2in this 
ase is simply fgaze('�1) whi
h is an axiom ofthe abstra
t theory.Let's suppose we have already rewritten a dedu
tiontree ��1 of weight N into a new dedu
tion tree ��2 .We show how we 
an build a new dedu
tion tree �0�2whi
hever inferen
e rule is applied to obtain the de-du
tion tree �0�1 of weight (N + 1) from ��1 .In the appli
ations of all the rules whi
h are not quan-ti�er rules, ��1 translates unmodi�ed into ��2 in thesense that, for example, an ^I on � in ��1 gets trans-lated into an ^I on fgaze(�) in ��2 . Note that, anytime a new formula � is introdu
ed into ��1 (whi
hhappens with assumptions, and may happen with _I),a (not ne
essarily) new formula fgaze(�) is introdu
edinto ��2 . We thus 
onsider only appli
ations of thequanti�er rules. There are four 
ases to 
onsider: 8I,8E, 9I and 9E (during the proof we will write f(�1)to represent the translation from �1 into �2 of a de-du
tion tree �1 of weight less than N).6The weight of a dedu
tion tree is the number of formulao

urren
es in that tree.

8I �1p(y)8x:p(x) =) f( �1p(y))
8E �18x:p(x)p(y) =) f( �18x:p(x))
9I �1p(y)9x:p(x) =) f( �1p(y))
9E [p(y)℄�1 �29x:p(x) QQ =) f( [ �1p(y) ℄�2Q )2It is interesting to make some observations about theabove result.As ��2 does not 
ontain any quanti�er rule appli-
ations (whi
h must be so sin
e in �2 we only havethe propositional 
onne
tive inferen
e rules), it is asmaller proof that ��1 . Indeed, note that all theproof transformation steps are guaranteed to redu
ethe size of the proof. If M is weight of ��1 then theweight of ��2 isM�N8I�N8E�N9I�2�N9E whereN8I is the number of appli
ations of 8I, et
.Further, if we look at the proof that gazing is truth-ful, we noti
e that the abstra
t proof and the unab-stra
ted proof only di�er in the appli
ation of thequanti�er rules. The abstra
t proof therefore 
on-tains the same unfolding of de�nitions as needed to
omplete the unabstra
ted proof. The plan of de�ni-tions to unfold extra
ted from the abstra
t proof ishen
e guaranteed to su

eed in the proof of the un-abstra
ted w�7. We 
annot tell in the abstra
t spa
ewhat the right sequen
e of unfoldings is but at leastwe know that at least one exists.Note that this fa
t, together with the proof that gaz-ing is truthful, 
on�rms the informal dis
ussion ofthe previous se
tion and guarantees that we havea
hieved all the goals we set ourselves in the beginning7Whi
h does not mean that the resulting w� is a theorem ofthe original spa
e.



of this se
tion. A last problem is to verify the appli-
ability of gazing in a formal system where �1 and�2 work by refutation (eg. �1 and �2 are resolution-based).De�nition 10 : An abstra
tion f : �1 7! �2 is saidto be falseful i�, for any w� '�1 , if `�1 :'�1 then`�2 :f('�1).In proofs by refutation, falseful abstra
tions play thesame rôle that truthful abstra
tions play in proofs re-spe
ting validity. For instan
e, in resolution, giventhe w� � to prove, we negate �, add it to the setof axioms and try to prove that the resulting theoryis in
onsistent (by showing that ? is a valid 
onse-quen
e of the theory). In su
h proofs, the abstra
tionmapping must be 
lassi�ed by the way in
onsistenttheories are mapped into in
onsistent theories. Thefollowing two theorem hold:Theorem 2 An abstra
tion f : �1 7! �2 is falsefuli�, for any w� '�1 , if adding '�1 to the axioms of�1 yields an in
onsistent formal system then addingf('�1) to the axioms of �2 yields an in
onsistent for-mal system.Theorem 3 : An abstra
tion mapping f : �1 7! �2that preserves negation (ie. f(:'�1) = :f('�1)) isa truthful abstra
tion i� it is a falseful abstra
tion.Thus as a simple 
orollary to theorem 1, gazing isalso falseful; this guarantees that there is an abstra
tproof for every theorem or non-theorem.Corollary 1 : fgaze is falseful.6 Gazing with fun
tionsOur re
onstru
tion of gazing has so far ignored fun
-tion symbols, 
on
epts whi
h 
an be as (or even more)important in a theory as the predi
ate symbols. Un-fortunately, keeping fun
tion symbols in the abstra
ttheory 
auses diÆ
ulties; it remains an open problemwhether it is possible to do so whilst retaining bothtruthfulness and de
idability. We have been explor-ing how little truthfulness we 
an sa
ri�
e in orderto gain de
idability. We 
an readily improve uponold gazing's treatment of fun
tion symbols by mod-ifying the abstra
tion of the last se
tion to in
ludeboth the name of fun
tion symbols and their posi-tions. This abstra
tion (
alled \gazing with fun
tionsymbols" from now on) is des
ribed in more detailin [GW89℄.

example gazing with gazing old peekingfun
tions gazing1 p p p p2 p p p 
3 p p � p4 p 
 p 
5 p p � pFigure 4: Summary of results7 Implementation and resultsWe have implemented a de�nitional theorem prover(in Prolog) to test the various abstra
tions and theirsu

esses in unfolding de�nitions. The prover 
on-sists of three parts: a (user-de�ned) abstra
tion, aplanner, and a �rst order natural dedu
tion theoremprover. The planner in
orporates an eÆ
ient propo-sitional de
ision pro
edure for theorem proving in theabstra
t theory; this is used to determine whi
h def-initions to unfold. The natural dedu
tion theoremprover is then used to 
omplete the proof by logi
alinferen
e alone.Two abstra
tions (gazing with fun
tion symbols andgazing) have been tested using the set theory de�nedin �gure 1. Gazing out-performed old gazing andpeeking on all theorems without fun
tion symbols,though old gazing obviously had the edge on theoremsmentioning fun
tion symbols. Gazing with fun
tionsymbols, however, out-performed all the other ab-stra
tions on all the theorems (with or without fun
-tion symbols).Figure 4 summarises some of the results. The re-sults for old gazing and peeking 
ome from [Plu87℄.The examples 
hosen highlight the weaknesses andstrengths of the di�erent abstra
tions. In the �gure,a p indi
ates that the appropriate de�nitions are un-folded to allow the theorem to be 
ompleted by logi
alinferen
e alone, a � indi
ates that the wrong de�ni-tions are unfolded, a � indi
ates that de�nitions areunfolded unne
essarily, and a 
 indi
ates that insuf-�
ient de�nitions are unfolded to 
omplete the proofby logi
al inferen
e.Example 1: the theorem ` a =set b ! a � b. Allthe various abstra
tions su

eed in forming a plan.Example 2: the theorem ` a � b ! (x 2 a! x 2b). This demonstrates the weakness of peeking look-



ing only one de�nition ahead.\�" in the hypothesisneeds to be unfolded into \�" and \=set". The \�"then needs to be unfolded to give a 
ommon 
urren
y,\2" with the 
on
lusion.Example 3: the theorem ` a =set �! (9x: x =seta). With this theorem, old gazing unne
essarily un-folds the de�nition of the empty set; gazing with fun
-tion symbols over
omes this problem as we retain the
onne
tion between a predi
ate and a predi
ate witha fun
tion as argument.Example 4: the theorem ` a �� ! a =set �.Gazing and peeking both fail on this theorem be
ausethey ignore fun
tion symbols.Example 5: the theorem ` 2a 2 b ! 9x:x 2 b.This example highlights the importan
e of remember-ing the position of fun
tion symbols in a predi
ate;old gazing ignored the position of fun
tion symbolsand so suggested unfolding the de�nition of powerset, \2a" in the �rst argument position of \2" eventhough the de�nition of power set is for the se
ondargument position.Gazing is, of 
ourse, not free; it would be pointlessif the overhead of gazing outweighed its bene�ts; wetherefore 
ompared the time it took to ta
kle a theo-rem using gazing against the time taken to \blindly"unfold de�nitions. To give gazing a sporting 
han
e,we used a theory in whi
h predi
ates were multiplyde�ned, so that 
hoosing the right unfolding was im-portant. The results are summarised in �gure 5; thetimes given are for a Sun 3/60 running Quintus Pro-log 2.2. The break-even point 
ame after unfoldingonly one de�nition, showing how (as with peeking)even looking ahead a little 
an be worthwhile.8 Final remarks and 
on
lusionsMost theorem provers have used very lo
al strategiesfor handling de�nitions. In 
omparison, gazing is avery powerful way of globally planning the unfoldingof de�nitions. To understand gazing, we have devel-oped a general theory of abstra
tion; this allows usto prove the desirable properties that an abstra
tionshould possess. These ideas have been su

essfullyimplemented in a de�nitional theorem prover that de-termines whi
h de�nitions to unfold to 
omplete aproof by logi
al inferen
e alone.Mu
h work still needs to be done. Two dire
tions

seem worth investigating. First of all there are stillproblems in how we deal with fun
tion symbols. Itremains an open problem whether it is possible to ab-stra
t fun
tion symbols and retain both truthfulnessand de
idability. More work, very mu
h related tothe more general issue of abstra
t theorem proving,also needs to be done on the issue of extra
ting fur-ther information from the abstra
t proof. The goalis to de�ne 
riteria and te
hniques whi
h allow thestru
ture of the proof in the abstra
t spa
e to be \as
lose as possible" to the stru
ture of the proof in theunabstra
ted spa
e.A
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Figure 5: Time to prove theorem that requires n de�nitions unfolded


