Theorem Proving with Definitions

Fausto Giunchiglia* and Toby Walshf
Department of Artificial Intelligence
University of Edinburgh

Keywords: Definition unfolding, abstract theorem
proving, planning.

Abstract

This paper analyses a technique (called Gazing) for
unfolding definitions on the basis of a global plan built
in an abstract space. Gazing’s logical properties are
studied inside a formal framework which relies on a
more general theory of abstraction. Some experimen-
tal results confirming the theoretical ones are also pre-
sented.

1 Introduction

The use of definitions is listed by Larry Wos as the
30th of the 33 basic research questions facing au-
tomated reasoning, the solution of which would “...
mark one of the more significant advances in the field
of automated reasoning ...” [Wos88]. Definitions are
much more than syntactic sugar; used well, they rep-
resent meaningful concepts that determine the nature
of the theory. Of course, their use enlarges the search
space by increasing the branching rate. However, they
allow the construction of shorter and more structured
proofs. Just as we wouldn’t expect a mathematician
to prove a difficult theorem from “first principles”, we
shouldn’t expect our theorem provers.

Most previous attempts at using definitions in theo-
rem proving can be criticised as local strategies. See,
for instance, [Ern73, Pas78], or (more closely related
to this work) the peeking heuristic used in the UT
theorem prover [BT75]. Peeking unfolds a predicate
occurring in the hypothesis of a sequent with its def-
inition only if this introduces a predicate name men-
tioned in the conclusion. The underlying assumption

*Supported by SERC grant GR/E/4459.8. Current address
is IRST, Loc. Panté di Povo, I 38100 Trento, Italy.
fSupported by a SERC studentship.

is that to complete the proof we want the hypothesis
and conclusion to be about the same concepts. Peek-
ing is a local strategy since it only looks one unfolding
ahead. For example, given the definitions p <+ ¢ and
q < r, peeking fails to suggest unfolding p by its def-
inition in the proof of p - r.

Gazing extends peeking by producing a global plan;
this method significantly out performs the above local
strategies. Gazing was originally implemented inside
a rational reconstruction of the UT prover [Plu87];
variants of it have also been developed for a con-
nection method prover (MT [War87]), and a proof
development system based on Martin-Lof type the-
ory [Sim88]. The research described in this paper fur-
ther extends the above work, rationally reconstruct-
ing gazing!, making it more powerful (more theorems
are proved), modifying the way functions are dealt
with and, most importantly, giving it a sound logical
foundation. From now on, we will refer to the ratio-
nally reconstructed gazing simply as “gazing”, and to
the original gazing [Plu87] as “old gazing”.

The paper is structured as follows. We first define
what we mean by definitions (section 2), and describe
old gazing (section 3). In section 4 we present an
informal account of our reconstruction of gazing. We
then develop a theory of abstraction with which to
formalise gazing and prove some of the properties it
possesses (section 5). In section 6 we briefly discuss
how gazing can be extended to take function symbols
into account. Finally the results of an implementation
of gazing (section 7) and our conclusions (section 8)
are reported.

2 Definition of definitions

Following Suppes [Sup57], we will consider definitions
consisting of an expression being defined related by

!That is, our reconstruction is faithful to the ideas though
not the details or actual implementation of the original.

Definition 1 : a C b« V. (z€a—>2€ D)

Definition 2 :

s}

=t b V. (z€az€d)
Definition 3 : a Cb<< a C b A —(a =4 b)
Definition 4 : 6 € 2> < 4 C b

Definition 5 : a € 0 & L

Figure 1: Set theory definitions from [Plu87]

an equivalence to the defining expression. Predicate
definitions are of the form

Vl‘h I p(xlv sty xn) A Q(J"ly J;n)
and function definitions of the form
Vi, ..xp r(f(x1,..xn), 2) < S(x1, .20, 2)

where Q and S contain no new symbols, r is not a
new symbol (it may be “="), x1,...,z, and z (when
it exists) are the only free variables of @, S, r and p,
and - Vaq,..x, 3! 2 S(x1, .24, 2). If X is the formal
system created by adding a new definition to X, then

the following two facts hold:

Criterion 1 (eliminability) if o« is any well
formed formula (wff from now on) of X' then there
exists a wff o of ¥ such that Fxr o/ < «.

Criterion 2 (non-creativity) if a is any wff of ¥
such that Fsy a then Fx a.

A consequence of this non-creativity is that defini-
tions cannot introduce inconsistency into a theory.
Examples of predicate and function definitions (which
will be used throughout the paper) are given in fig-
ure 1.

3 An informal account of old gaz-
ing
The idea underlying old gazing (which generalises the

peeking heuristic) is to unfold only the definitions
necessary to find a common language of concepts?

2Concept is used here to describe both predicates and
functions.

R VA RS R R

this as the process of building the common currency.
For example, to construct a proof about set equality
(“=set”) and subset (“C”) we need to unfold their def-
initions into the common currency of set membership,
(“€”). Old gazing finds this common currency by
planning ahead in a hierarchy of abstraction spaces:
the predicate space and the function/polarity space.

In the predicate space, the hypotheses and conclusion
are abstracted to give the set of predicate names they
contain, whilst the definitions of the theory are simi-
larly abstracted to give directed rewrite rules; the di-
rection of the rewrite rules ensure that predicates are
only unfolded in terms of more “primitive” predicates
(that is, predicates defined earlier in the theory).

For example, given the predicate definitions in fig-
ure 1, and the following theorem to prove:

a=sb F aChbh

old gazing abstracts this problem and the definitions
in figure 1 to the problem?:

{:set} - {g}

and the rewrite rules:

{C}={e}
{=set} = {€}

{C} = {Q, :set}

For every predicate name in the conclusion set, we
try to find a common rewriting of this and predicate
name(s) in the hypotheses set. In this case, we just
unfold both =,.; and C in terms of €.

The problem with this abstraction is that there is no
guarantee that we will be able to find an abstract
solution for every theorem (for example, - pV —p but
t/ {p}), and that there will be an abstract solution
which unfolds all the definitions necessary to complete
the proof (for example, given the definitions p <> (¢ —
q) and p <> (rAs), old gazing will not suggest the right
unfolding of p in the proof of r V s - p because the
connective structure is ignored).

Finally, in the function/polarity space, old gazing
checked the plan of rewritings to see if the predicates

3In this informal introduction, we use the same provability
symbol |- for the abstract and unabstract problem; later on, we
will very clearly distinguish between the two uses.

e Y A

predicates guarantees that they appear equivalently
negated in hypothesis and conclusion. The plan is
also checked to see if the predicates mention the same
function symbols; preference is given to plans that
keep the predicate symbols the same but, as a last re-
sort, the predicate symbols may have to be rewritten.

e & B St A

4 Rationally reconstructed gazing

Our reconstruction of gazing generalises old gazing
by keeping the connective structure of the formu-
lae. The abstract space is constructed by rewriting
both the theorem to prove and the definitions avail-
able with the same abstraction. The language used
in the abstract space is propositional; gazing thereby
shifts problem solving from an undecidable first order
theory into a decidable propositional theory. The ab-
straction keeps the predicate symbols and the connec-
tive structure but throws away the quantifiers and the
predicate arguments. For example, given the same
theorem to prove:

Fa=4ab—>aCh

gazing abstracts it to the problem:
l_:set — C
given the abstracted predicate definitions of figure 1:

C + (e—€)
=get & (E(-)G)
C < (g A= :set)

The above theorem holds in the abstract space (if we
simply just unfold C); however, it is only the longer
proof of the abstracted formula, involving unfolding
the definition of C and =g, that guides the proof
of the unabstracted formula. The unabstracted theo-
rem has a proof which uses the same definitions and
which, though significantly more complicated, has a
very similar shape (see figures 2 and 3). Indeed, the
proof in figure 3 has been obtained from the proof
in figure 2 just by applying quantifier inference rules
which were unnecessary in the abstract space. This is
a general phenomenon: the patching up which must

“The polarity of a formula is +(-) if it appears within the
scope of an even(odd) number of negation signs. As p — ¢ is
equivalent to —p V ¢, p appears implicitly negated in an impli-
cation; similarly in p - g.

—set =set <7 (64_)6)
€ e
€€ C + (e—€)
&
=set— C

Figure 2: Proof of the abstract theorem

be performed on the abstract proof fizes the details
which have been left out of the abstract space.

Nothing is, of course, free and the abstraction loses
some information. In this case, the major conse-
quence is that the existence of a proof in the abstract
space does not guarantee the existence of a proof of
the original goal. For instance the wif ¢ =4t ¢ = a C
b has the same abstraction as the wif above, its ab-
straction is a theorem in the abstract space but it is
not a theorem in the original space. However, as we
prove in the following section, in our reconstruction of
gazing, if a wif is a theorem in the original space then
its abstraction is a theorem in the abstract space.

5 A formal account of gazing

In order to give a formal account of gazing we have de-
veloped a general theory of abstraction. This frame-
work seems very powerful and has allowed us to for-
malise and analyse all the (informally described) work
in “abstraction” of which we are aware (for example,
GPS, ABSTRIPS, Plaisted’s work ...); a full descrip-
tion of this framework is given in [GW90]. In this
paper, however, only the details needed to analyse
gazing are given. In particular the theorems not di-
rectly concerning gazing and its extensions will be
given but not proved. The final goal of the exercise
is:

e to prove that there is a plan for every theorem and
that

e the plan unfolds all the definitions necessary to
complete the proof.

These two properties were not possessed by old gaz-
ing. We begin be defining what we mean by a formal
system.

a =gt b <

a =get b Vxyx€a+x€b
Ve.x €Ea+r T €D
heahebd
h€a—>heb
Vex€Ea—2x€b aCb &
Vex€a+xz€e€b Vrx€a—>x€D

aChbh
a=setb—>aCh

Figure 3: Proof of the unabstracted theorem

Definition 6 (Formal system) : A formal sys-
tem X is an ordered pair (A, A), where A is the Lan-
guage and A is the Deductive Machinery of 3.

The language A is composed of an alphabet, the set
of (well formed) terms and the set of well formed for-
mulae (wifs from now on). The deductive machinery
is composed of a set of inference rules and a, possibly
empty, set of axioms (2. Q is a subset of the wifs of
A. Examples of formal systems are Natural deduction
systems, Sequent calculus systems, and Hilbert-style
systems. The languages we consider are languages
of first order logic formulated in the usual way. We
give the proofs inside a natural deduction deductive
machinery and use standard natural deduction con-
ventions °, but the results could be equally well gen-
eralised to other formal systems [GW90].

Definition 7 (Abstraction) : If ¥, = (Ay,,Ax,)
and L9 = (An,, Ax,) are two formal systems, an ab-
straction f, written as f : X1 — X9, is an ordered
pair of total functions (fa, fa) such that:

fA : Azl — AEQ
fA : Azl = AZz‘

When no confusion arises we drop the subfixes. Gaz-
ing can be formally defined as fgqze : X1 = X2 where:

Y1: A first order calculus, defined as follows:

Ay, : first order language;

Ay, : natural deduction rules of inference plus ax-
ioms defining a theory (eg. set theory).

"The reader is referred to [Pra65] for a formal definition of
the concepts assumed in this paper.

_ 4" =7 T EmlEmAT i B

Ay,: propositional language containing denumer-
ably many (new) constants. As it will be seen
later, AEl N AEQ = 0.

Ay,: any complete propositional decision procedure
with axioms formed by applying fge.e, to all the
axioms of X1.

Jgaze, 1s not explicitly defined since we rely on the
various completeness results for first order and propo-
sitional calculus. Any Ay, is acceptable provided the
axioms are mapped appropriately and we are guaran-
teed completeness.

fgaze, (x,) € Ay, is defined as follows (a, 3 are two
wifs in Ay, and P, is a propositional constant):

Definition 8 :
1. fgaze(a) = Py, where « is an atomic formula. Oc-
currences of atomic formulae with the same predi-
cate symbol are rewritten to occurrences of the same
propositional constant;

fgaze(ax Oé) = fgaze(),

fgaze (Vy a) fgaze()

2.

3 ?

4. fgaze(a/\ﬁ) fgaze() /\fgaze()

J. fgaze(a B) = fgaze(a) \ fgaze()5

6. fgaZE(_‘) = _‘fgaze(a):

7. fgaze(—) = fgaze(a) - fgaze(ﬁ);
8. fgaze(ﬁ) = fgaze(a) e fgaze(ﬁ)-

For example, fogze(Vz.(z €a N a Cb) = 2z €b) =
(e A Q) =€)

The notion of abstraction given in definition 7 is very
general. Our next step is to characterise the various
forms of abstractions. The main idea underlying the
use of abstractions is to switch from one formal sys-
tem Y to a new formal system Y, which preserves
certain desirable properties and is simpler to handle.
The notion of simplicity depends on the application;
for example, we may require that we map from a semi-
decidable theory (eg. first order predicate logic) to a
decidable theory (eg. propositional logic). The de-
sirable property we consider preserving is provability;
for example:

Definition 9 : An Abstraction f : X1 — Yo is said
to be truthful iff, for any wff ¢x,, if Fx, vz, then

|_E2 f(9021)'

ey A A SR e

truthful (see [GW90] for a complete discussion). Usu-
ally (for example, in old gazing) there is at least one
wif which is a theorem in the original space whose ab-
straction is not a theorem in the abstract space. The
authors claim that truthfulness is the one property
you want your abstraction mapping to have. Note
that one could also require the opposite property,
namely that if a wif is a theorem in the abstract
space then its unabstracted version is a theorem in
the original space. The union of two requirements
is very strong and amounts to require that a wif is a
theorem in the original space iff its abstracted version
is a theorem in the abstract space. In this case it is
very difficult to satisfy the simplicity requirement; for
example. it is impossible for ¥; to be semidecidable
and Xy decidable [GW90].

The first important result is that gazing is truthful.
Theorem 1 fyq.c is truthful.

Proof: By proving that, given a deduction tree Ily,
of -y, ¢y, in Xy, we can build a deduction tree Iy,
of |—22 fgaze(@El) n 22.

The proof proceeds by induction on the weight N of
Iy, 5.

For N =1, we can have only an axiom ¢y, and IIy,
in this case is simply fyqze(x,) which is an axiom of
the abstract theory.

Let’s suppose we have already rewritten a deduction
tree Ils, of weight NV into a new deduction tree lly,.
We show how we can build a new deduction tree H'22
whichever inference rule is applied to obtain the de-
duction tree Iy, of weight (N 4 1) from IIy, .

In the applications of all the rules which are not quan-
tifier rules, Iy, translates unmodified into Ily, in the
sense that, for example, an Al on av in IIy,, gets trans-
lated into an Al on fyaze(c) in Ily,. Note that, any
time a new formula [is introduced into Iy, (which
happens with assumptions, and may happen with VI),
a (not necessarily) new formula fyq..(3) is introduced
into IIy,,. We thus consider only applications of the
quantifier rules. There are four cases to consider: VI,
VE, 31 and 3E (during the proof we will write f(I1;)
to represent the translation from X, into Yo of a de-
duction tree IT; of weight less than N).

5The weight of a deduction tree is the number of formula
occurrences in that tree.

VI M = f(L)
e p(y)
o, i
VE Vapr) = f (v:c.pl(:c))
p(y)
o, i
= p_y) = f(p—;))
dz.p(x)
, [pr(ly)] [L]
E 5w o — I p%))
Q

a
It is interesting to make some observations about the
above result.

As Ily, does not contain any quantifier rule appli-
cations (which must be so since in Ay we only have
the propositional connective inference rules), it is a
smaller proof that Ily;,. Indeed, note that all the
proof transformation steps are guaranteed to reduce
the size of the proof. If M is weight of Iy, then the
weight of Iy, is M — Ny; — Nyg — N31 — 2% N3, where
Ny is the number of applications of VI, etc.

Further, if we look at the proof that gazing is truth-
ful, we notice that the abstract proof and the unab-
stracted proof only differ in the application of the
quantifier rules. The abstract proof therefore con-
tains the same unfolding of definitions as needed to
complete the unabstracted proof. The plan of defini-
tions to unfold extracted from the abstract proof is
hence guaranteed to succeed in the proof of the un-
abstracted wif’. We cannot tell in the abstract space
what the right sequence of unfoldings is but at least
we know that at least one exists.

Note that this fact, together with the proof that gaz-
ing is truthful, confirms the informal discussion of
the previous section and guarantees that we have
achieved all the goals we set ourselves in the beginning

"Which does not mean that the resulting wif is a theorem of
the original space.

e S A §

cability of gazing in a formal system where A; and
Ay work by refutation (eg. A; and Ay are resolution-
based).

Definition 10 : An abstraction [: X1 — X9 is said
to be falseful iff, for any wff ¢y, , if Fx, —px, then

'_22 _'f((pﬁl)'

In proofs by refutation, falseful abstractions play the
same role that truthful abstractions play in proofs re-
specting validity. For instance, in resolution, given
the wif a to prove, we negate «, add it to the set
of axioms and try to prove that the resulting theory
is inconsistent (by showing that L is a valid conse-
quence of the theory). In such proofs, the abstraction
mapping must be classified by the way inconsistent
theories are mapped into inconsistent theories. The
following two theorem hold:

Theorem 2 An abstraction [: X1 — X9 is falseful
iff, for any wff oy, if adding s, to the azioms of
Y1 yields an inconsistent formal system then adding
f(px,) to the azioms of Lo yields an inconsistent for-
mal system.

Theorem 3 : An abstraction mapping f : 31 — 2o

that preserves negation (ie. f(—px,) = —f(¢x,)) is
a truthful abstraction iff it is a falseful abstraction.

Thus as a simple corollary to theorem 1, gazing is
also falseful; this guarantees that there is an abstract
proof for every theorem or non-theorem:.

Corollary 1 : fyaze is falseful.

6 Gazing with functions

Our reconstruction of gazing has so far ignored func-
tion symbols, concepts which can be as (or even more)
important in a theory as the predicate symbols. Un-
fortunately, keeping function symbols in the abstract
theory causes difficulties; it remains an open problem
whether it is possible to do so whilst retaining both
truthfulness and decidability. We have been explor-
ing how little truthfulness we can sacrifice in order
to gain decidability. We can readily improve upon
old gazing’s treatment of function symbols by mod-
ifying the abstraction of the last section to include
both the name of function symbols and their posi-
tions. This abstraction (called “gazing with function
symbols” from now on) is described in more detail
in [GW89].

example || gazing with | gazing old peeking
functions gazing
1 v Vv Vv Vv
2 v Vv Vv ®
3 v Vv ® Vv
4 Vv ® Vv ®
5 Vv v x v

Figure 4: Summary of results

7 Implementation and results

We have implemented a definitional theorem prover
(in Prolog) to test the various abstractions and their
successes in unfolding definitions. The prover con-
sists of three parts: a (user-defined) abstraction, a
planner, and a first order natural deduction theorem
prover. The planner incorporates an efficient propo-
sitional decision procedure for theorem proving in the
abstract theory; this is used to determine which def-
initions to unfold. The natural deduction theorem
prover is then used to complete the proof by logical
inference alone.

Two abstractions (gazing with function symbols and
gazing) have been tested using the set theory defined
in figure 1. Gazing out-performed old gazing and
peeking on all theorems without function symbols,
though old gazing obviously had the edge on theorems
mentioning function symbols. Gazing with function
symbols, however, out-performed all the other ab-
stractions on all the theorems (with or without func-
tion symbols).

Figure 4 summarises some of the results. The re-
sults for old gazing and peeking come from [Plu87].
The examples chosen highlight the weaknesses and
strengths of the different abstractions. In the figure,
a 4/ indicates that the appropriate definitions are un-
folded to allow the theorem to be completed by logical
inference alone, a x indicates that the wrong defini-
tions are unfolded, a @ indicates that definitions are
unfolded unnecessarily, and a ® indicates that insuf-
ficient definitions are unfolded to complete the proof
by logical inference.

Example 1: the theorem - a =4, b — a Cb. All
the various abstractions succeed in forming a plan.

Example 2: the theorem - a Cb — (zr€a—z €
b). This demonstrates the weakness of peeking look-

e > T YA

needs to be unfolded into “C” and “=4,”. The “C”
then needs to be unfolded to give a common currency,
“€” with the conclusion.

Example 3: the theorem F a =5y O — (. x =4¢
a). With this theorem, old gazing unnecessarily un-
folds the definition of the empty set; gazing with func-
tion symbols overcomes this problem as we retain the
connection between a predicate and a predicate with
a function as argument.

Example 4: the theorem - a CO — a =44 O.
Gazing and peeking both fail on this theorem because
they ignore function symbols.

Example 5: the theorem - 2* €¢ b — dz.x € 0.
This example highlights the importance of remember-
ing the position of function symbols in a predicate;
old gazing ignored the position of function symbols
and so suggested unfolding the definition of power
set, “2%” in the first argument position of “€” even
though the definition of power set is for the second
argument position.

Gazing is, of course, not free; it would be pointless
if the overhead of gazing outweighed its benefits; we
therefore compared the time it took to tackle a theo-
rem using gazing against the time taken to “blindly”
unfold definitions. To give gazing a sporting chance,
we used a theory in which predicates were multiply
defined, so that choosing the right unfolding was im-
portant. The results are summarised in figure 5; the
times given are for a Sun 3/60 running Quintus Pro-
log 2.2. The break-even point came after unfolding
only one definition, showing how (as with peeking)
even looking ahead a little can be worthwhile.

8 Final remarks and conclusions

Most theorem provers have used very local strategies
for handling definitions. In comparison, gazing is a
very powerful way of globally planning the unfolding
of definitions. To understand gazing, we have devel-
oped a general theory of abstraction; this allows us
to prove the desirable properties that an abstraction
should possess. These ideas have been successfully
implemented in a definitional theorem prover that de-
termines which definitions to unfold to complete a
proof by logical inference alone.

Much work still needs to be done. Two directions

I @ D = D

problems in how we deal with function symbols. It
remains an open problem whether it is possible to ab-
stract function symbols and retain both truthfulness
and decidability. More work, very much related to
the more general issue of abstract theorem proving,
also needs to be done on the issue of extracting fur-
ther information from the abstract proof. The goal
is to define criteria and techniques which allow the
structure of the proof in the abstract space to be “as
close as possible” to the structure of the proof in the
unabstracted space.

Acknowledgements

The research described in this paper owes a lot to
the openness and sharing of ideas which exists in
the mathematical reasoning group. The authors wish
to thank Alan Bundy, Jane Hesketh, Alex Simpson,
Alan Smaill and Andrew Stevens for the many discus-
sions on this topic and on the work previously done
inside the group. We would also like to thank Alan
Bundy for reading the paper.

References

[BT75] W.W. Bledsoe and M. Tyson. The ut inter-
active prover. Technical report, Mathemat-
ics Department, University of Texas, 1975.
ATP-17.

[Ern73] G.W. Ernst. A definition-driven theorem
prover. In Proceedings of the 3rd IJCAI
pages 51-55. International Joint Conference
on Artificial Intelligence, 1973.

[GW89] F. Giunchiglia and T. Walsh. Theorem Prov-
ing with Definitions. In Proceedings of AISB
89. Society for the Study of Artificial Intel-
ligence and Simulation of Behaviour, 1989.
Also available as DAI Research Paper No
429, Dept. of Artificial Intelligence, Edin-
burgh.

[GW90] F. Giunchiglia and T. Walsh. A Theory
of Abstraction. Research paper 516, Dept.
of Artificial Intelligence, University of Edin-
burgh, 1990. Accepted to Journal of Artifi-
cial Intelligence.

[Pra65]

[Sim8s]

[Sup57]

[War87]

[Wos88]

I S« B

theory. Artificial Intelligence, 10:1-27, 1978.

D. Plummer. Gazing: Controlling the Use
of Rewrite Rules. PhD thesis, Dept. of Ar-
tificial Intelligence, University of Edinburgh,
1987.

D. Prawitz. Natural Deduction - A proof the-
oretical study. Almquist and Wiksell, 1965.

A. Simpson. Grazing: A Stand Alone Tactic
for Theoretical Inference. Master’s thesis,
Dept. of Artificial Intelligence, University of
Edinburgh, 1988.

P. Suppes. Introduction to Logic. D. Van
Nostrand Company, 1957.

K. Warren. Implementation of a defini-
tion expansion mechanism in a connection
method theorem prover. Master’s thesis,
Dept. of Artificial Intelligence, University of
Edinburgh, 1987.

L. Wos. Automated Reasoning: 33 Basic Re-
search Problems. Prentice Hall, 1988.

T/sec

1.00 4 -- = with gazing
— = without gazing
0.75
0.50
0.25
0 == | n

Figure 5: Time to prove theorem that requires n definitions unfolded

