
Hybrid Modelling for Robust Solving

Brahim Hnich1, Zeynep Kiziltan2, Ian Miguel3, and Toby Walsh1?

1 Cork Constraint Computation Centre
University College Cork

Cork, Ireland
{brahim, tw}@4c.ucc.ie

2 Computer Science Division
Department of Information Science

Uppsala University
Uppsala Sweden

Zeynep.Kiziltan@dis.uu.se
3 Department of Computer Science

University of York
Heslington, York United Kingdom

ianm@cs.york.ac.uk

? We would like to thank C. Castro and S. Manzano for providing us with the real-life instances they used in their
experiments. The first and the last authors are supported by Science Foundation Ireland. The third author is supported
by UK-EPSRC grant number GR/N16129.



Abstract. We study a balanced academic curriculum problem and an industrial steel mill slab design
problem. We show that these problems can be modelled in different ways, using both Integer Linear
Programming (ILP) and Constraint Programming (CP) techniques, and consider the utility of each model.
We also propose integrating the models to create hybrids that benefit from the complementary strengths of
each model. Experimental results show that, especially in the case of hybrid CP/ILP models, the integration
significantly increases the domain pruning, and decreases the run-time on many instances. Furthermore, a
CP/ILP hybrid model gives a more robust performance in the face of varying instance data.

Keywords: Application, Modelling, Integration, Constraint Programming, and Integer Linear Programming.



Introduction

Many real-life problems can be modelled as constraint satisfaction problems (CSPs). For a given problem, many
models can be developed, each having a different problem representation and employing a different solution
method to solve the problem, as well as a different formulation of the constraints. This may make a model
better or worse than any of the other models. It may also be the case that different models have complementary
strengths. In such a case, alternative models of a problem can be integrated so as to obtain a new model that
overcomes the disadvantages of one model with the advantages of the other one, and vice versa.

Integration of different models of a problem has been studied by Cheng et al. [Cheng et al. (1999)] and Smith
[Smith (2001)], and a similar idea was previously suggested by Geelen [Geleen (1992)]. By integrating different
models, the domain pruning carried out in each model may be improved significantly, giving a more powerful
model than any of the participating models. However, this may increase the run-time due to the increase in
the number of variables and constraints. Such an integration is achieved by introducing channelling constraints
that link the variables of the participating models.

In this paper, we study two problems. The first problem is a balanced academic curriculum problem (BACP)
proposed in [Castro et al. (2001)] and is prob030 in CSPLIB (www.csplib.org). The problem is to design an aca-
demic schedule by assigning periods to courses such that the academic load of each period is balanced. The second
problem we consider is an industrial steel mill slab design problem (SMSDP) [Frisch et al. (2001a),Frisch et al. (2001b)].
The objective in this problem is to pack orders onto slabs such that the total slab capacity (and therefore wastage)
is minimised. We show that these problems can be modelled in different ways, and argue why each model is
useful. We then propose integrating the models so as to benefit from the complementary strengths of each
model. Experimental results show that the integration significantly increases the domain pruning, and decreases
the run-time on many instances. An additional benefit of the model integration is an increased robustness in
the face of varying instance data.

The rest of this paper is organised as follows. In Section 1, we describe the problems. In Section 2, we study
Integer Linear Programming (ILP) models of the BACP and SMSDP, followed by two Constraint Programming
(CP) models for each problem in Section 3. Section 4 shows why and how some models are integrated. Then,
in Section 5, we present the performance of the models on several instances of each problem. Section 6 reviews
related work and Section 7 provides a summary and conclusion.



1 Problem Descriptions

The BACP proposed in [Castro et al. (2001)] is to design a balanced academic curriculum by assigning periods
to courses in a way that the academic load of each period is balanced, i.e., as similar as possible. The curriculum
must obey the following administrative and academic regulations:

– Academic curriculum: an academic curriculum is defined by a set of courses and a set of prerequisite
relationships among them.

– Number of periods: courses must be assigned within a maximum number of academic periods.
– Academic load: each course has associated a number of credits or units that represent the academic effort

required to successfully follow it.
– Prerequisites: some courses can have other courses as prerequisites.
– Minimum academic load: a minimum amount of academic credits per period is required to consider a student

as full time.
– Maximum academic load: a maximum amount of academic credits per period is allowed in order to avoid

overload.
– Minimum number of courses: a minimum number of courses per period is required to consider a student as

full time.
– Maximum number of courses: a maximum number of courses per period is allowed in order to avoid overload.

The goal is to assign a period to every course in a way that the minimum and maximum academic load for each
period, the minimum and maximum number of courses for each period, and the prerequisite relationships are
satisfied. An optimal balanced curriculum minimises the maximum academic load for all periods. Note that we
could consider other types of balance criterion such as minimising the sum of the academic load of all periods.

In the SMSDP, proposed in [Frisch et al. (2001a),Frisch et al. (2001b)], steel is produced by casting molten
iron into slabs. A finite number, σ, of slab sizes is available. Each of the d input orders has two properties, a
colour corresponding to the route required through the steel mill and a weight. An order cannot be split between
slabs. The problem is to pack orders onto slabs such that the total weight of steel produced is minimised. There
are two types of constraints:

1. Capacity constraints. The total weight of orders assigned to a slab cannot exceed the slab capacity.
2. Colour constraints. Each slab can contain at most p of k total colours (p is usually 2). This constraint

arises because it is expensive to cut the slabs up in order to send them to different parts of the mill.

2 ILP Models

We present ILP models of the BACP and the SMSDP and discuss the similarities between the proposed models.

2.1 BACP

The inputs to the BACP are the integer sets courses and periods giving the courses and periods respectively,
the integers a and and b giving the minimum and maximum allowed academic loads per period respectively,
the integers c and d giving the minimum and maximum allowed number of courses per period respectively, the
function credit giving the number of credits for each course, and the set prereq of pairs of courses 〈i, j〉 such
that course i is a prerequisite of course j.

The ILP model that is already proposed in [Castro et al. (2001)] and shown in Figure 1 is as follows. The
assignment of periods to courses is represented by a 2d 0/1 matrix of decision variables (CUR2d). The meaning
of CUR2d[i, j] = 1 is that course i is assigned period j. The academic load is represented by a 1d matrix of
decision variables (LOAD). The maximum academic load of all periods is represented by the decision variable C.
The objective function simply minimises C. The first constraint in Figure 1 enforces that every course is assigned
only one period because a 2d 0/1 matrix on its own does not ensure this property. The second constraint uses a
weighted column sum expression to compute the academic load of each period. The third constraint guarantees
that C is the maximum academic load of all periods. Enforcing the prerequisites constraint is however tricky.
If course i is a prerequisite of course j, the posted constraint implies a strict lexicographical ordering between
the ith row and the jth row of the 2d 0/1 matrix. Hence, this disallows the course j to be assigned a period
that has lower index than the one assigned to course i. Enforcing the academic load and the amount of courses
allowed per period is achieved through a set of inequalities.



Outputs:
C in 0..maxint
LOAD[periods] in 0..maxint
CUR2d[courses, periods] in 0..1

Minimise: C

Constraints:

% row sum to enforce that every course appears exactly in one period
∀i ∈ courses .

P
j∈periods CUR2d[i, j] = 1

% weighted column sum to compute the academic load for each period
∀j ∈ periods . LOAD[j] =

P
i∈courses credit(i) ∗ CUR2d[i, j]

% C is the maximum academic load
C = maxj∈periodsLOAD[j]
% partial row sum to enforce the prerequisite constraints
∀〈i, j〉 ∈ prereq . ∀k ∈ periods : k > 1 .

CUR2d[j, k] ≤Pk−1
r=1 CUR2d[i, r]

% set of inequalities restricting the academic load
∀j ∈ periods . a ≤ LOAD[j] ≤ b

% column sum to restrict the number of courses for each period
∀j ∈ periods . c ≤Pi∈courses CUR2d[i, j] ≤ d

Advantages:
all constraints are linear
ease of statement of the academic load constraints (weighted column sum)

Disadvantages: difficulty to state the prerequisite constraints

Fig. 1. BACP: An ILP model.

In this model, the academic load constraint of a period can easily be stated by a weighted column sum on
the 2d 0/1 matrix. Despite the difficulty of stating the prerequisite constraints, all constraints of the model are
linear. Therefore, ILP methods can easily be employed to solve this model. We refer to the model in Figure 1
as ILPBACP when an ILP solver is used to solve the model.

2.2 SMSDP

We present an initial pure ILP model, then discuss how to improve the model through adding symmetry-breaking
constraints and an implied constraint.

The inputs to the SMSDP are the integers j denoting the number of available orders, the integer p denoting
the maximum number of colours a slab can accommodate, the function weight storing the weight of each order
o ∈ 1..j, the function colour storing the colour of each order o ∈ 1..j, and the set of available slab sizes sizes.

The number of slabs is not fixed, but if we assume that the weight of each order does not exceed the
maximum possible slab size, then the maximum number of slabs required is j. Thus, our objective can be
viewed as finding an assignment of sizes to slabs and assigning orders to slabs in such a way that the capacity
and colour constraints are satisfied and the cost function has its optimal value. Generally, in an optimal solution,
a subset of the slabs won’t be assigned to any orders. This can be modelled by adding the value 0 to the set of
available sizes of the slabs so that when a slab is not necessary to solve the problem, it is assigned the size 0.

There are two immediate alternatives for modelling the assignment of sizes to slabs. First, a one-dimensional
matrix can be used, indexed by 1..j. Each element of this matrix is assigned a value from the set sizes ∪ {0},
specifying a size for one of the available slabs. Initial experimentation with this approach yielded poor results.
Hence, we use a two-dimensional matrix 0/1 matrix Size2d indexed by 1..j and sizes ∪ {0}. The meaning of
Size2d[s, z] = 1 is that slab s gets assigned size z. However, we need to add constraints on the rows to make
sure that each slab gets assigned exactly one size:

∀s ∈ 1..j .
∑

z∈sizes

Size2d[s, z] = 1

The assignment of orders to slabs can be modelled as a 2d 0/1 matrix Order2d indexed by 1..j in both dimensions.
The meaning of Order2d[o, s] = 1 is that order o is assigned to slab s. Again, we need to enforce that each order



gets assigned to exactly one slab by adding the following row-sum constraints:

∀o ∈ 1..j .
∑

s∈1..j

Order2d[o, s] = 1

The capacity constraints can be expressed as weighted row-sum constraints as follows:

∀s ∈ 1..j .
∑

o∈1..j

Order2d[o, s] ∗ weight(o) ≤
∑

z∈sizes

z ∗ Size2d[s, z]

The colour constraints are difficult to express on these variables. To cure this, we explicitly represent the set of
colours on each slab. We introduce a 2d 0/1 matrix Colour2d indexed by 1..j and the set of available colours
colours, where Colour2d[s, c] = 1 means that there exists an order with colour c assigned to slab s. With these
extra variables, the colour constraints can be expressed as:

∀s ∈ 1..j .
∑

c∈colours

Colour2d[s, c] ≤ p

However, we have to link the matrices Order2d and Colour2d to make sure that whenever an order o with colour
c is assigned to a slab s, then colour c is on slab s. We could achieve this through the following set of channelling
constraints:

∀o ∈ 1..j, s ∈ 1..j . Order2d[o, s] = 1 → Colour2d[s, colour(o)] = 1

However, we use this equivalent linear formulation instead:

∀o ∈ 1..j, s ∈ 1..j . Order2d[o, s] ≤ Colour2d[s, colour(o)]

Finally, the cost function can be expressed as:

Cost =
∑

s∈1..j

∑

z∈sizes

Size2d[s, z] ∗ z

Since, each order has to be assigned a slab, we can add the implied constraint that tightens the lower bound of
Cost to be the sum of the weights of all orders:

Cost ≥
∑

o∈1..j

weight(o)

An ILP model of the SMSDP is presented in Figure 2. We refer to this model as ILPSMSDP whenever an
ILP solver is used to solve it.

Symmetry There are three types of symmetry in the SMSDP [Frisch et al. (2001b)]:

– All slabs are indistinguishable: the slab sizes assigned to each of them may be permuted without affecting a
(non) solution. This type of symmetry can be broken in the ILPSMSDP by these set of linear constraints:

∀s1, s2 ∈ 1..j . s1 < s2 →
∑

z∈sizes

Size2d[s1, z] ∗ z ≥
∑

z∈sizes

Size2d[s2, z] ∗ z

These make sure that the first slab gets assigned to the biggest size, the second slab get assigned the next
biggest size, and so on. Note that we may impose an increasing ordering, instead.

– Any two identical orders are indistinguishable: the slabs assigned to each of them can be swapped freely
without affecting a (non) solution. We can break such symmetries by enforce an ordering on the slabs
assigned to symmetric orders using this set of linear constraints:

∀o1, o2 ∈ 1..j . o1 < o2 ∧ weight(o1) = weight(o2) ∧ colour(o1) = colour(o2) →
∑

s∈1..j

Order2d[o1, s] ∗ s ≤
∑

s∈1..j

Order2d[o2, s] ∗ s

– If two slabs s1 and s2 have the same size, then the orders associated with these slabs can be freely swapped
leading a symmetric (non) solution. We can use a lexicographic ordering constraint between the columns
associated with slabs of the same size. However, these constraints have a high arity and so are not considered
here.



Outputs:

Cost in 0..maxint
S ize2d[1..j, sizes] in 0..1
Order2d[1..j, 1..j] in 0..1
Colour2d[1..j, colours] in 0..1

Minimise: Cost

Constraints:

% Objective function
Cost =

P
s∈1..j

P
z∈sizes Size2d[s, z] ∗ z

% Implied constraint: tightens the lower bound of Cost
Cost ≥Po∈1..j weight(o)

% row sum to enforce that every order is assigned exactly 1 slab
∀o ∈ 1..j .

P
s∈1..j Order2d[o, s] = 1

% row sum to enforce that every slab is assigned exactly 1 size
∀s ∈ 1..j .

P
z∈sizes S ize2d[s, z] = 1

% capacity constraints
∀o ∈ 1..j .

P
s∈1..j Order2d[o, s] ∗ weight(o) ≤Pz∈sizes S ize2d[s, z] ∗ z

% colour constraints
∀s ∈ 1..j .

P
c∈colours Colour2d[s, c] ≤ p

% Channelling constraints
∀o ∈ 1..j, s ∈ 1..j . Order2d[o, s] ≤ Colour2d[s, colour(o)]

Advantages: all constraints are linear

Disadvantages: None.

Fig. 2. SMSDP: An ILP model.

3 CP Models

We now explore some models which exploit non-binary (global) constraints, non-linear constraints and other
features of CP models. Many scheduling, assignment, routing and other decision problems can be efficiently
and effectively solved by CP models consisting of matrices of decision variables (so-called “matrix models”
[Flener et al. (2001)]). Both the balanced academic curriculum and steel mill slab design problem can be suc-
cessfully represented as such matrix models.

3.1 BACP

The ILP model in Figure 1 can be used directly as such a constraint model. We refer to the model in Figure 1
as CP1BACP when a CP solver is used to solve the model. The model CP1BACP has already been proposed in
[Castro et al. (2001)]. However, as a CP model, it has constraints of large arity, on which bounds consistency
is enforced by current constraint solvers, giving weak propagation. Hence, we consider an alternative matrix
model that leads to stronger propagation.

The assignment of periods to courses can also be modelled using a 1d matrix indexed by courses and ranging
over periods, which reduces the number of variables from |courses| ∗ |periods| to |courses|. However, with this
variable modelling we find it difficult to state the academic load constraint. In order to state this constraint
we need to enforce that the combined credit of the courses assigned to a particular period equals the load
of that period. This would have been possible if CP solvers had a global “weighted occurrence” constraint
[Frisch et al. (2001a)]. A weighted occurrence constraint is simply an occurrence constraint [Régin (1996)] (gcc)
that takes into account the weight of each variable (in this case, the credits of a course variable) that is assigned
the target value (in this case a period). In the absence of a weighted occurrence constraint, one can channel
into the first CP model (CP1BACP ) where we can easily use weighted sums to express the academic load
constraints. The restriction on the number of periods to be assigned a course is captured by the 1d matrix.
However, unlike the academic load constraints, the prerequisite constraints are easily stated by enforcing an
ordering on the courses that have a prerequisite relationship using binary constraints. Furthermore, the global
occurrence constraint gcc can be used to enforce the restrictions on the amount of courses allowed per period.



Outputs:

C in 0..maxint
LOAD[periods] in 0..maxint
CUR1d[courses] in periods
CUR2d[courses, periods] in 0..1

Minimise: C

Constraints:

% using the 2d matrix to compute the academic load of each period
∀j ∈ periods . LOAD[j] =

P
i∈courses CUR2d[i, j]credit(i)

% C is the maximum academic load
C = maxj∈periodsLOAD[j]
% set of inequalities to enforce the prerequisite constraints
∀〈i, j〉 ∈ prereq . CUR1d[i] < CUR1d[j]

% set of inequalities restricting the academic load of each period
∀j ∈ periods . a ≤ LOAD[j] ≤ b

% occurrence constraint to restrict the number of courses for each period
gcc(c..d, periods,CUR1d)

% channelling constraints between the 1d matrix and 2d 0/1 matrix
∀i ∈ courses, j ∈ periods . CUR1d[i] = j ↔ CUR2d[i, j] = 1

Advantages:
ease of statement of all problem constraints
use of global constraints (better propagation)

Disadvantages: increased number of variables and channelling constraints

Fig. 3. BACP: The CP1BACP + CP2BACP integrated model.

Finally, the rest of the constraints and the objective function are the same as in model CP1BACP . The model
shown in Figure 3 uses this data representation. We refer to this integrated CP model as CP1BACP +CP2BACP .

3.2 SMSDP

Similarly to the BACP, the ILP model in Figure 2 can be used directly as a CP model for the SMSDP. When
we solve this model with a constraint solver, we shall refer to it as CP1SMSDP . However, as a CP model, it has
too many constraints of high arity that do not propagate well.

We can use the same transformations that we employed for the BACP to reduce the number of variables in
the previous model [Frisch et al. (2001a),Frisch et al. (2001b)]. The assignment of sizes to slabs (Size2d) can be
modelled as a 1d matrix Size1d indexed by 1..j and ranging over the set of sizes. Also, the assignment of slabs
to orders (Order2d) can be modelled as a 1d matrix Order1d indexed by 1..j and ranging over 1..j. The colour
matrix (Colour2d), however, defines a relation between the slabs and the colours, as opposed to the previous
matrices that define a total function, and hence we cannot replace it by a 1d matrix.

For the colour constraints, we use the same formulation as in the ILP model ILPSMSDP , except that we
use the following channelling constraints instead:

∀o ∈ 1..j . Order1d[o] = s → Colour2d[s, colour(o)] = 1

The cost function becomes:
Cost =

∑

s∈1..j

Size1d[s]

We retain the implied constraint on the lower bound of Cost from the ILP model.
The capacity constraints are analogous to the academic load constraints of the BACP. Again, a weighted

occurrence constraint would be necessary to state these constraints. So, we introduce Order2d[o, s], which is
redundant with the matrix Order1d[o] = s and post the following channelling constraints:

∀o ∈ 1..j, s ∈ 1..j . Order2d[o, s] = 1 ↔ Order1d[o] = s

This allows the ease of statement of the capacity constraints on the the 2d 0/1 Order2d matrix by weighted
sum constraints as in the ILP model. Unlike the capacity constraints, the symmetry breaking constraints can
be efficiently expressed as binary ordering constraints:



Outputs:

Cost in 0..maxint
S ize1d[1..j] in sizes
Order1d[1..j] in 1..j
Order2d[1..j, 1..j] in 0..1
Colour2d[1..j, colours] in 0..1

Minimise: Cost

Constraints:

% Objective function
Cost =

P
s∈1..j Size1d[s]

% Implied constraint: tightens the lower bound of Cost
Cost ≥Po∈1..j weight(o)

% stating capacity constraints using Order2d

∀o ∈ 1..j .
P

s∈1..j Order2d[o, s] ∗ weight(o) ≤ S ize1d[s]

% colour constraints
∀s ∈ 1..j .

P
c∈colours Colour2d[s, c] ≤ p

% Channelling constraints
∀o ∈ 1..j, s ∈ 1..j . Order1d[o] = s → Colour2d[s, colour(o)] = 1

% Symmetry-breaking constraints
∀s1, s2 ∈ 1..j . s1 < s2 → Size1d[s1] ≥ Size1d[s2]
∀o1, o2 ∈ 1..j . o1 < o2 ∧ weight(o1) = weight(o2) ∧ colour(o1) = colour(o2)
→ Order1d[o1] ≤ Order1d[o2]

% Order Channelling constraints
∀o ∈ 1..j, s ∈ 1..j . Order1d[o] = s ↔ Order2d[o, s] = 1

Advantages:
ease of statement of all problem constraints.
binary symmetry-breaking constraints.

Disadvantages: increased number of variables and constraints.

Fig. 4. SMSDP: the CP1SMSDP + CP2SMSDP integrated model.

– The slab symmetry is broken by this set of constraints:

∀s1, s2 ∈ 1..j . s1 < s2 → Size1d[s1] ≥ Size1d[s2]

– The identical orders symmetry can be broken using this set of binary constraints:

∀o1, o2 ∈ 1..j . o1 < o2 ∧ weight(o1) = weight(o2) ∧ colour(o1) = colour(o2) →
Order1d[o1] ≤ Order1d[o2]

– The symmetry that arises when two slabs are of the same size can be expressed as follows:

∀s1 < s2 ∈ 1..j . Size1d[s1] = Size1d[s2] → Order2d[−, s1] ≤lex Order2d[−, s2]

where Order2d[−, s] denotes the sth column of matrix Order2d and ≤lex denotes lexicographic ordering.
However, we do not use these symmetry-breaking constraints in the CP model since OPL, the solver we use
later in our experiments, does not offer a lexicographic ordering constraint between vectors of variables and
it would be prohibitively expensive to expand out this ordering constraint into its more primitive parts.

The second CP model, which is an integrated model, is shown in Figure 4 and will be referred to as
CP1SMSDP + CP2SMSDP .

4 Hybrid ILP/CP Models

Thus far, we have introduced ILP and CP models for both the BACP and SMSDP. We now consider the
integration of these models to form hybrids for each problem type, in order to benefit from the complementary
strengths of each model.



4.1 BACP

The CP model CP1BACP + CP2BACP has two strong points:

1. The prerequisite constraints are stated using binary constraints where maintaining arc-consistency can be
efficiently achieved.

2. The restriction on the number of courses for each period is stated using a single global constraint where
generalised-arc consistency is efficiently maintained.

However, to state the academic load constraints we had to introduce a redundant 2d 0/1 matrix (CUR2d) and
extra channelling constraints.

The model ILPBACP , on the other hand, suffers from the following:

1. The prerequisite constraints in model ILPBACP are stated using partial row sum constraints. There are
more of these constraints than their equivalents in model CP1BACP + CP2BACP and they are of higher
arity.

2. To enforce the restriction on the number of courses for each period, we pose, in model ILPBACP , 2∗|periods|
constraints of arity |courses|. Whereas, in model CP1BACP + CP2BACP we pose a single constraint.

Nevertheless, the academic load constraints are easily expressed in the model ILPBACP and all constraints are
linear, which allows an ILP solver to be used to solve the problem.

In order to benefit from the effectiveness of each model, we propose integrating the models into the hybrid
model ILPBACP +CP2BACP (shown in Figure 5) by channelling the variables of the participating models. The
disadvantages of this integration are the increased number of variables, and additional channelling constraints
to be processed.

In ILPBACP +CP2BACP , we specify the prerequisite constraints and the restriction of number of courses per
period on the 1d matrix, while we specify the academic load constraints on the 2d matrix. We also decompose
the channelling constraints:

∀i ∈ courses, j ∈ periods . CUR1d[i] = j ↔ CUR2d[i, j] = 1

into:
∀i ∈ courses .

∑

j∈periods

CUR2d[i, j] = 1

and
∀i ∈ courses . CUR2d[i, CUR1d[i]] = 1

which is logically equivalent to the following:

∀i ∈ courses, j ∈ periods . CUR1d[i] = j → CUR2d[i, j] = 1

but, the former poses fewer constraints, which use variable indexing that is more efficient than the implication
constraint.

This integration allows ILPBACP to benefit from the power of CP in efficiently handling binary and global
constraints. The CP part of the model benefits from ILPBACP ’s power in the statement of the academic load
constraints. Moreover, this integration allows a hybrid solution method to be employed to solve the problem.

4.2 SMSDP

Similarly to the BACP, the capacity constraints are easily stated in model ILPSMSDP by weighted row sum
constraints, whereas we had to introduce extra variables and channelling constraints in the second CP model
to state these constraints. The situation is reversed if we consider the symmetry-breaking constraints. In the
second CP model, we use binary ordering constraints, whereas on the ILP model we have high arity constraints.
In order to benefit from the effectiveness of each model, we propose integrating the models into the hybrid model
ILPSMSDP +CP2SMSDP (presented in Figure 6) by channelling the variables of the participating models. The
disadvantages of these integrations are the increased number of variables, and additional channelling constraints
to be processed. We enforce the capacity constraints on the ILP model, the symmetry-breaking constraints on
the CP model and colour channelling constraints on both models. Note that best results are obtained when
the cost function is also imposed on both models. This is because one representation gives more propagation in
some situation than the other, and vice-versa. We also decompose the order and size channelling constraints as
we did for the BACP.



Outputs:

C in 0..maxint
LOAD[periods] in 0..maxint
CUR1d[courses] in periods
CUR2d[courses, periods] in 0..1

Minimise: C

Constraints:

% using the 2d matrix to compute the academic load of each period
∀j ∈ periods . LOAD[j] =

P
i∈courses CUR2d[i, j] ∗ credit(i)

% row sum to enforce that every course appears exactly in one period
∀i ∈ courses .

P
j∈periods CUR2d[i, j] = 1

% C is the maximum academic load
C = maxj∈periodsLOAD[j]
% using the 1d matrix to state the prerequisite constraints
∀〈i, j〉 ∈ prereq . CUR1d[i] < CUR1d[j]

% set of inequalities restricting the academic load of each period
∀j ∈ periods . a ≤ LOAD[j] ≤ b

% using the 1d matrix to state a global constraint
gcc(c..d, periods,CUR1d)

% channelling constraints between the 1d matrix and 2d 0/1 matrix
∀i ∈ courses . CUR2d[i, CUR1d[i]] = 1

Advantages:
ease of statement of all problem constraints
use of global constraints (better propagation)

Disadvantages:
redundant variables
extra channelling constraints

Fig. 5. BACP: the ILPBACP + CP2BACP hybrid model.

5 Experimental results

In order to evaluate the performances of the proposed models, we carried out some experiments by implementing
the models in opl [Van Hentenryck (1999)]. The CP models are solved using Ilog Solver 5.2 and the ILP models
are solved using CPLEX 7.5.0, both called via opl. For the hybrid models a hybrid solution procedure, composed
of Solver and CPLEX, is used and is also called by opl. The hybrid solution procedure works as follows. The
search is conducted in a CP style, but at each node of the search tree the objective function and the set of all
linear constraints are passed to CPLEX, where linear relaxation is used to produce a lower bound. The lower
bound is used by Solver to add a constraint forcing the objective function to take a value less than or equal to
the lower bound (assuming a minimisation problem). Channelling constraints (handled by Solver) connect the
ILP 0/1 variables participating in the objective function and all linear constraints with the other CP variables.
These constraints ensure that, at each node of the search tree, the 0/1 ILP variables properly reflect the state of
the objective function and the linear constraints that will be passed to CPLEX for the computation of a lower
bound.

5.1 BACP

Figures 7 and 8 show the results on the three real-life instances used in [Castro et al. (2001)] to find the optimal
solution and prove optimality, respectively. In the instances, we have 8, 10, and 12 periods, and 46, 42, and 66
courses, respectively. We adopt the same branching heuristic for CP1BACP as in [Castro et al. (2001)], which
groups the variables by periods and assigns the value 1 first. Note that this branching heuristic achieves the best
results in [Castro et al. (2001)]. As for CP1BACP +CP2BACP , we use the smallest-domain branching strategy
on CUR1d, choosing values in lexicographical order. The model ILPBACP +CP2BACP uses the same labelling
strategy as model CP1BACP +CP2BACP for the 8 and 10 period instances, and uses the same labelling strategy
as the model CP1BACP for the 12 periods instance.

Proving optimality was difficult for both CP models (CP1BACP and CP1BACP + CP2BACP ). We observe
that ILPBACP + CP2BACP finds an optimal solution and proves optimality quicker than ILPBACP , demon-
strating that a hybrid model can be more effective despite the increased number of variables and additional



Outputs:
Cost in 0..maxint Colour2d[1..j, colours] in 0..1
S ize1d[1..j] in sizes Order1d[1..j] in 1..j
S ize2d[1..j, sizes] in 0..1 Order2d[1..j, 1..j] in 0..1

Minimize: Cost

Constraints:

% Objective function on 1d matrix and 2d matrix
Cost =

P
s∈1..j Size1d[s]

Cost =
P

s∈1..j

P
z∈sizes z ∗ Size2d[s, z]

% Implied constraint: tightens the lower bound of Cost
Cost ≥Po∈1..j weight(o)

% row sum to enforce that every order is assigned exactly 1 slab
∀o ∈ 1..j .

P
s∈1..j Order2d[o, s] = 1

% row sum to enforce that every slab is assigned exactly 1 size
∀s ∈ 1..j .

P
z∈sizes S ize2d[s, z] = 1

% capacity constraints
∀o ∈ 1..j .

P
s∈1..j Order2d[o, s] ∗ weight(o) ≤ sumz∈sizesz ∗ Size2d[s, z]

% colour constraints
∀s ∈ 1..j .

P
c∈colours Colour2d[s, c] ≤ p

% Colour Channelling constraints
∀o ∈ 1..j . Colour2d[Order1d[o], colour(o)] = 1
∀o ∈ 1..j, s ∈ 1..j . Order2d[o, s] ≤ Colour2d[s, colour(o)]
% Order Channelling constraints
∀o ∈ 1..j . Order2d[o, Order1d[o]] = 1
% Order Channelling constraints
∀s ∈ 1..j . Size2d[s, Size1d[s]] = 1
% Symmtery-breaking constraints using 1d matrix
∀s1, s2 ∈ 1..j . s1 < s2 → Size1d[s1] ≤ Size1d[s2]
∀o1, o2 ∈ 1..j . o1 < o2 ∧ weight(o1) = weight(o2) ∧ colour(o1) = colour(o2)
→ Order1d[o1] ≤ Order1d[o2]

Advantages:
ease of statement of the symmetry-breaking constraints
ease of statement of the capacity constraints

Disadvantages:
redundant variables
extra channelling constraints

Fig. 6. SMSDP: the (ILPSMSDP + CP2SMSDP ) hybrid model.

channelling constraints. Note that the proof of optimality is immediate for the model ILPBACP + CP2BACP

and the model ILPBACP . In this hybrid integration, the CP model is essential in reducing the search space
while the ILP model, via relaxation, is essential for bounding and guiding the search. The second best model
is the ILP model ILPBACP , which out-performed all the pure CP models. Finally, the integrated CP model
CP1BACP +CP2BACP has less failures and run-time than the CP model CP1BACP on the first instance. This
is due to the increase in the amount of pruning, which led to a reduction in the search space, compensating for
the increased number of variables and constraints.

The CP solver used in the experiments is Ilog Solver and the ILP solver is CPLEX, both called via opl.
In [Castro et al. (2001)], the authors used oz to solve the model CP1BACP , and lp-solve4 to solve the model
ILPBACP . Their experiments are concerned with finding the optimal solution but not with proving optimality.
They showed that with varying the default labelling heuristic of the model CP1BACP , the three instances
were solved very quickly, but lp-solve could only solve the first instance. However, our experiments using opl
showed the opposite, as seen in Figure 7. We conjecture that the difference might be connected to the supe-
riority of CPLEX over lp solve. Note that we used the same labelling strategy for the model CP1BACP as in
[Castro et al. (2001)].

5.2 SMSDP

We tested a number of variations of the ILP model. The experiments are split into two categories. In the first, we
use the decision variables in Size2d as our branching variables. In the second, we use the variables in Order2d.
We ruled out the case where we use the variables in Colour2d because this leads to comparatively very poor
results. Within each category, we tested four ILP models:
4 An ILP solver: available free at ftp://ftp.ics.ele.tue.nl/pub/lp solve



Model Results 8 periods 10 periods 12 periods

ILPBACP
runtime
failures

1.27
N/A

3.17
N/A

13.77
N/A

CP1BACP
runtime
failures

148.44
5828091

-
-

-
-

CP1BACP + CP2BACP
runtime
failures

30.59
304963

-
-

-
-

ILPBACP + CP2BACP
runtime
failures

0.38
235

3.06
6068

1.20
11452

Fig. 7. BACP: finding an optimal solution.

Model Results 8 periods 10 periods 12 periods

ILPBACP
runtime
failures

1.27
N/A

3.17
N/A

13.77
N/A

CP1BACP
runtime
failures

-
-

-
-

-
-

CP1BACP + CP2BACP
runtime
failures

-
-

-
-

-
-

ILPBACP + CP2BACP
runtime
failures

0.38
235

3.06
6068

1.20
11452

Fig. 8. BACP: Finding an optimal solution and proving optimality.

1. Basic: ILPSMSDP , shown in Figure 2.
2. Basic+O: ILPSMSDP augmented with the symmetry-breaking constraints for the identical orders symmetry.
3. Basic+S↓ and Basic+S↑: ILPSMSDP augmented with the symmetry-breaking constraints for the slabs

symmetry, where S↓ denotes the decreasing slab symmetry-breaking constraints and S↑ for the increasing
version.

4. Basic+O+S↓ and Basic+O+S↑: ILPSMSDP augmented with the symmetry-breaking constraints for both
the slabs and identical orders symmetry.

Figures 9 and 10 present results generated from (small) subsets of industrial data, implemented in OPL
[Van Hentenryck (1999)] and solved using the CPLEX solver. From the results we observe the following:

– All the models were sensitive to the instance distributions. They might perform well on some instances, but
poorly on others.

– The branching strategy that uses Size2d solves 7 out of the 8 instances faster than the branching strategy
that uses Order2d.

– Using both symmetry-breaking constraints at the same time give the worst results on all instances.
– Among the models that use the branching strategy on Size2d, the best is either the basic model, or the basic

model augmented with either the order symmetry-breaking constraints or the (increasing) slab symmetry-
breaking constraints.

We also experimented with several variations derived from the CP models CP1SMSDP and CP1SMSDP +
CP2SMSDP , such as using the increasing slab symmetry-breaking constraints, and different branching strategies.
For clarity, we show the best results achieved. The results for CP1SMSDP are presented in Figure 11. The
labelling strategy used is to try to assign each order in turn from the largest to the smallest slab (the decreasing
slab symmetry-breaking constraints are used). The results for CP1SMSDP + CP2SMSDP are presented in
Figure 12. The labelling strategy used here is to branch on the variables in Order1d with the smallest domain
heuristic. Values are assigned in increasing order, which is equivalent to trying the largest slab first, since the
decreasing slab symmetry-breaking constraints are again used.

It is immediately clear that the integrated model CP1SMSDP + CP2SMSDP outperforms the CP model
CP1SMSDP . As per BACP, this demonstrates that a naive use of an ILP model with a CP solver typically
leads to poor performance. Contrary to the results obtained with the ILP models, symmetry-breaking leads
to a marked improvement in performance. Finally, except for the first two instances, both CP models are not
competitive with the ILP models. Nevertheless, the integrated CP model quickly finds near-optimal solutions.



Orders Optimal Basic Basic+O Basic+S↓ Basic+S↑ Basic+O+S↓ Basic+O+S↑
12 77 88.82 15.11 63.10 8.83 21.50 19.48

16 99 25.34 87.48 39.01 10.68 >120 97.90

18 110 1.98 >100 36.46 >100 49 >100

19 115 131.87 2.6 12.4 270.38 >350 87.69

20 122 5.91 8.44 97.58 >350 >100 >350

21 135 11.96 206 >216 >300 >216 >300

25 166 815.58 65.24 >1000 >1000 >1000 >1000

30 195 2991 1180 >3000 >3000 >3000 >3000

Fig. 9. SMSDP: Runtimes in seconds. Branching is on Size2d.

Orders Optimal Basic Basic+O Basic+S↓ Basic+S↑ Basic+O+S↓ Basic+O+S↑
12 77 104.45 18.32 66.26 9.90 24.84 20.29

16 99 29.84 105.29 39.98 11.62 267.57 102.12

18 110 2.36 >350 37.89 >350 58.58 3250

19 115 153.73 3.14 12.60 285 1388.27 99.42

20 122 6.89 9.85 75.26 >250 262 >250

21 135 14.03 241.74 >300 >300 >300 >300

25 166 945 74.11 >1000 >1000 >1000 >1000

30 195 >3500 1098.58 >3500 >3500 >3500 >3500

Fig. 10. SMSDP: Runtimes in seconds. Branching is on Order2d.

Our final set of experiments tested multiple variations of hybrid ILP/CP models by varying the labelling
strategy and the constraint formulation of the slab symmetry-breaking constraints of model ILPSMSDP +
CP2SMSDP . Again for clarity, we present in Figure 13 the best results achieved where a CP solver (ILOG) and
an ILP solver (CPLEX) are used to solve the model. The branching strategy is the smallest-domain heuristic
used on the variables of Size1d of the model ILPSMSDP + CP2SMSDP presented in Figure 6.

The results show that the hybrid model outperforms all other models in terms of run-time and failures. In
this hybrid integration, we observe a similar behavior to the BACP, where the CP model is essential in reducing
the search space while the ILP model with its relaxation is essential for bounding and guiding the search.

5.3 Robustness

Our results have provided evidence for the superiority, in terms of search efficiency, of a hybrid CP/ILP model
over a pure CP or pure ILP approach for solving both the BACP and SMSDP. The results also show that, on
these problems, the CP/ILP hybrid offers a more robust model. We use the term robust in a different sense to
[Ginsberg et al. (1998)], who define the degree of robustness of a solution according to the size of the repair
necessary given a number of modifications to the variable assignments. In contrast, and following the informal
usage in [Rodosek et al. (1998)], we define a robust model for a class of problems reliant on instance data to be
a model whose performance does not vary greatly with the instance data distribution. From Figures 7, 8 and 13
it is clear that the CP/ILP hybrid is the most robust model considered here. Given the experimental evidence
herein, and supporting evidence in [Rodosek et al. (1998)], we conjecture that such hybrids will provide robust
models in general. However, we stress that it is not sufficient simply to combine any two ILP and CP models.
The best hybrid models were carefully designed to combine the complementary strengths of the two approaches.

6 Related Work

It has been show in the literature that certain classes of problems are best solved by careful integration of
CP and Operations Research (OR) techniques. One popular method is to combine Lagrangian relaxations
and CP [Benoist (2001),Sellman et al. (2001)]. The idea is to relax constraints in the objective function. In
[Benoist (2001)], the authors study hybrid algorithms combining Lagrange relaxations and constraint program-
ming on a Travelling Tournament Problem (TTP) combining round-robin assignment and travel optimization.
Round-robin tournament problems are best solved using CP with global constraints while travelling salesman



Orders Optimal Runtime (sec) Failures

12 77 — (Best found: 79 in 1.01) — (Best found: 79 in 18148)

16 99 — (Best found: 112 in 89.14) — (Best found: 122 in 392933)

18 110 — (Best found: 121 in 17.99) — (Best found: 121 in 109016)

19 115 — (Best found: 121 in 6.70) — (Best found: 121 in 71778)

20 122 — (Best found: 152 in 6.50) — (Best found: 152 in 71030)

21 135 — —

25 166 — —

30 195 — —

Fig. 11. SMSDP: Runtimes/Failures for CP1SMSDP : Branching is on Order2d, order by order assigning the value 1 first.
A dash means no results are returned after 1 hour.

Orders Optimal Runtime (sec) Failures

12 77 0.28 925

16 99 6.51 49055

18 110 144.9 1046744

19 115 302.97 2128822

20 122 2014.04 13430974

21 135 21.77 143250

25 166 1215.83 6206154

30 195 — (Best found: 197 in 12.81) — (Best found: 197 in 39142)

Fig. 12. SMSDP: Runtimes/Failures for CP1SMSDP +CP2SMSDP : Branching is on Order1d (smallest-domain heuristic).
A dash means no results are returned after 1 hour.

problems are best solved using IP techniques. The hybrid algorithm is shown to be very effective in solving the
TTP problem. In [Sellman et al. (2001)], the authors introduce an algorithm where linear optimization tech-
niques can strengthen their propagation abilities via Lagrangian relaxation. The algorithm is tested on a set of
problems originating from multimedia applications. The results show the superiority of the combined method to
pure CP and OR approaches. Another interesting work is the framework of Mixed Logical Linear Programming
proposed by Hooker et al [Hooker et al. (1999)]. In [Hooker et al. (1999)], the authors propose a declarative
modelling framework in which the structure of the constraints indicates how CP and LP can interact to solve
the problem. This modelling framework has not only modelling advantages but can often permit more rapid
solution than traditional Mixed Integer Linear Programming solvers. The authors of [El Sakkout et al. (2000)]
consider a scheduling problem where the optimization requirement may be captured using a linear optimization
function over linear constraints. However, the disjunctive nature of the resource constraints impairs traditional
mathematical programming approaches. Therefore the authors decompose the problem, and solve the subprob-
lems by CP and ILP techniques. It is shown to be the most effective way of solving the problem.

7 Conclusion

We have proposed a variety of different models of the Balanced Academic Curriculum Problem and the Steel
Mill Slab Design Problem. Some of the models were created with an integer linear programming solver in mind,
others with a constraint programming solver. We also considered hybrid CP/ILP models which employ a hybrid
solution method combining an ILP solver with a CP solver, propagating information from one part of the model
to the other using channelling constraints. Each model was evaluated experimentally on real instances (subsets
of real instances in the case of SMSDP). Our results show that, for both problems, the hybrid CP/ILP models
are the most successful, both in solving individual problems and as the instance data varies (robustness). A good
hybrid model uses the strengths of one approach (CP or ILP) to negate the weaknesses of the other, providing a
much more efficient overall model. This is counter to the perceived wisdom that a good model should minimise
the number of variables and constraints.

What general lessons can we learn from this modelling exercise? First, when constraints are difficult to
specify in a particular model, we should consider channelling into a second model in which these constraints
are easier to specify and reason about. Second, whilst constraint programming models can be best at finding
optimal or near-optimal solutions, integer linear programs may be better for proving optimality. Hybrid CP and



Orders Optimal Runtime (sec) Failures

12 77 0.52 328

16 99 0.53 154

18 110 0.67 177

19 115 1.91 492

20 122 2.97 765

21 135 4.84 1052

25 166 7.6 1351

30 195 15.85 1615

Fig. 13. SMSDP: Run-times/Failures for ILPSMSDP +CP2SMSDP : Branching is on Size1d (smallest-domain heuristic).

ILP models or a two phase approach may therefore be advantageous. Third, CP and ILP tools should provide
primitives for channelling between models. In addition to being able to specify such constraints compactly, such
primitives can permit efficient constraint propagation between models. Finally, we can often profitably combine
different problem representations, as well as different solution methods. Each view of the problem and solution
method can exploit different aspects of the problem. Careful integration of different models can result in better
models despite the increase in the number of variables and constraints.

References

[Castro et al. (2001)] C. Castro and S. Manzano. (2001). Variable and value ordering when solving balanced academic
curriculum problem. In: Proc. of the ERCIM WG on constraints.

[Cheng et al. (1999)] B.M.W. Cheng, K.M.F. Choi, J.H.M. Lee, and J.C.K. Wu. (1999).Increasing constraint propagation
by redundant modelling: An experience report. Constraints, 4:167–192.

[Flener et al. (2001)] P. Flener, A. Frisch, B. Hnich, Z. Kızıltan, I. Miguel, and T. Walsh. (2001). Matrix Modelling. In:
Proc. of the CP-01 Workshop on Modelling and Problem Formulation. International Conference on the Principles
and Practice of Constraint Programming.

[Frisch et al. (2001a)] A.M. Frisch, I. Miguel, and T. Walsh. (2001). Modelling a Steel Mill Slab Design Problem. In:
proc. of the IJCAI-01 Workshop on Modelling and Solving Problems with Constraints.

[Frisch et al. (2001b)] A.M. Frisch, I. Miguel, and T. Walsh. (2001). Symmetry and Implied Constraints in the Steel Mill
Slab Design Problem. In: proc. of the CP-01 Workshop on Modelling and Problem Formulation.

[Ginsberg et al. (1998)] M.L. Ginsberg, A. J. Parkes, and A. Roy. (1998). Supermodels and Robustness. In: proc. of
AAAI/IAAI-98, pages 334–339.

[Geleen (1992)] P.A. Geelen. (1992). Dual viewpoint heuristics for binary constraint satisfaction problems. In Proc. of
ECAI’92, pp. 31–35.

[El Sakkout et al. (2000)] H. El Sakkout and M. Wallace. (2000). Probe Backtrack Search for Minimal Perturbation in
Dynamic Scheduling . In Constraints, 5(4):359-388.

[Hooker et al. (1999)] J.N. Hooker, G. Ottosson, E.S. Thorsteinsson, and H-J. Kim. (1999). On Integrating Constraint
Propagation and Linear Programming for Combinatorial Optimization. In AAAI/IAAI, pp. 136-141.

[Régin (1996)] J-C. Régin. (1996). Generalized arc consistency for global cardinality constraints. In Proc. of the Eighth
National Conference on Aritficial Intelligence, pp. 25–32.

[Rodosek et al. (1998)] R. Rodosek and M. Wallace. (1998). A Generic Model and Hybrid Algorithm for Hoist Scheduling
Problems. In Proc. of CP-98, pp. 385–399.

[Sellman et al. (2001)] M. Sellmann and T. Fahle. (2001). CP-based Lagrangian Relaxation for a Multimedia Application.
In Proc. CP-AI-OR’01.

[Smith (2001)] B.M. Smith. (2001). Dual models in constraint programming. Research Report 2001.02, University of
Leeds (UK), School of Computing.

[Benoist (2001)] T. Benoist, F. Laburthe, and B. Rottembourg. (2001). Lagrange Relaxation and Constraint Program-
ming Collaborative Schemes for Travelling Tournament Problems. In Proc. of CP-AI-OR’01.

[Van Hentenryck (1999)] P. Van Hentenryck. (1999). The opl Optimization Programming Language. The MIT Press.


