Online Estimation of SAT Solving Runtime*

Shai Haim and Toby Walsh

NICTA and UNSW
{shai.haim, toby.walsh}@nicta.com.au

Abstract. We present an online method for estimating the cost of solv-
ing SAT problems. Modern SAT solvers present several challenges to
estimate search cost including non-chronological backtracking, learning
and restarts. Our method uses a linear model trained on data gathered
at the start of search. We show the effectiveness of this method using
random and structured problems. We demonstrate that predictions made
in early restarts can be used to improve later predictions. We also show
that we can use such cost estimations to select a solver from a portfolio.

1 Introduction

Modern SAT solvers present several challenges for estimating their runtime. For
instance, clause learning repeatedly changes the problem the solver faces. Esti-
mation of the size of the search tree at any point should take into consideration
the changes that future learning clauses will cause. As a second example, restart-
ing generates a new search tree which again makes prediction hard. Our approach
to these problems is to use a machine learning based on-line method to predict
the cost of the search by observing the solver’s behaviour at the start of search.
Previous methods include the Weighted Backtrack Estimator, the Recursive
Estimator ([5]) and the SAT Progress Bar ([6]) that do not support backjump-
ing or restarts, and the BDD-based Satometer ([I]) which doesn’t provide an
estimate for the size of the decision tree. Machine learning has also been used
to estimate search cost. Horovitz et al used a Bayesian approach to classify CSP
and SAT problems according to their runtime [4]. Whilst this work is close to
ours, there are some significant differences. For example, they used SATz-Rand
which does not use clause learning. Xu et. al [9] used machine learning to tune
empirical hardness models [7]. The only non-static features used were generated
by probes of DPLL and stochastic search. Their method gives an estimate for
the distribution of runtimes and not, as here, an estimate for a specific run.
Finally, an online machine learning method has been used for QBF solvers [§].

2 Linear Model Prediction (LMP)

We predict the size of subtrees to follow from the subtrees explored in the past.

Given a problem P€ E, when F is an ensemble of problems, we first train the

* The second author is funded by DCITA and the ARC through Backing Australia’s
Ability and the ICT Centre of Excellence program.

H. Kleine Biining and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 133-[I38] 2008.
© Springer-Verlag Berlin Heidelberg 2008

134 S. Haim and T. Walsh

model using a subset of problems 7 C E. For every training example t € 7, we
create a feature vector x; = {zy1, 12, ..., Ttk). We select features by removing
those with the smallest standardised coefficient until no improvement is observed
based on the standard AIC (Akaike Information Criterion). We then search for
and eliminate co-linear features in the set.

Using ridge linear regression, we fit our coefficient vector w to create a linear
predictor f,, (7;) = wT z;. We chose ridge regression since it is quick and simple,
and generally yields good results. We predict the log of the number of conflicts
as runtimes vary significantly. Since the feature vector is computed online, we do
not want it to add significant cost to search. It therefore only contains features
that can be calculated in (amortized) constant time. We define the observation
window to be that part of search where data is collected. At the end of the
observation window, the feature vector is computed and the model queried for
an estimation.

The feature vector measures both problem structure and search behaviour.
Since data gathered at the beginning of a restart tends to be noisy, we do not
open the observation window immediately. To keep the feature vector of reason-
able size, we use statistical measures of features (that is, the minimum over the
observation window, the maximum, the mean, the standard deviation and the
last value recorded). The list of features is shown in Table [[I The only feature
that takes more than constant time to calculate is the log(WBE) feature. This is
based on the Weighted Backtrack Estimator [5]. This estimates search tree size

Table 1. The feature vector used by linear regression to construct prediction models

Observation Window

Feature it min|max|mean|SD|last

Number of variables (var)

Number of clauses (cls)

cls/var

var/cls

Fraction of Binary Clauses

Fraction of Ternary Clauses

Avg. Clause Size

Search Depth (from assignment stack)

Search Depth (in corresponding binary tree)®
Backjump Size

Learnt Clause Size

Conflict Clause Size

Fraction of assigned vars before backtracking (abb)
Fraction of assigned vars after backtracking (aab)
aab.mean/abb.mean

abb.mean/aab.mean

log(WBE)

v
v

L
<<
L

L
L

NG NG NG N N NN N N SO O AN
NG NGNS NN NN N SO O A

* See [3] for further details.

Online Estimation of SAT Solving Runtime 135

T0 d+i_
using the weighted sum: Zde%’:g;;ﬂg(d) U where prob(d) = 2= and D is the

multiset of branches lengths visited. In [3], we extended WBE to support con-
flict driven backjumping. As the new method requires O(d) time and space, we
only compute it every d conflicts. To deal with quick restarts, we wait until the
observation window fits within a single restart. In addition, we exploit estimates
from earlier restarts by augmenting the feature vector with all the search cost
predictions from previous restarts.

3 Experiments

We ran experiments using MiniSat [2], a state-of-the-art solver with clause learn-
ing, an improved version of VSIDS and a geometrical restart scheme. We used a
geometrical factor of 1.5, which is the default for MiniSat. A geometrical factor
of 1.2 gave similar results. We used three different ensembles of problems.

— rand: 500 satisfiable and 500 unsatisfiable random 3-SAT problems with 200
to 550 variables and a clause-to-var ratio of 4.1 to 5.0.

— bme: 250 satisfiable and 250 unsatisfiable software verification problems gen-
erated by cBMd for on a binary search algorithm, using different array sizes
and number of loop unwindings. To generate satisfiable problems, faulty code
that causes memory overflow was added. These problems create a very ho-
mogeneous ensemble.

— fu: 56 satisfiable and 68 unsatisfiable hardware verification problems distrib-
uted by Miroslav Velev. This is less homogeneous than the other ensembles.

Since training examples can be scarce, we restricted our training set to no more
than 500 problems, though we had far fewer for the hard verification problems.
In the first part of our experiments, when restarts were turned off, many of the
hardware verification problems were not solved. Our results in this part will only
compare the other datasets. When restarts were enabled, all three data sets were
used. In all experiments we used 10-fold cross validation, never using the same
instance for both training and testing purposes. We measured prediction quality
by observing the percentage of predictions within a certain factor of the correct
cost (the error factor). For example, 80% for error factor 2, denotes that for
80% of the instances, the predicted search cost was within a factor of 2 of the
actual cost.

3.1 Search without Restarts

We queried our predictor at different points of the search, ranging from 2000 to
50000 backtracks. Comparisons of the performance of LMP for the rand and bmc
data set are presented in Figure[Il Satisfiable problems are harder to predict for
both rand and bmc datasets, due to the abrupt way in which search terminates
with open nodes.

! http://www.cs.cmu.edu/ modelcheck/chmc/
2 http://www.miroslav-velev.com /sat_benchmarks.html

136 S. Haim and T. Walsh

SAT/BNIC & SAT/BNC &2

100% [SAT/RND mmm — —] 100% || SAT/RND mmm
UNSAT/BMC =3 UNSAT/BMC £
UNSAT/RND =31 | ~—\ UNSAT/RND ==

Percent of instances within error factor
Percent of instances within error factor

x2 x4 x8 x2 x4 x8
Error factors Error factors

(a) After 2000 backtracks (b) After 35000 backtracks

Fig. 1. Quality of prediction, without restarts, for the rand and bmc datasets

3.2 Search with Restarts

With restarts, we have to use smaller observation windows to give a prediction
early in search as many early restarts are too small. Figure [2] compares the
quality of prediction of LMP for the 3 different datasets. The quality of estimates
improves with the bmc data set when restarts are enabled. We conjecture this is
a result of restarts before the observation window reducing noise.

In order to see if predictions from previous restarts improve the quality of
prediction, we opened an observation window at every restart. The window size
is maz(1000, 0.01- s) and starts after a waiting period of maxz(500,0.02-s), when
s is the size of the current restart. At the end of each observation window, two
feature vectors were created. The first (z,) holds all features from Table[I] while
the second (%,) is defined as &, = {2, } U {fu, (x1), fa, (Z2) .-, fo,_y (Er—1)}.
Figure[3 compares the two methods. We see that predictions from earlier restarts
improve the quality of later predictions but not greatly.

rand B
100 % || bmc mmm
(=]

Percent of instances within error factor
Percent of instances within error factor

x2 x4 x8 x2 x4 x8
Error factors Error factors

(a) sat (b) unsat

Fig. 2. Quality of prediction for the 3 different datasets when using restarts (after 2000
backtracks in the query restart)

Online Estimation of SAT Solving Runtime 137

Percent of instances within error factor X2
Percent of instances within error factor X2

Bmc - o previous — | |
b - with previous ---
random - no previous ---

Bme - 1o previous —

bme - with previous -
random - no previous ---

random - with previous

random - with previous

L L L L L L L
10 1" 12 13 14 15 16 17 10 " 12 13 14 15 16 17 18
Restart Restart

(a) sat (b) unsat

Fig. 3. The effect of using predictions from previous restarts. We compare the quality
of prediction, through restarts, using two datasets (bme,rand). The plots represent the
percentage of instances within a factor of 2 from the correct size.

3.3 Solver Selection Using LMP

In our final experiment, we used these estimations of search cost to improve
solver performance. We used two different versions of MiniSat. Solver A used
the default MiniSat setting (geometrical factor of 1.5), while solver B used a
geometrical factor of 1.2. The challenge is to select which is faster at solving a
problem instance.

Table 2] describes the percentage improvement achieved by each of the follow-
ing strategies. All values are fractions of the cost of solving the entire dataset,
picking a solver randomly for each problem, with equal probability. Hence, for
each dataset, average(A, B) = 1:

— best: Use an oracle to indicate which solver will solve the problem faster
(min(A, B)).

— LMP (oracle): Use both solvers until each reaches the end of its observation
window and generate a prediction, using two different models for sat and
unsat. Use a satisfiability oracle to indicate which model should be queried.
Terminate the solver that is predicted to be worse.

— LMP (two models): Use both solvers until each reaches the end of its obser-
vation window and generate a prediction, using two different models for sat
and unsat. Query both models and use the geometric mean as the predic-
tiond. Terminate the solver that is predicted to be worse.

These results show that for satisfiable problems, where solver performance
varies most, our method reduces the total cost. For unsatisfiable problems, where
solver performance does not vary as much, our method does not improve search
cost. However, as performance does not change significantly on unsatisfiable in-
stances, the overall impact of our method on satisfiable and unsatisfiable prob-
lems is positive.

3 We found this method to yield more accurate runtime estimations than using one
model for both sat and unsat instances. For further details see [3].

138 S. Haim and T. Walsh

Table 2. Improvement in total search cost using different schemes

[Dataset [Best [LMP (oracle)[LMP (two models)|

rand sat [0.591 0.930 0.895
unsat|0.925 1.009 1.014
fo sat [0.333 0.828 0.832
unsat|0.852 1.006 1.033
bme sat [0.404 0.867 0.864
unsat|0.828 0.997 1.004

References

1. Aloul, F., Sierawski, B., Sakallah, K.: Satometer: How much have we searched? In:
Design Automation Conf., pp. 737-742. IEEE, Los Alamitos (2002)

2. Een, N., Sorensson, N.: An extensible SAT-solver. Theory and Applications of Sat-
isfiability Testing, 502-518 (2003)

3. Haim, S., Walsh, T.: SAT Solving Cost Estimation using Online Techniques, Tech-
nical Report 0805, UNSW, Australia (February 2008)

4. Horvitz, E., Ruan, Y., Gomes, C., Kautz, H., Selman, B., Chickering, M.: A Bayesian
approach to tackling hard computational problems. In: Proc. the 17th Conf. on
Uncertainty in Artificial Intelligence (UAI 2001) (2001)

5. Kilby, P., Slaney, J., Thiébaux, S., Walsh, T.: Estimating Search Tree Size. In: Proc.
of the 21st National Conf. of Artificial Intelligence, AAAI, Menlo Park (2006)

6. Kokotov, D., Shlyakhter, I.: Progress bar for sat solvers (unpublished manuscript)
(2000), http://sdg.1lcs.mit.edu/satsolvers/progressbar.html

7. Leyton-Brown, K., Nudelman, E.; Shoham, Y.: Learning the Empirical Hardness
of Optimization Problems: The Case of Combinatorial Auctions. In: Proc. of the
8th Int. Conf. on Principles and Practice of Constraint Programming, pp. 556-572.
Springer, Heidelberg (2002)

8. Samulowitz, H., Memisevic, R.: Learning to Solve QBF. In: Proc. of 22nd Conf. on
Artificial Intelligence (AAAI 2007) (2007)

9. Xu, L., Hoos, H.H., Leyton-Brown, K.: Hierarchical Hardness Models for SAT Prin-
ciples and Practice of Constraint Programming, 696-711 (2007)

http://sdg.lcs.mit.edu/satsolvers/progressbar.html

	Introduction
	Linear Model Prediction (LMP)
	Experiments
	Search without Restarts
	Search with Restarts
	Solver Selection Using LMP

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

