Automatic Identification of Mathematical Concepts

Simon Colton
Alan Bundy

SIMONCO@DAI.ED.AC.UK
BUNDY@DAI.ED.AC.UK

Division of Informatics, University of Edinburgh, 80 South Bridge, Edinburgh EH1 1HN, United Kingdom

Toby Walsh

TWQCS.YORK.AC.UK

Department of Computer Science, University of York, Heslington, York Y010 5DD, United Kingdom

Abstract

The HR program by Colton et al. (1999)
performs theory formation in mathematics by
exploring a space of mathematical concepts.
By enabling HR to determine when it has
found a particular concept, and by adding a
forward looking mechanism, we have applied
HR to the problem of identifying mathemat-
ical concepts. We illustrate this by using HR,
to identify and extrapolate integer sequences
and by performing a qualitative comparison
with the machine learning program Progol.

1. Introduction

Extrapolating integer sequences such as 1,4,9,16...
is an intelligent activity requiring both understand-
ing and creativity. While there have been attempts
in Artificial Intelligence to automatically extrapolate
sequences, presently the state of the art is to use a
large online! database, the Encyclopedia of Integer Se-
quences. Extrapolating integer sequences generalises
to the problem of automatically identifying a prop-
erty of a set of mathematical objects (the example set)
which distinguishes the objects from a larger class.

The HR program (Colton et al., 1999) performs the-
ory formation by exploring a space of mathematical
concepts in domains such as finite group theory, graph
theory and number theory. The space is character-
ised by the initial set of concepts supplied by the user,
from which all subsequent concepts are built, and by
the seven production rules which turn old concepts
into new ones. To derive the production rules, we de-
termined some general properties common to many
concepts across domains and implemented production
rules which can turn old concepts into new ones which
have these properties. Given some initial concepts as

"http://www.research.att.com/ njas/sequences

background information, HR uses a heuristic search to
choose which old concepts to apply which production
rules to and explores the space in this manner.

If the user supplies positive and negative examples for
a concept, and HR invents a definition which all the
positive examples satisfy, but the negative examples do
not, we say HR has identified the concept. In number
theory, we have restricted HR’s abilities to only identi-
fying sequences which are types of number, such as
prime numbers. We hope to cover other sequence types
such as functions in the near future. If the user sup-
plies an increasing sequence: ai,ds,...,a, then HR
assumes that the negative examples are those integers
between 1 and a,, which do not appear in the sequence.
For example, when HR is given this sequence extract:

2,3,5,7,11,13,17,19, 23, 29, 31

it re-invents the concept of integers with exactly
two divisors (prime numbers). All the integers in
the sequence have this property but the integers
1,4,6,...,30 do not, so HR has learned the concept.
To supply the next number in the sequence HR simply
generates integers larger than a, until the next one
which satisfies the definition is found, in this case 37.

HR is designed to perform machine discovery and has
successfully invented new integer sequences (Colton
et al., in pressa). The purpose of this paper is to de-
tail the application of HR to a different problem: the
identification of user supplied concepts. Exploratory
search is not well suited to such learning problems, so
we have implemented a forward looking mechanism to
improve efficiency. This works by looking up to three
steps ahead in the space to decide whether a path will
lead to the required concept. We discuss how concepts
are represented, the production rules HR employs and
the forward looking mechanism. To assess the system,
we present some initial results from integer sequence
extrapolation and compare HR to other systems, in-
cluding the machine learning program Progol.

2. Representation of Concepts

HR is supplied with background knowledge in terms of
some initial concepts upon which all new concepts are
based. These concepts are either objects of interest,
such as graphs, groups or integers, ways to finitely
decompose the objects into subobjects, or relations
between the subobjects. Table 1 details the subob-
jects and relations usually provided for each domain.

Table 1. Initial concepts supplied by the user

Domain | Subobject Relation

graph nodes, edges adjacency of nodes,
theory node on edge
group elements identity, inverse,
theory group operation
number | divisors, digits, | addition, <,
theory binary digits multiplication

Each concept describes a property of tuples of objects.
The tuple is always an object of interest followed by
subobjects. An example is prime divisors of an integer:
a property of pairs of integers, (n,p) stating that p
is a prime divisor of n. Additionally, there may be
numerical values calculated, for example the concept
of tuples (G, z) where G is a graph and z is the number
of nodes. Every concept is represented with:

[1] A data table of tuples of objects which satisfy the
definition of the concept. For example, for the integers
1 to 5, the concept of multiplication has these tuples:
[1L,1,1] [21,2 [22,1 [313 [3,31]
[4,1,4 [4,2,2] [4,4,1] [5,1,5] [5,5,1]
where the integers in the final two columns multiply
to give the integer in the first column.

[2] A set of predicates which are true of the objects in
each row of the data table. For example, the concept
of multiplication discusses triples of integers, [n,a, b]
and the user supplies 6 predicates:

® integer(n), integer(a), integer(b)
divisor(n,a), divisor(n,b), multiplication(n, a, b)

These predicates specify the multiplication property of
this concept and also highlight that the integers being
multiplied together are divisors of their product.

Given a new concept, C, HR identifies its sub-
concepts, which are those other concepts with a sub-
set of the predicates of C. For instance, the concept of
divisors in number theory is a sub-concept of multiplic-
ation, as the integers being multiplied are divisors of
their product. We call sub-concepts where each vari-
able of C appears in a predicate of the sub-concept
generalisations. For example, divisors are a general-
isation of prime divisors.

3. Production Rules

Instead of studying how mathematicians invent new
concepts, we have looked at the concepts themselves
to extract shared general properties. We have turned
each observed property into a production rule which
takes a concept without the property and produces a
concept with it. We have implemented seven rules,
each of which generates a data table and predicates
for the new concept. Each rule also generates a set of
concept-dependent parameterisations, with each para-
meterisation specifying a different construction using
the rule. We motivate each rule below with examples
from mathematics, and detail how it is parameterised
and how it produces new data tables and predicates.
The seven rules are not meant to be exhaustive, and
we suggest two more in Section 7.

3.1 The Negate Production Rule

The negation of one concept is often incorporated into
the definition of another, e.g., odd numbers are those
not divisible by 2. Similarly, groups which are not
soluble are very important in group theory. Given a
concept, C, there is one way to negate it for each of its
generalisations, G, and the set of generalisations com-
prises the parameterisations for this rule. To construct
the predicates of the new concept, the negate rule finds
any predicates of C' which aren’t predicates of G, and
negates them. It then adds the negated predicates to
those of G to produce the new set. For example, the
concept of pairs of divisors of an integer?:

[n,a,b] : a|ln Abln
is a generalisation of the multiplication concept:
[n,a,b] :aln AbjnAaxb=n
Hence to negate multiplication, HR negates just the

multiplication predicate and adds it to the predicates
from the generalisation, giving:
[n,a,b]:alnAbnAaxb#n

The data table for the new concept is constructed by
taking those tuples in the data table for G that are not
present in the data table for C. In our example, the
new data table will contain tuples such as [6,2, 2] and
[10,1, 5] where the last two numbers are divisors of the
first integer, but their product is not the integer.

3.2 The Forall and Exists Production Rules

Looking at Abelian groups, where all elements com-
mute, complete graphs, where all nodes are adjacent
and repdigit integers, where all digits are equal, we see
that objects where every pair of subobjects satisfies a

2The definition for this concept is to be read: “triples
[n, a,b] such that a divides n and b divides n.”

relation are often extracted into a new concept. In
general, objects where every tuple of subobjects have
a particular property are of interest.

To turn this observation into the forall production rule,
we noted that information about which specific subob-
jects have the property is replaced by a V quantifica-
tion, ie., all objects have the property. The rule is
then parameterised by the set of variables to quantify
over. For instance, the parameters [2, 3] indicate that
the second and third variables should be quantified
over. Given a concept, C, the predicates for the new
concept are the predicates not involving the quanti-
fied variables, and an additional quantified predicate.
The quantified predicate is constructed by first find-
ing a sub-concept, S, which involves all the variables
to be quantified. It is then constructed in the form:
YV a,b,cs.t. X(a,b,c),(Y(a,b,c)), where X is the con-
junction of the predicates of S and Y is the conjunction
of the predicates of C' which are not predicates of S.

This is better explained by example: suppose we use
parameters [2] and the concept of prime digits:

[n,a] : a is a digit of n A a is prime .
The only sub-concept of this is the concept of digits.

Hence the new concept will have a quantification over
the digits of n, stating that they are all prime:

[n] : Va s.t. ais a digit of n, (a is prime).
This is the concept of integers with all prime digits.
To produce a data table for the new concept, the data
table of the sub-concept S is found and HR looks at
every tuple in it for a particular object of interest. If
all the tuples are also found in the data table for C,
a new tuple is constructed containing just the object
and added to the data table for the new concept.

Sometimes objects with all subobjects satisfying a re-
lation are rare and it may still be interesting to find an
object which has at least one such subobject. The ex-
ists production rule generates concepts with this kind
of existential quantification. The construction of new
concepts by the exists production rule is similar to that
performed by the forall rule.

3.3 The Match Production Rule

Square numbers, self inverse elements in groups and
loops in graphs from a node to itself are all concepts
where some objects or subobjects relate to themselves.
The match production rule implements a method to
construct concepts with this nature. Each paramet-
erisation for this rule details how to find tuples where
some of the objects are equal, with the proviso that
they are not different types of objects, such as nodes
and edges of graphs. For instance, the parameters

[1,2,2] specify that tuples where the last two subob-
jects are equal are to be extracted into a new concept.
As the objects will be equal, the corresponding vari-
ables in the predicates must also match. Therefore
predicates for the new concept are constructed by tak-
ing the predicates for the old concept and matching
the variables. For example, given parameters [1,2,2]
and the multiplication concept:

[n,a,b]:alnAbnAaxb=n
if we extract all those tuples for which the last 2 objects
are equal, we get this concept:
[n,a]l:alnAaxa=n

which is a construction made on the way to defining
square numbers. Note that the arity of the concept
has been reduced, ie. the predicates are now binary,
as the third variable is the same as the second. To con-
struct a data table for the new concept, HR extracts all
those tuples where the objects in the columns match
as prescribed by the parameters. It then discards the
repeated columns relating to the repeated variables.

3.4 The Size and Split Production Rules

The number of divisors of a integer is the well known
T-function and the size of the centre of groups is an
important group theory notion. Also, groups with one
central element and integers with two divisors are well
known concepts (symmetric groups and prime num-
bers respectively). This indicates that taking the size
of a set of subobjects, and identifying objects with a
set of a particular size are two general ways to con-
struct mathematical concepts.

Given a concept, C, the size production rule calculates
set sizes. Similar to the forall rule, information about
specific subobjects is replaced by a summary of how
many have a particular property. So, this rule is para-
meterised by sets of variable numbers such as [2, 3]
which specify that subobjects appearing in the 2nd
and 3rd columns of the tuples for C' are to be coun-
ted. The predicates for the new concept are produced
by first finding all predicates involving no variables for
the sub-objects to be counted. These are added to the
new set, along with an additional predicate involving
a new variable, say . The new predicate will be of
the form: z = |{(a,b,¢) : Z(a,b,c)}|, where Z is the
conjunction of the set of predicates which involve the
variables for the sub-objects being counted.

For example, if we start with the concept of division:
[n,a] : aln, we can count the number of divisors of
n. Removing the predicates which involve divisors
leaves only the sub-concept of integers. A new let-
ter is generated, =, and the predicate to add will be
z = |{a: a|n}|. This produces the m-function:

[n,z] : 2 = [{a: a|n}|

The new data table is constructed by finding the sub-
concept, S, with the predicates of C' involving variables
not appearing in the new set size predicate. Then, for
each tuple in the data table of S, the number of times
it appears in the data table for C' is counted. Finally,
this coefficient is added to the tuple to produce a tuple
for the new data table.

The split production rule takes a concept generated by
the size production rule and finds those objects where
the set size is either 0, 1 or 2 (or a higher number,
depending on the user’s preferences). To produce new
predicates, it simply replaces the variable representing
the set size with the value the set size must be. For
example, taking the 7 function above, and replacing
the x by 2, we get the concept of prime numbers:
[n] : 2 =[{a: aln}|

This action reduces the arity of the concept, as one of
the variables has changed to a fixed number.

This rule can also fix subobjects to be particular val-
ues. For example, if it extracts all those integers where
2 is a divisor, it produces even numbers. The paramet-
erisations specify which columns of the tuples to look
for which values in. For example, to get prime num-
bers, we need to look for the number 2 in the second
column of the 7-function tuples. Here the paramet-
erisation is written [2] = [2], with the first list being
the columns to look in, the second list being the val-
ues to look for. The new data table is constructed
by finding those tuples in the data table of C' where
the columns specified have the values specified. Then
the columns with fixed values are discarded, and any
repeated rows which result are also discarded.

3.5 The Compose Production Rule

The compose production rule covers both the compos-
ition of functions, and the specialisation of concepts,
construction methods which are ubiquitous in every
mathematical domain. HR can compose a concept C
with a partner P by adding the predicates of P to
those of C, effectively overlapping the concepts. For
example, given two function concepts:

]z =f(n) and [n,y]:y=g(n)
the construction can be function composition:

[nz,y] @ = f(n) Ay = g(x) or
[n,2,y] :x =g(n) Ay = f(z)
in which case the arity of the concept increases. It can
also be a specialisation step:
[0, 2] sz = f(n) Az = g(n)

[the n are those special ones for which f(n) = g(n)].
The parameterisations are sets of numbers which spe-
cify how the predicates of P are to be overlapped with

[n,a] : a|n [n,al:a<n

compose [0,1,2]

‘ [nya,b] :a <nAbla ‘

compose [1,0,2]

‘ [n,a,b}:aﬁn/\b\a/\bm‘

size [3]

‘ [nya,z]:a<nAz= \{b:b|a/\b|n}|‘

split [3]=[1]

‘ [n,al :a <nAl=|{b:blaAbn}| ‘

size [2]

| na]:z=|{aza<nA1l=[{b:blanbin}}]|

Figure 1. Construction of the ¢ function

those of C. For example, if the parameterisation was
[1,0,2], this specifies that a new concept with predic-
ates over three variables is to be constructed. The
new concept will have the predicates of C. It will also
have the predicates from P, but the variables will have
changed - the first variable will be the first from the
new concept, and the second variable will be the third
variable from the new concept (as the number 2 ap-
pears in the third column of the parameters).

To build a data table for the new concept, HR runs
through the data table for C' and extracts any tuples,
t, which overlap in the prescribed way with a tuple, s,
from the data table of P. Then, for every pair (s, t), a
tuple for the new data table is constructed by overlap-
ping the tuples. For example, if the parameters were
[0,1,2], then we require a tuple s = [s1, s2] and a tuple
t = [t1,t2] for which ¢; = s5. If such a pair is found,
the tuple [s1, $2, 2] is added to the new data table.

3.6 Example Construction

Figure 1 details the construction of the number theory
¢ function which counts the number of integers less
than or equal to n which are coprime to it (two in-
tegers are coprime if the only divisor they share is 1).
This construction only requires 2 initial concepts (di-
visors and <), and 3 production rules (compose, size
and split). This demonstrates that complicated con-
cepts are reachable from fundamental concepts using
just a few production rules. We define the complex-
ity of a concept to be the number of concepts in its
construction history. The complexity of the ¢ function
is therefore 7. Often to impose a depth limit on the
search we set a complexity limit of around 10.

4. A Forward Looking Mechanism

As each new concept can conceivably be combined
with any other, and each production rule has a set
of parameterisations, HR’s searches lead to a combin-
atorial explosion. Asking HR to identify a concept
of complexity 7 or 8 means searching a space which is
too large to cover in a reasonable time. As discussed in
Colton et al. (in pressb), HR usually works by choos-
ing the best concept to use in the next theory form-
ation step. HR has eight measures to decide which
concept to use and the heuristic search is intended to
increase the yield of interesting concepts.

We tried this approach for concept learning, using
the invariance and discrimination measures described
in Colton et al. (1999). These measure how close
the categorisation produced by a new concept is to
the categorisation produced by the goal concept. For
example, suppose the goal concept is prime num-
bers, with this categorisation: [1,4,6,...],[2,3,5,...].
Concepts producing similar categorisations will score
highly, and hence will be used first in the heuristic
search. Unfortunately, this actually made matters
worse. We noted a drawback which is common in
heuristic searches - often to get to the concepts of real
interest, it is necessary to go via dull concepts the
search is designed to avoid. That is, certain concepts
necessary to the construction of the goal concept may
produce very different categorisations to that of the
goal concept and be ignored by the search mechanism.

We therefore adopted another way to use the produc-
tion rules - an exhaustive search enhanced by a mech-
anism for examination of new concepts in order to sug-
gest which production rules (if any) to apply to them.
Therefore, rather than identifying the present concepts
which are best, the mechanism identifies which future
concepts are best. For example, if trying to identify
the prime numbers, 2, 3, 5, etc. given the initial
concept of divisors of an integer, we would hope HR
would notice that there were exactly two divisors for
2,3,5 and so on. We would also want it to notice that
the non-examples did not have this property, and sug-
gest how to capitalise upon this. Similarly, if trying to
identify the integers 1,4,6,8,9,10,11,14,..., as soon
as it invented prime numbers, we would want it to no-
tice that the sequence members have no prime digits,
and to suggest we compose the new concept of primes
with the old concept of digits.

To do this, every new concept, C, is passed through
each production rule, R, which searches for a pattern.
If a pattern is found, a theory formation step stating
that R should be used with C is added to the top of
the agenda. For each production rule we have balanced

the need to spot different patterns with the need to do
this efficiently - looking too hard slows the search con-
siderably. The size production rule, for instance, looks
for 1 pattern: where the number of tuples in the data
table is the same for every positive example. As soon
as the pattern is broken, it stops looking, which im-
proves efficiency. Only if the pattern is true for all
the positive examples, will it look at the negative ex-
amples, in the hope that the pattern is not true for
them. Only if no negative example has the pattern
will the appropriate step be added to the agenda.

Some production rules effectively look two or even
three steps ahead. The match production rule finds
tuples (a,b,c) for which b = ¢. It can spot four pat-
terns in this way: for every positive example, (i) all
tuples have the property (ii) at least one tuple has
the property (iii) the same number of tuples have the
property and (iv) no tuples have the property. If any
of these patterns are found, they not only suggest the
use of the match production rule, but also the use of
another production rule after that. For example, if no
tuples are found, this suggests performing a match step
followed by a negate step, and the agenda is updated
accordingly. Similarly, if the same number of tuples
with the property was found for each positive example,
this would suggest performing a match step followed
by a size step, followed by a split step. Hence in cer-
tain cases, this mechanism looks three steps ahead,
allowing deeper access to the search space.

The compose production rule is treated differently,
as patterns for this are sought by relating the newly
formed concept to a partner concept. For efficiency
reasons, HR looks at every possible partner, but only
looks for a small number of common patterns. In par-
ticular, it notices that (i) the output of two functions
are the same for each positive example [e.g., that the
number of divisors equals the number of digits] (ii)
that all the positive examples have the property of the
concept and its partner [e.g., that an integer is both
prime and odd] and (iii) that a set of subobjects (or
the output from a function) has a property for each
positive example [e.g., that each digit is prime]. The
look-ahead functionality of the compose rule is very ef-
fective because HR often takes a long time to combine
concepts when performing an exhaustive search.

5. Integer Sequence Results

We have initially concentrated on HR’s ability at in-
teger sequence extrapolation, due to the availability of
the Encyclopedia to suggest sequences to learn. HR
has so far identified 125 sequences from the Encyclo-
pedia and 20 of the more well known ones are given

Table 2. Definitions for 20 well known number types

NUMBER TYPE SEQUENCE HR’s DEFINITION
balanced 2,9,10,12, .. f(n) = g(n)
composite 4,6,8,9, .. 7(n) #1or 2

even 2,4,6,8, .. divisible by 2
even-square 4,16, 36,64, . even and square
evil 3,5,6,9,.. f(n) is even
non-square 2,3,5,6,.. not square
odd 1,3,5,7,. not divisible by 2
odd-prime 3,5,7,11,. odd and prime
odd-square 1,9,25,49,. odd and square
odious 1,2,4,7,.. f(n) is odd
power-of-two 1,2,4,8,. 1 odd divisor
prime 2,3,5,7,. 2 divisors
prime-digits 2,3,5,7,. all digits are prime
prime-power 2,3,4,5, .. 1 prime factor
prime-squared | 4,9,25,49,.. square of a prime
repdigit 1,2,3,4,.. only 1 distinct digit
repunit 1,11,111,. repdigit, 1 is a digit
semi-prime 4,6,9,10, 2 prime factors
square 1,4,9,16,. of the form n x n
square-free 2,3,5,6, .. 1 square divisor

in table 2, with the (paraphrased) definitions that HR
produced for them. We let f(n) be the number of
1’s in the binary representation of n and g(n) be the
number of 0’s. In most cases, HR finds an instantly re-
cognisable, correct definition. In some cases HR finds
alternative definitions, e.g., it notices that powers of
two are the only integers with exactly one odd divisor.

The average time to learn one of these 20 concepts is
373.05 seconds with an exhaustive search, reducing to
just 3.65 seconds when the forward looking mechanism
is employed. The most striking examples of the effi-
ciency gain are the cases where two simple concepts are
combined into a more complicated one. For example,
odious numbers are those with an odd number of 1’s in
their binary representation, e.g., 25 is odious because
it is written 10011 in binary, with three 1’s. HR cannot
learn this until it has invented both the concept of odd
numbers and the function which counts the number of
ones in the binary representation of an integer. These
were the 26th and 54th concepts produced respect-
ively. When concept 54 was introduced, the forward
looking mechanism determined that it should compose
with concept 26 and this led to the solution after only
7 seconds. Without the heuristic, HR took 90 minutes
to get around to composing concepts 26 and 54.

As well as learning well known sequences, we identi-
fied sequences missing from the Encyclopedia of In-
teger Sequences. Given any integers a, b, c and d such
that 0 < a < b < ¢ < d < 10, the Encyclopedia
has a sequence beginning a,b, c,d, with just two ex-
ceptions: there are no sequences starting with 4,5,6,9
or 4,5,7,9. We used HR to extrapolate these. The
sequence 4,5,7,9 was very easy, HR simply invented

the concept of primes + 2. The sequence 4,5,6,9
was more difficult. The solution HR found uses the
binary representation of an integer, n, to write it as
n =201 42024 420+ For example 11 = 20421 423,
HR first used the exists production rule to define the
set: b(n) = {jl,jg, cee ,jk}, e.g., b(].].) = {0,]., 3}
Then it composed this with the concept of divisors
and defined those divisors which appear in b(n). For
example, b(6) = {1,2} so divisors 1 and 2 of 6 appear
in b(6). Finally, HR negated this concept, looking at
divisors which do not appear in b(n), and it spotted a
pattern for the integers 4, 5,6 and 9: they have exactly
2 divisors which do not appear in b(n). ie. 4,5,6,9 are
the first four integers, n, for which:
{a:aln Aagb(n)} =2.

This sequence continues: 4, 5, 6, 9, 13, 14, 15, 17 and
we see that HR has intelligently extrapolated 4, 5,6, 9.
However, this sequence seems to have little value other
than providing an answer to our question.

6. Related Work

The AM program (Davis & Lenat, 1982) worked in
number theory, re-inventing concepts like prime num-
bers and making conjectures such as Goldbach’s con-
jecture. Starting with 115 concepts, AM applied one of
242 heuristics to determine which task to do next - ne-
cessary as it often had over 2000 tasks on the agenda.
Some heuristics were very specialised, enabling AM
to reach particular concepts and sometimes the user
guided AM. HR’s theory formation is much simpler: it
starts with only a few initial concepts, uses only seven
construction techniques and has only eight measures
of interestingness. AM was never applied to machine
learning tasks such as identifying particular concepts.

The Graffiti program, (Fajtlowicz, 1988), makes con-
jectures in graph theory stating that one summation of
numerical invariants is always less than another sum-
mation. Its concept formation is limited to summing
invariants, and it is not used to identify concepts. The
simply stated but difficult conjectures have efficiency
applications and have been settled by many notable
mathematicians. In (Colton et al., in pressb), we com-
pare HR, AM, Graffiti and similar discovery systems.

6.1 Integer Sequence Extrapolation

The Encyclopedia of Integer Sequences comprises
around 54,000 sequences collected by Neil Sloane, with
contributions from many mathematicians. The user
supplies the first few terms of a sequence and the
Encyclopedia is searched until a sequence is found
which contains the given terms. There is also an
email server called the superseeker which works much

harder to find a match for a given sequence. Super-
seeker transforms the input sequence and searches for a
match for the transformed sequences. Such transform-
ations include taking the difference between successive
terms and more complex manipulations such as the
Boustrophedon transformation by Millar et al. (1997).
Superseeker’s transformations are very good at identi-
fying sequences related to one already in the Encyclo-
pedia. However, due to the size of the database, it has
limited ability to relate two sequences. For instance,
even though there are many sequences about the di-
gits of an integer, and the sequence of prime numbers
is fundamental, the superseeker cannot determine the
nature of these numbers: 1,4,6,8,9,10,11,14, which are
simply those with no prime digits.

The SeekWhence program by Hofstadter (1995), was
designed from a cognitive science perspective to extra-
polate integer sequences. Early versions determined
the nature of an integer sequence by performing some
mathematical transformations, such as taking differ-
ences between terms, and some general pattern recog-
nition transformations, such as looking at every second
term in the sequence, or identifying repeating clusters.
For example, to extrapolate the sequence 1,4,9, 16, .. .,
SeekWhence would first transform it by taking the dif-
ference between successive terms to give: 3,5,7,... It
would then recognise this as a sequence in its data-
base, ie. odd numbers. As it knew how to extrapolate
odd numbers, it could derive a way to extrapolate the
original sequence. The project originally aimed to out-
perform mathematical approaches to sequence extra-
polation, such as those described by Persson (1966).
However, they became more interested in what Hof-
stadter calls ‘Haiku’ sequences, which are independent
of the context of mathematics, and only require general
pattern recognition rules to extrapolate. In this way,
SeekWhence could also extrapolate non-mathematical
sequences, in particular melodies.

HR occupies the middle ground between the Encyclo-
pedia and SeekWhence. The production rules are de-
signed to be applicable to many domains, so it does
not use the domain specific transformations of the
Encyclopedia. Nor does it use general pattern find-
ing templates and heuristics like SeekWhence. This
is because HR is primarily a machine discovery pro-
gram employed to invent new concepts - the patterns
of SeekWhence are so general they would produce a
plethora of concepts, many of which would be of little
interest to mathematicians. By identifying certain
general properties of mathematical concepts, we have
given HR a mathematical pattern generating ability
which it can use to invent new concepts in an attempt
to find a definition for a given set of examples.

6.2 A Qualitative Comparison with Progol

The Progol program (Muggleton, 1995) uses inductive
logic programming (ILP) to learn a concept given a
set, of predicates as background knowledge and a set of
positive and negative examples for the concept. There
is a striking similarity between the concepts Progol
and HR can reach. Firstly, Progol uses inverse resol-
ution to invent predicates which could have been re-
solved to produce the background and example predic-
ates. This produces concepts with conjunctions of pre-
dicates, predicates with repeated variables, and con-
junctions of predicates which contain the same vari-
able. We have found that this covers the concepts
that HR can produce with its compose, match and ex-
ists production rules. For example, HR produces this
definition for square numbers: integers n such that 3 a
s.t. a X a = n, and Progol produces this definition:

square(N) :- integer(M), multiply(N,M,M).

Secondly, the user is allowed to set mode declara-
tions detailing where background predicates can ap-
pear in the invented predicates. Mode declarations
also specify whether variables become instantiated and
whether negation of predicates is allowed. The ability
to instantiate variables corresponds exactly with HR’s
split production rule, and the ability to negate pre-
dicates corresponds with the negate rule. A combina-
tion of negated and existentially quantified predicates
corresponds to concepts produced by HR’s forall pro-
duction rule. For example HR produces the definition
for even numbers as being divisible by two. Given
the background predicate of divisors and allowed to
instantiate variables, Progol produces this definition:

even(N) :- divides(N,2).

Finally, we found that if we supply two additional
predicates as background knowledge from set theory,
namely the standard Prolog predicates of setof and
length, Progol can cover concepts produced by the
size production rule. For example, HR defines prime
numbers as having exactly two divisors, and Progol
produces this equivalent definition:

:— setof (M,divides(N,M),L),

length(L,2).

Therefore, for each of HR’s production rules, we have
found a way for Progol to produce concepts of a similar
nature. Interestingly, to cover all the production rules
requires three different aspects of Progol’s functional-
ity. Only one of HR’s production rules corresponds to
additional background knowledge, which adds to our
claim that the production rules are very general. We
are currently undertaking a quantitative assessment
of HR and Progol to enable us to better compare and
contrast issues such as coverage, efficiency and control.

prime(N)

7. Further Work and Conclusions

Our approach to the identification of mathematical
concepts is specific to mathematics, but uses no in-
formation specific to any domain and provides a way
to identify types of graphs, types of groups and types
of numbers with very little modification to the pro-
gram. It is likely that the best approach to identifying
mathematical concepts will combine programs with:
® A large database, e.g., the Encyclopedia.

® Domain specific transformations, e.g., Superseeker.
® General pattern recognition, e.g., SeekWhence.

¢ Inventive abilities, e.g., Progol, HR.

HR starts with the fundamental concepts of a domain,
modelling the way in which a concept can be learned
completely from scratch. HR would benefit from a
knowledge base of interesting concepts in a domain.
Using concepts like prime numbers as the basis for the-
ory formation rather than more fundamental concepts
like divisors, it could progress further into the search
space. It would also benefit from some domain spe-
cific transformations, and we have begun implement-
ing some based on those used by superseeker.

We can also look at the concepts which Progol can but
HR cannot learn, and suggest new production rules
to fill the gap. Progol can generate recursive defini-
tions, such as the factorial function. We plan a ‘path’
production rule to enable HR to construct concepts
with recursive definitions. Also, Progol is able to pro-
duce definitions with disjunction of predicates, such
as integers which are prime or square. We have so far
avoided a ‘disjunct’ rule, worried that the theories pro-
duced will contain too many dull disjunctions, but we
plan to implement it for machine learning purposes.

As discussed by Langley and Michalski (1986), there
is much overlap between machine learning and ma-
chine discovery, with machine learning tools discover-
ing new results in science, e.g, ILP in biology. We
have discussed the reverse problem here: how to ap-
ply a discovery program to machine learning problems.
Presenting HR’s production rules as a tool for machine
learning, we have provided some justification for each
based on observations from the mathematical literat-
ure, and detailed how each forms concepts. We have
shown that the search space defined by the rules can
reach many complicated concepts in number theory
such as the ¢-function and that our forward looking
mechanism greatly improves efficiency.

The project to apply HR to machine learning tasks
is far from complete. A qualitative comparison of HR
and Progol has highlighted that HR’s production rules
correspond with various aspects of Progol, showing

that HR can theoretically cover many (but not all) of
the concepts Progol can learn. We are presently un-
dertaking a quantitative comparison of the systems.
In Colton et al. (in pressa) we have shown that HR
can invent interesting integer sequences, in effect pos-
ing sequence extrapolation problems. We hope to have
shown here that it can also solve them.

Acknowledgements

This work is supported by EPSRC grant GR/M98012.
We would like to thank the anonymous reviewers for
their very helpful comments, and Stephen Muggleton
for many in-depth discussions about ILP and HR.

References

Colton, S., Bundy, A., & Walsh, T. (1999). HR: Auto-
matic concept formation in pure mathematics. Pro-
ceedings of the Sixteenth International Joint Con-
ference on Artificial Intelligence (pp. 786-791).

Colton, S., Bundy, A., & Walsh, T. (in pressa). Auto-
matic invention of integer sequences. Proceedings
of the Seventeenth National Conference on Artificial
Intelligence.

Colton, S., Bundy, A., & Walsh, T. (in pressb). On
the notion of interestingness in automated mathem-
atical discovery. International Journal of Human
Computer Studies.

Davis, R., & Lenat, D. (1982). Knowledge-based sys-
tems in artificial intelligence. New York: McGraw-
Hill.

Fajtlowicz, S. (1988). On conjectures of Graffiti. Dis-
crete Mathematics, 72, 113—118.

Hofstadter, D. (1995). Fluid concepts and creative ana-
logies. New York: Basic Books.

Langley, P., & Michalski, R. (1986). Machine learning
and discovery. Machine Learning, 1, 363—366.

Millar, J., Sloane, N., & Young, N. (1997). A new op-
eration on sequences: the Boustrophedon transform.
Journal of Combinatorial Theory, 17A, 44-54.

Muggleton, S. (1995). Inverse entailment and Progol.
New Generation Computing, 13, 245-286.

Persson, S. (1966). Some sequence extrapolating pro-
grams: A study of representation and modelling in
inquiring systems (Technical Report STAN-CS-66-
050). Department of Computer Science, Stanford
University, Stanford, CA.

