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AbstractWe extend previous work on di�erence identi�cation and reduction as a technique forautomated reasoning. We generalize uni�cation so that terms are made equal not onlyby �nding substitutions for variables but also by hiding term structure. This anno-tation of structural di�erences serves to direct rippling, a kind of rewriting designedto remove structural di�erences in a controlled way. On the technical side, we give arule-based algorithm for di�erence uni�cation, and analyze its correctness, complete-ness, and complexity. On the practical side, we present a novel search strategy (calledleft-�rst search) for applying these rules in an e�cient way. Finally, we show how thisalgorithm can be used in new ways to direct rippling and how it can play an importantrole in theorem proving and other kinds of automated reasoning.



1 IntroductionHeuristics for judging similarity between terms and subsequently reducing di�erences have been applied toautomated deduction since the 1950s when Newell, Shaw, and Simon built their \logic machine"[NSS63]for a propositional calculus. Their intent was to simulate the behavior of a human on the same task.More recently, in resolution theorem proving, a similar theme of di�erence identi�cation and reductionappears in [BS88, Dig85, Mor69]. In this work a partial uni�cation results in a special kind of resolutionstep (E or RUE-resolution) where the failure to unify completely produces new inequalities that representthe di�erences between the two terms. This leads to a controlled application of equality reasoning whereparamodulation is used only when needed. The intention was not to design a human oriented problemsolving strategy, but rather, to use di�erence identi�cation and reduction as a means of reordering apotentially in�nite search space.Here we report on research sharing both these cognitive and pragmatic aims. We have developed ageneral procedure called di�erence uni�cation for identifying di�erences between two terms or formulas.Di�erence uni�cation extends uni�cation in that it decides if terms are syntactically equal not only by givingassignments for variables but also by computing what incompatible term structure must be removed. Thisincompatible term structure, called wave-fronts , is marked by sets of annotations which are used to directa special kind of rewriting called rippling1; rippling seeks to reduce the di�erences between the terms bymoving the wave-fronts \out of the way" while not disturbing the unannotated parts of the terms.This research is the outgrowth of previous work at Edinburgh in inductive theorem proving. ThereBundy [Bun88, BSvH+92] suggested that in proofs by mathematical induction, the induction conclusioncould be proven from the induction hypothesis by rippling on the induction conclusion. Rippling has beenemployed in the OYSTER/CLAM prover. A similar kind of rewriting was developed independently byHutter [Hut90], from ideas in [Bun88], and employed in the INKA system. Both systems have enjoyed ahigh degree of success stemming from several desirable properties of rippling. These include (see [BSvH+92])that rippling involves very little search and rippling always terminates since wave-fronts are only moved insome desired (well-founded) way | usually to the top of the term.Motivated by a desire to apply rippling outside of inductive theorem proving, in [BW92] we introduceddi�erence matching which extends matching to annotate the matched term so it can be rewritten usingrippling. We list there, as well as in [WNB92] several applications of this idea. In this report we takeanother step forward. Our contributions are several fold. First we extend di�erence matching to di�erenceuni�cation whereby substitutions and annotations are returned for both terms. The rule based algorithmwe give uses conventional uni�cation in a transparent way whereby other additions to uni�cation, such asequations or higher order patterns, can be easily made. We prove the algorithm given is both sound andcomplete with respect to its speci�cation. Second, unlike di�erence matching, di�erence uni�cation canreturn a large number of matches which we are not interested in. For example, there may be exponentiallymany ways to annotate two identical terms. Hence, we demarcate two restricted classes of useful answers(which we call strongly and weakly minimal). Further, we give a novel search strategy (a meta-interpreter)that �nds answers in these classes with minimal search. We have written such an interpreter and report onthis as well. Third, we give a thorough analysis of the complexity of di�erence uni�cation and subproblems.Finally, we provide examples of how di�erence uni�cation can be used. In doing so, we present a newparadigm for theorem proving/problem solving whereby proof proceeds by alternating between annotatingdi�erences and reducing them. This combination is di�erent from previous work combining rippling anddi�erence matching since here successful rippling does not guarantee successful rewriting of one term withanother; rather, it must be seen as one step, in possibly many, of di�erence reduction. This, along withdi�erences between traditional rewrite based theorem proving, is developed further in the next section.1The name rippling comes from rippling-out a term coined by Aubin [Aub75], a student of Boyer and Moore's, duringhis study of generalization in inductive theorem proving. It is based on an observation that one can iteratively unfold (as in[BD77]) recursive functions in the induction conclusion, preserving the structure of the induction hypothesis while unfolding.1



2 Applications2.1 NormalizationWe begin with a simple example that both introduces notation and illustrates how di�erence uni�cationcan be used to apply rippling in a new way: as an iterative di�erence reduction technique. In rippling'soriginal role in inductive theorem proving, successfully rippling the goal always allows use of the inductionhypothesis. More particularly, in an inductive proof the induction conclusion is an image of the inductionhypotheses except for the appearance of certain function symbols applied to the induction variable in theconclusion. The rest of the induction conclusion, which is an exact image of the induction hypothesis, iscalled the skeleton. The function symbols that must be moved are the wave-fronts. For example, if we wishto prove p(x) for all natural numbers, we assume p(n) and attempt to show p(s(n)). The hypothesis andthe conclusion are identical except for the successor function s(:) applied to the induction variable n. Wemark this wave-front by placing a box around it and underlining the subterm contained in the skeleton,p( s(n) ). Rippling then applies just those rewrite rules, called wave-rules, which move the di�erence outof the way leaving behind the skeleton. In their simplest form, wave-rules are rewrite rules of the form�( �(
) ) ) �(�(
)) . By design, the skeleton �(
) remains unaltered by their application. If ripplingsucceeds then the conclusion p( s(n) ) is rewritten using wave-rules into some function of p(n); that is, intof(p(n)) (f may be the identity). At this point we can call upon the induction hypothesis.An analogous situation occurs in di�erence matching. If we can match two terms, annotating one withwave-fronts, then successful rippling allows rewriting one to the other. However, this fails with di�erenceuni�cation as both terms are annotated. For example, consider the associative (in�x) function symbol +.The following are wave-rules.2 (X + Y ) + Z ! X + (Y + Z) (1)X + (Y + Z) ! (X + Y ) + Z (2)As previously noted, rippling terminates because wave-fronts in the rewrite rules must match those in therewritten term and these are only moved in some well-founded direction. We may therefore rewrite withthe associativity of + in both directions. Consider proving((a+ b) + c) + d = a+ (b+ (c+ d)):If we di�erence unify the left hand side of this equation with the right, there are 10 annotated answerscorresponding to the 6 ways of selecting any 2 constants from the 2 terms and 4 ways of selecting any one.In general, we prefer only those with minimal amounts of annotation. Furthermore, as wave-rules onlyexist to ripple these minimal annotations, rippling would not �nd proofs for the others. Picking minimalannotations (formally de�ned in x3) narrows the choice to 2:((a+ b) + c) + d = a+ (b+ (c+ d)) (3)(a+ b) + c) + d = a+ (b+ (c+ d)) (4)Both of these will lead to proofs by rippling (the �rst giving a left associative normal form, the secondgiving a right). In what follows we concentrate on the �rst. The left hand side of this equation is completely2In what follows capital letters represent variables and lower case letters constants and bound variables.2



rippled-out: no more wave-rules need (or can) be applied since the wave-fronts are already outermost. Theright hand side ripples with (2) yielding((a+ b) + c) + d = (a+ b) + (c+ d)and now both terms are rippled-out. Though rippling is done, we have not succeeded in proving the termsequal since the wave-fronts themselves di�er.One might conclude that rippling has not accomplished anything but that would be false. It has reducedthe \inner di�erence" between these terms: each now contain a copy of the previous skeleton a+ b intact.Di�erence unifying ((a+ b)+ c)+ d against (a+ b)+ (c+ d) reveals this. There are 12 annotations in total,but only 3 are minimal, and only one of these can be rippled:((a+ b) + c) + d = (a+ b) + (c+ d) :We have made progress since these terms have the larger skeleton (a+ b) + c. Again the right hand side isrippled-out; rippling on the left with (2) yields the right hand side, so we are done. This example illustratesa general phenomenon: iterating di�erence uni�cation and rippling successively decreases the di�erencebetween two terms.This combination can be very e�ective. In associative reasoning each iteration of di�erence uni�cationand rippling increases the skeleton and hence terminates successfully. Of course, exhaustive applicationof one of the associativity rules would also su�ce, but there are advantages in using di�erence uni�cationand rippling. To begin with, one needn't completely normalize terms, rippling proceeds only as far as isrequired to reduce the di�erence. Moreover, as both left and right associativity may be used, fewer rewritesteps may be required. More signi�cantly, there are theories where we need both (See x2.3 for an example);here normalization would loop. The combination of di�erence uni�cation and rippling is often an e�ectiveheuristic in theories where rewrite based procedures do not exist; the next two examples, aside from beingmore general, illustrate this.2.2 SeriesDi�erence uni�cation and rippling have proved also very useful in summing series. Consider, for example,the problem of �nding a closed form sum formXj=0 nXk=0 k � 1s(j)� s(s(j))using the standard result (such results are computed automatically in [WNB92])NXi=0 1s(i) � 1s(s(i)) = 1� 1s(s(N)) : (5)We encode the problem of �nding a closed form sum as the task of proving a theorem of the form,9S : mXj=0 nXk=0 k � 1s(j)� s(s(j)) = Swhere the existential witness S is restricted to be in closed form. To prove this theorem, we �rst eliminatethe existential quanti�er. The standard form method [WNB92] then di�erence uni�es the dequanti�ed goal3



with (5) giving the minimal annotationsNXi=0 1s(i) � 1s(s(i)) = 1� 1s(s(N)) ` mXj=0 nXk=0 k � 1s(j)� s(s(j)) = S:To ripple these di�erences away we use the wave-rules:BXj=A DXk=C U ! DXk=C BXj=AU (6)BXj=A C � U ! C � BXj=AU (7)1s(U)� s(s(U)) ! 1s(U) � 1s(s(U)) (8)where C and D are constant with respect to j. Note that (6) could not be used in a procedure based onexhaustive rewriting since, like associativity when used in both directions, it would loop.The standard form method �rst applies wave-rule (6) to the goal dividing its wave-front into two,NXi=0 1s(i) � 1s(s(i)) = 1� 1s(s(N)) ` nXk=0 mXj=0 k � 1s(j)� s(s(j)) = Sthen wave-rule (7),NXi=0 1s(i) � 1s(s(i)) = 1� 1s(s(N)) ` nXk=0 k � mXj=0 1s(j)� s(s(j)) = Sand �nally (8), after which rippling no longer applies,NXi=0 1s(i) � 1s(s(i)) = 1� 1s(s(N)) ` nXk=0 k � mXj=0 1s(j) � 1s(s(j)) = S:We therefore re-di�erence unify to give, as with the associativity example, a larger skeleton,NXi=0 1s(i) � 1s(s(i)) = 1� 1s(s(N)) ` nXk=0 k � mXj=0 1s(j) � 1s(s(j)) = S:Rippling, though unable to move the di�erences up completely, has reduced the inner di�erence. Indeed,the di�erence has been so reduced that we can now substitute with the standard result,NXi=0 1s(i) � 1s(s(i)) = 1� 1s(s(N)) ` nXk=0 k � (1� 1s(s(m)) ) = S:The standard form method now di�erence uni�es against the standard result for the sum of the �rst nintegers, and ripples with (7) to complete the proof.4



2.3 Proof by ConsistencyOur �nal example addresses the integration with so called proof by consistency techniques, e.g. [Bac88,Fri86].3 Proofs are sets of equations and are transformed by applications of rules which may be roughlyclassi�ed as deduction and simpli�cation. Deduction rules generate new equations to be proven via super-position (critical pair formation) and simpli�cation rewrites equations using a set of (ground) con
uentrewrite rules R, lemmas L, and the original conjectured equations. In the presentation of such proof proce-dures, proof search strategies are usually not given. In implementations, e.g., Unicom [Gra90] considerableprovision must be made for human guidance, especially when lemmas are used to simplify equations.Here we show that a strategy based on di�erence uni�cation and rippling can often guide such proofs.This is based on the fact that recursive equations and many lemmas can be parsed as wave-rules. As anexample of the kind of control problems, consider a proof of:(y + z)� x = y � x+ z � x (9)from the rewrite rulesR = f0 +X ! X; s(X) + Y ! s(X + Y ); 0�X ! 0; s(X)� Y ! Y +X � Y g:Superimposing the base and step case of addition against the goal yields the following critical pairs.hz � x; 0� x+ z � xi (10)hs(y + z)� x; s(y)� x+ z � xi (11)The �rst pair con
ates after rewriting with the base-case of � and +. The second simpli�es on the left tox+(y+ z)�x which can be further reduced using (9) to x+(y�x+ z�x). On the right we can simplifyto (x + y � x) + z � x which is irreducible. Since the two sides are not identical, the proof has failed.Since proof by consistency formalisms allow application of lemmas this failed proof can be completedusing the associativity of +. But how do we control such rewrite rules? Unlike the application of rewriterules from R, application of lemmas won't necessarily terminate.Here we suggest that di�erence uni�cation and rippling provide a suitable strategy for controllingsimpli�cation based on the following observations. First, de�nitions in R can usually be parsed as wave-rules using di�erence uni�cation where variables in equations are treated as constants during the di�erenceuni�cation.4 Primitive recursive de�nitions can always be parsed as wave-rules. For example, if we have aprimitive recursive de�nition f(s(X); Y )! h(X;Y; f(X;Y )we can di�erence unify the two sides yielding the minimal annotationf( s(X) ; Y )! h(X;Y; f(X;Y )) :There is one other minimal annotation with skeleton Y but this is not a wave-rule since it does not movewave-fronts up. In our example, the recursive de�nitions in the rewrite set R are parsed as the wave ruless(X) +Y ! s(X + Y ) and s(X) �Y ! Y +X � Y . Second, new equations generated by deductionsteps may be annotated by di�erence unifying them with the original goal that was superimposed upon.3We assume familiarity with such techniques since a detailed presentation is beyond the scope of this paper. [BBH92]contains a more in depth discussion of these techniques and their relationship with rippling.4For proving theorems using explicit induction, CLAM has an algorithm for wave-rule parsing. Unfortunately, we haverecently discovered that this is both incomplete and unsound. As well as failing to return all wave-rules, it returns someannotations which are ill-formed. We are currently re-implementing CLAM's wave-rule parser with an algorithm based onground di�erence uni�cation and termination analysis for orienting the wave-rules.5



When recursive de�nitions are superimposed, di�erence uni�cation succeeds if the de�nitions form wave-rules since rewriting with wave-rules is skeleton preserving. In our example, di�erence unifying (11) with(9) annotates the critical pair as h s(y + z) � x; s(y) � x+ z � xi:Finally, lemmas in L can often be parsed as wave-rules via di�erence uni�cation, e.g., the associativity of+ in our example.To complete our example, we use the annotated rules in R and lemmas in L to ripple the annotatedcritical pair. Rippling with the recursive de�nition of � on both sides yieldsx+ (y + z)� x = (x+ y � x) + z � xNow we ripple with (1) on the right hand side,x+ (y + z)� x = x+ (y � x+ z � x) ;and both sides of the equality are fully rippled. We can either complete the proof by rewriting the lefthand side with (9) (analogous to what Boyer and Moore call \cross fertilization" in explicit induction) orby removing wave-fronts all together with the wave-rule X + Y = X + Z ! Y = Z which yields (9)(analogous to \fertilization" in explicit induction).We have used [BBH92] as a source of theorems to test the above ideas. The 20 theorems there containtwo types of operators: propositional connectives (like )) and recursively de�ned functions. Of these, 6use propositional connectives which do not form wave-rules (e.g., (false) X) = true) and hence cannotbe proven using rippling alone. This is not surprising for rippling is a syntactic heuristic; theorem proversbased on rippling (like Clam and INKA) prove propositional theorems by other means. The remaining 14theorems only use functions de�ned by primitive recursion (on the �rst suitable argument) whose de�nitionsare parsed by our di�erence uni�er as wave-rules. For these 14 theorems, we generated critical pairs byconsidering superpositions at all complete sets of positions (even when this generated unnecessary criticalpairs). All 14 are then proved using rippling on the rule set augmented in some cases with additionallemmas that form wave-rules. The following table contains a representative set of examples.Theorem Lemmas (if any) used as wave-rulesrev(rev(X)) = X noneeq(double(half(X); X) = even(X) nonehalf(double(X)) = X nonerev(app(X;Y )) = app(rev(Y ); rev(X)) app(X; [] = X; app( app(X;Y ) ; Z) = app(X; app(Y; Z)len(rev(X)) = len(X) len( app(X; [Y ]) ) = s(len(X))3 Speci�cationTo specify di�erence uni�cation we must be more precise about the representation of annotations. As in[BW92] annotations are represented in a normal form in which every wavefront has an immediate subtermdeleted (i.e. all wavefronts are one functor thick). In addition, rather than superimposing a particularrepresentation on terms (like the \box-and-hole" notation used earlier in this paper), annotations will beabstracted out and represented separately; this makes it much easier to specify and describe a di�erenceuni�cation algorithm (although we will continue to use the \box-and-hole" for aiding visualisation ofannotation sets). Annotations will therefore be represented by the set of positions of the wave-holes; as the6



wavefronts are always one functor thick, the position of the wave-hole uniquely determines the wavefront.Positions are de�ned recursively as follows: the set of positions in the term t is Pos(t) where,Pos(f(s1; :::; sn)) = f�g [ fi:p j 1 � i � n ^ p 2 Pos(si)gThe subterm of a term t at position p is t=p where: t=� = tf(s1; :::; sn)=i:p = si=pFor example, annotations for f(g( f(a; b) ); g(b) ) are given by the set f1:1:1:�; 2:1:�g. In what followswe shall only work with sets of annotations that are well-formed with respect to given terms. That is theaddresses refer only to positions inside the expression tree, and no two addresses di�er only in the �naladdress position (which would correspond to a wave-front with two wave-holes).A few remaining auxiliary de�nitions are needed. By recursion on terms it is simple to de�ne a functionskeleton(t; At) which takes a term t and a set of annotations for that term At, and returns the unannotatedpart of the term. For example, the skeleton of f(g( f(a; b) ); g(b) ) is f(g(a); b). In de�ning di�erenceuni�cation we use a position consing function p@i that adds addresses to the end of a position.�@i = i:�(p:q)@i = p:(q@i)We say that q extends p i� q = p@i, or q extends some r and r extends p.Di�erence uni�cation is a relation written du(s; t; As; At; �) that satis�es the property�(skeleton(s; As)) = �(skeleton(t; At));where � is a most general uni�er. Note that this is rather di�erent from the much harder homomorphicembedding problem [NS87] where the substitution is applied before deleting function symbols possiblyincluding those introduced by the substitution.As in the examples, we often demand a minimality condition on the annotations. Annotations areminimal if they are the least amount of annotation necessary to make terms uni�able (just as a mostgeneral uni�er is the least amount of substitution needed to make the terms identical). There is a choicethough concerning whether annotations are minimal with respect to a given substitution, or with respectto all possible substitutions. This choice has important consequences both for applications of di�erenceuni�cation, and as we will later demonstrate, for the algorithm's search properties.De�nition 1 (weak minimality) As and At are weakly minimal annotations of s and t and � i� :9A0s �As, A0t � At with �(skeleton(s; A0s)) = �(skeleton(t; A0t))De�nition 2 (strong minimality) As and At are strongly minimal annotations of s and t i� :9A0s; A0twith (A0s � As; A0t � At) or (A0s � As, A0t � At) and skeleton(s; A0s) uni�able with skeleton(t; A0t)For example, h f(X) ; f(a)i is weakly minimal with substitutionX 7! f(a) but not strongly minimal, whilsth f(X) ; f(Y ) i is neither weakly minimal nor strongly minimal (the only strongly minimal di�erenceuni�cation is no annotation). A simple consequence of the de�nitions is that strongly minimal solutionsare also weakly minimal and in the ground case (e.g., wave-rule parsing) they coincide. Note that alldi�erence matches (variables and annotations only on one of the two terms) are weakly minimal. Aswe illustrated in the applications, we can often avoid many useless di�erence uni�ers by restricting ourattention just to minimal di�erence uni�ers. 7



4 AlgorithmAs is common practice in the uni�cation community (e.g., [JK91]), we give an algorithm for di�erenceuni�cation by means of transformation rules and (in the next section) a search strategy for applying theserules. To di�erence unify s with t, we reduce the quadruplehfs = t =�;�g; fg; fg; fgito hfg; �; As; Atiwhere � is a set of substitutions, and As and At are the annotations of s and t. The notation \=" markspositions of terms within s and t; these are used to record annotation addresses.The rules for di�erence uni�cation are given below. The predicates valids(p) and validt(p) are de�nedrelative to the input terms s and t and are de�ned as p 2 Pos(s) and p 2 Pos(t) respectively.DELETE hS [ fs = s = p; qg; �; As; Ati ) hS; �;As; AtiDECOMPOSE hS [ ff(s1; :::; sn) = f(t1 ; :::; tn) = p; qg; �; As; Ati )hS [ fsi = ti = p@i; q@i j 1 � i � ng; �; As; AtiELIMINATEL hS [ fX = t = p; qg; �; As; Ati ) hS[X 7! t]; � � t=X;As; Ati if :occurs(X; t)ELIMINATER hS [ fs = X =p; qg; �; As; Ati ) hS[X 7! s]; � � s=X;As; Ati if :occurs(X; s)IMITATEL hS [ fX = f(t1; :::; tn) = p; qg; �; As; Ati ) hS[X 7! f(X1; :::;Xn)] [ fXi = ti = p@i; q@i j 1 � i � ng;� � f(X1; :::;Xn)=X;As; At; i if 8i 2 [1; n] validt(q@i)IMITATER hS [ ff(s1; :::; sn) = X =p; qg; �; As; Ati) hS[X 7! f(X1; :::;Xn)] [ fsi = Xi = p@i; q@i j 1 � i � ng;� � f(X1; :::;Xn)=X;As; At; i if 8i 2 [1; n] valids(p@i)HIDEL hS [ ff(s1; :::; sn) = t = p; qg; �; As; Ati ) hS [ fsi = t = p@i; qg; �; As [ fp@ig; Ati if valids(p@i)HIDER hS [ fs = f(t1; :::; tn) = p; qg; �; As; Ati ) hS [ fs = ti = p; q@ig; �; As; At [ fq@igi if validt(q@i)DUNIFY : transformation rules for di�erence unifying s and tThese rules need to be applied non-deterministically. For example, in di�erence unifying f(x; a) withf(g(a); x) if we apply DECOMPOSE and ELIMINATEL committing to x 7! g(a), we fail to get a solution.The rules are closely related to rules for matching, di�erence matching and uni�cation. Matching is im-plemented by DELETE, DECOMPOSE, ELIMINATEL; di�erence matching is implemented by DELETE,DECOMPOSE, ELIMINATEL, HIDEL; and uni�cation is implemented byDELETE, DECOMPOSE, ELIMINATEL,ELIMINATER. Note that uni�cation can also use rules, often called CONFLICT and CHECK, which causeuni�cation to fail immediately when the outermost functions disagree or an occurs check error happens.In di�erence uni�cation we cannot use such rules and must fail only when the search space has beenexhaustively traversed. The IMITATEL and IMITATER rules can also be used in uni�cation, althoughELIMINATEL and ELIMINATER will always work (more e�ciently) in their place without losing thecompleteness of uni�cation. Di�erence uni�cation does, however, need IMITATEL and IMITATER forcompleteness: consider di�erence unifying X and f(g(a)), returning the substitution X 7! f(a) and theannotations f( g(a) ). The DUNIFY rules can be seen as the merging of the rules for uni�cation and therules DELETE, DECOMPOSE, HIDEL, and HIDER which add an arbitrary annotation; since the rules forrecursing through the term structure are common to both these rule sets, their merging is more e�cientthan a naive \generate annotations" and \unify skeletons".These rules have been implemented in Prolog and the following is a table of the results of di�erenceunifying (X + Y ) + Z with X + (Y + Z) and a trace of the execution of the �rst result.
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No. s t �1 (X + Y ) + Z X + (Y + Z) fg2 (X + Y ) + Z X + (Y + Z) fg3 (X + Y ) + Z X + (Y + Z) fg4 (X + Y ) + Z X + (Y + Z) fg5 (X + Y ) + Z X + (Y + Z) fg6 (X + Y ) + Z X + (Y + Z) fg7 (X + Y ) + Z X + (Y + Z) fY+Z/Xg8 (X + Y ) + Z X + (Y + Z) fX+Y/Zg
hf(X + Y ) + Z = X + (Y + Z) =�;�g; fg; fg; fgi+ HIDELhfX + Y = X + (Y + Z) = 1:�;�g; f1:�g; fg; fgi+ DECOMPOSEhfX = X) = 1:1:�; 1:�; Y = Y + Z = 1:2:�; 2:�g; f1:�g; fg; fgi+ DELETEhfY = Y + Z = 1:2:�; 2:�g; f1:�g; fg; fgi+ HIDERhfY = Y = 1:2:�; 2:1:�g; f1:�g; f2:1:�g; fgi+ DELETEhfg; f1:�g; f2:1:�g; fgiThe �rst three annotations are strongly minimal and give the only wave-rules (oriented appropriately).The fourth, �fth and sixth annotations are neither weakly nor strongly minimal. The last two annotationsare weakly but not strongly minimal. This once again demonstrates that di�erence uni�cation is notunitary, even when restricted to strong or weak minimality.5 Left-�rst SearchThe transformation rules, when exhaustively and non-deterministically applied, generate all possible dif-ference uni�cations, not just those that are weakly or strongly minimal. We have therefore implementeda search algorithm (i.e., a meta-interpreter) for traversing the space de�ned by these rules so that weare guaranteed to encounter just the weakly or strongly minimal di�erence uni�cations. In the stronglyminimal case, potentially an exponential amount of search is saved.We �rst describe the structure of the search space. Nodes correspond to the quadruples giving thecurrent state. Arcs to the left result from applying one of the uni�cation rules: DELETE, DECOMPOSE,IMITATEL, IMITATER, ELIMINATEL, and ELIMINATER. Arcs to the right result from applying ahiding rule: HIDEL and HIDER. The key to returning minimal di�erence uni�cations is observing that anon-minimal di�erence uni�cation uses more applications of the hiding rules than a minimal one, thoughit may use a greater, lesser or equal number of uni�cation rules. Thus, in searching the tree we want tominimize right arcs since each adds more annotation. We call a search algorithm which does this left-�rstsearch. At the n+1-th ply of the search we explore all those nodes whose path back to the root includes nright arcs. This search strategy returns minimal cost solutions where hiding rules (right-rules) have (unit)cost and other rules (left-rules) having no cost. We have implemented a meta-interpreter that performsthis search as follows. Given a set of nodes N , left*(N) returns the set of nodes reachable from the nodesin N by taking any number of left arcs. The function right(N) returns the set of nodes reachable fromthe nodes in N by taking one right arc. Finally solutions(N) returns any answers in the set of nodes N .The �gure accompanying the following algorithm illustrates the order in which nodes in a binary tree areexplored under left-�rst search.function left-�rst(Start);Nodes := left*(fStartg);loop :Ans := solutions(Nodes);if Ans 6= fg then return Ans;Node := left*(right(Nodes));goto loop;
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For strongly minimal di�erence uni�cations, this algorithm returns the �rst set of answers and stops.For weakly minimal di�erence uni�cations, we must save the answers generated, and continues to searchcomparing new answers for weak minimality against previous ones. Unfortunately, to return all the weaklyminimal di�erence uni�cations we must search the whole tree. The advantage of left-�rst search is that wecan immediately tell whether an answer is weakly minimal.6 PropertiesLet us introduce some notation that will be used to prove properties of di�erence uni�cation and theDUNIFY rule set. We write hE; �;As; Ati D=) hE0; �0; A0s; A0tito indicate that there is a derivation D (that is, a possible empty sequence of DUNIFY rule applications)which transforms hE; �;As; Ati into hE0; �0; A0s; A0ti. We call annotation sets As and At proper with respectto an equation set E i� for all s = t = p; q 2 E, no annotation in As extends p and no annotation in Atextends q. Furthermore, we call a substitution � disjoint with respect to E i� the domain of � is disjointfrom the set of variables in the equations in E. Finally, to relate solutions of subproblems to solutions ofsuperproblems we de�ne a function strip which \adjusts" an annotation set by returning su�xes of a givenaddress pre�x. strip(A;�) = Astrip(A; p:�) = fq j p:q 2 AgTo prove soundness we �rst prove something stronger.Theorem 1 (Soundness on Subequations) If hs = t =�;�; fg; fg; fgi D=) hE; �;As; Ati D0=) hfg; �0; A0s; A0tithen for all s0 = t0 = p; q 2 E, �0(skeleton(s0; strip(A0s; p))) = �0(skeleton(t0; strip(A0t; q)))Proof: The proof uses induction on the length of D0. The base case, a 0 length derivation, is trivial sinceE = fg and so there are no s = t = p; q 2 E.In the step case, assume the theorem for derivations of length m and consider a length m+1 derivation.Consider the �rst rule application. Suppose it is a uni�cation rule. By the induction hypothesis we knowthat � is a uni�er for the skeleton of the subproblems produced by this rule. But the skeleton is notchanged by uni�cation rule and since they are sound for uni�cation, then � is a uni�er for E itself. Hence,given that the term addresses are properly computed by each uni�cation (easily checked), that annotationsin As or At don't refer to term addresses in E (properness) and that � does not already contain bindingsfor terms in E (disjointness) the theorem follows. Properness and disjointness hold since they hold forhE; �;As; Ati and are invariant under applications of di�erence uni�cation rules.Alternatively, the �rst rule is a hiding rule. Without loss of generality, we assume it is an appli-cation of HIDELwhich replaces the equation, f(s1; :::sn) = t = p; q by si = t = p@i; q and adds p@i to As.As f(s1; :::sn) = t = p; q is the only equation in E which changes, this is the only equation for which weneed to verify that the induction conclusion still holds. By de�nition, skeleton(f(s1; :::; sn); strip(A0s; p)) =si. And by the induction hypothesis, �0(skeleton(si; strip(A0s; p@i))) = �0(skeleton(t; strip(A0t; q))) Thus,�0(skeleton(f(s1; :::; sn); strip(A0s; p))) = �0(skeleton(t; strip(A0t; q))) 2As a consequnce we have soundness of the rule set.Theorem 2 (Soundness) If hs = t =�;�g; fg; fg; fgi D=) hfg; �; As; Ati then du(s; t; As; At; �).Proof: The above theorem gives us a uni�er and annotations satisfying the du relation, we only needshow the uni�er is most general. To do this, we show it is the mgu of skeleton(s; As) and skeleton(t; At).10



To do this we construct a derivation parallel to D. It begins withfhskeleton(s; As) = skeleton(t; At) =�;�g; fg; fg; fgiand for each uni�cation rule (ignoring hiding rules) in D applies the same rule to this new sequence ofequations. It is easy to see that each such rule is applicable and at the end the same uni�er � is built. Asthe underlying uni�cation algorithm construts most general uni�ers, it follows that � is such a uni�er. 2The converse is proven by a dual kind of \parallel construction".Theorem 3 (Completeness) du(s; t; As; At; �) then hfs = t =�;�g; fg; fg; fgi D=) hfg; �; As; Ati.Proof: The uni�cation rules of DUNIFY are complete for standard uni�cation. Indeed, they are complete(but less e�cient) with several restrictions which we now make. If we can show completeness with theserestrictions, clearly the unrestricted rules are also complete. First, we restrict DELETE to only deleteequations between atoms since we can strip equal terms down to atoms using DECOMPOSE. Second, werestrict ELIMINATEL and ELIMINATER to cases when the non-variable term is atomic, since we can usethe imitate rules to incrementally strip o� and assign outermost function symbols.Now, consider an arbitrary s, t, As, At, and � as above. Since �(skeleton(s; As)) = �(skeleton(t; At))then, as our restricted DUNIFY is complete it will �nd this mgu � using only uni�cation rules on input ofthese skeletons. Now let E0; :::En be the n+1 sets of equations generated by n rule applications R1; :::; Rnof DUNIFY as it computes �. We claim that we can construct a \parallel" sequence of rule applicationsR01; :::; R0m that di�erence uni�es s and t where the DUNIFY rules Ri occur in the same order and haveinterleaved hiding rules which hide exactly the addresses in As and At. If this claim is true then thistheorem follows, as it yields DUNIFY execution sequence which returns �, As, and At.We construct this sequence as follows. In the 0th step begin with the equation set E0 = fs = t =�;�g.In the i+1st step we look at the equations in our set Ei and if we have an equationf(s1; :::; sn) = t0 = p; qand we also have p@pk+1 2 As (and there is at most one such address given a well-formed annotation set)then we set R0i to be the HIDEL rule (hiding pk+1) and replace this equation withsi = t0 = p@pk+1; qto form Ei+1 We do the analogous check with At to add HIDER rules. If neither of these apply, weinstead pick the next rule from the sequence for R0i. Now as the original sequence of rules is �nite, and theannotation sets are �nite, this process must terminate. Furthermore, recall our restrictions on the deletionand elimination rule; they guarantee that every term position in Pos(s) and Pos(t) eventually appears inequations of some Ei. Since elements of As are a subset of Pos(s) corresponding to addresses of functionarguments in s, and likewise for At, there is some point at which a corresponding hiding rule is applied. 2Note that these soundness and completeness arguments only rely on the underlying uni�cation algorithmbeing sound, complete, and \decompositional" in the sense that every term position in the original termseventually appears associated with an equation in some Ei. Hence, if we replace the underlying uni�cationalgorithm with something stronger, e.g., incorporating equations that preserves these properties for someequational theory, then again we will have a sound and complete algorithm with respect to that theory.We suspect there are many natural applications of equational di�erence uni�cation. Hutter has recentlyreported an example based on using associative commutative di�erence uni�cation and rippling to solveSAMs lemma in the INKA system.[Hut92]Theorem 4 (Termination) The DUNIFY rule set always terminates.11



Proof: Let E0; E1; :::En be a sequence of equations resulting from applying DUNIFY rules. Associatewith each such sequence a triple of numbers hI;N; F i were I is jPos(s)j+ jPos(t)j� I 0, I 0 is the number ofimitation steps performed in the sequence, V is the number of distinct variables in En, and F is the numberof function symbols in En (with constants considered as nullary functions). Each of these is well orderedby the < relation on the natural numbers, hence so is their lexicographic ordering. Now, examining therules shows that I is decreased by the imitation rules and is otherwise unchanged. With the exception ofthese I decreasing rules, V is decreased by the elimination rules and is otherwise unchanged. And �nally,with the exception of these I and V decreasing rules, all other rules decrease F . We therefore concludethat a sequence cannot be in�nitely extended since each rule application is order decreasing. 2Theorem 5 (Subsumption) Matching and uni�cation are a special case of di�erence uni�cation.Proof: For matching, �(s) = t if and only if du(s; t; fg; fg; �) and for uni�cation, s and t have most generaluni�er � if and only if du(s; t; fg; fg; �). This follows easily from de�nitions of di�erence uni�cation. 2These results (and more) are summarized in the following picture where U stands for uni�cation, M formatching, and D for di�erence.


7 ComplexityDUNIFY has been given as a set of rules. If they are applied non-deterministically, it is easy to see thatit can take exponential time to �nd a solution to a problem as we may, using the hide and imitate rules,consider all the ways of hiding function symbols.5 A term of size n (n function symbols) has O(n) interior(neither constants or variables) function symbols that can be hidden in O(2n) di�erent ways; hence, naiveexecution can be exponential. It is natural to ask whether this the best that we can do, and which arethe tractible cases. In asking such questions we must distinguish between the problem of generating allsolutions and that of generating a solution or knowing if one exists. The �rst problem is easily seen torequire exponential size and space even in the very restricted of case of ground di�erence matching.Theorem 6 There are di�erence matching problems requiring exponential time and space.Proof: Consider di�erence matching hs; ti where s = fn(a) and t = f2n(a) (fm(a) is them-fold applicationof f to a). The solutions correspond to choosing n out of 2n occurrence of f in t to hide. That is thereare � 2nn � = (2n!)=((n!)2) which is O(2n). Note that all of these are strongly minimal. 2Problems generating exponential numbers of solutions are exceptional as they involve unusual amountof repeated structure. In general, there are far fewer matches and uni�ers; so it is interesting to investigatethe complexity of returning a single solution, or determining if one exists. Below we show that, in the5Also note that uni�cation algorithms which explicitly represent substitutions are not e�cient. This can, however, beavoided by using a rule-based approach such as [JK91] at the cost of rules with rather more complicated side-conditions.12



ground case, determining the existence of a solution to di�erence matching or di�erence uni�cation ispolynomial time decidable. The algorithms given are based on dynamic programming and can be easilymodi�ed to return solutions as well as indicate their existence or non-existence. After, we show that whenvariables are admitted, the problem becomes NP complete.7.1 Ground di�erence matching and uni�cationTheorem 7 Given terms s and t we can determine if s di�erence matches t (s may be annotated withskeleton t) or s di�erence uni�es with t in polynomial time.Proof: For di�erence uni�cation, consider the following rewrite rules on pairs of terms.ht; ti ! TRUEha; bi ! FALSE (for a 6= b and a,b atoms)hh(s1; ::::; sk); h(t1; :::; tk)i ! hs1; h(t1; :::; tk)i _ ::: _ hsk; h(t1; :::; tk)i_hh(s1; :::; sk); t1i _ ::: _ hh(s1; :::; sk); tki_(hs1; t1i ^ ::: ^ hsk; tki)hh(s1; ::::; sk); ti ! hs1; ti _ ::: _ hsk; tihs; h(t1; :::; tk)i ! hs; t1i _ ::: _ hs; tkiIf we apply these rewrite rules deterministically, given priority in the order listed above, it is not di�cultto see see that there is a rewriting of hs; ti to TRUE i� s di�erence uni�es with t.Whilst naive application of these rewrite rules results in an exponential amount of computation we cando better. In particular, if we assume some �xed maximal arity for the functions in the signature, eachreduction can be computed in constant time6 given truth values for the subproblems. However, notice thatthere are only jsj � jtj subproblems, corresponding to the cartesian product of subterms from s and t. Ifwe use dynamic programming to compute these in a sensible order, or alternatively use a memo functionwith constant lookup time, then the overall complexity is O(jsj � jtj).The rules are easily modi�ed for the ground di�erence matching problem: change b to a term t in thesecond rule, delete the hh(s1; :::; sn); tii disjuncts in the third rule, and delete the �nal rule entirely. Notethat this ground DM algorithm can be used to solve the homeomorphic embedding problem of one groundterm into another in polynomial time and is similar to the algorithm of [NS87] 2As a side note, observe that while the above ground di�erence uni�cation algorithm can be easily mod-i�ed to yield minimal answers, there is a trivial linear time algorithm for determining di�erence uni�abilityalthough it does not give minimal answers. That is, s and t will di�erence unify i� they share at least oneconstant (of arity 0). In the non-ground case, s and t are di�erence uni�able i� they share one constantor if either contains a variable. In this respect, di�erence uni�cation is, perhaps surprisingly, easier thandi�erence matching.7.2 Di�erence uni�cation with variablesDi�erence uni�cation and all its subproblems are trivially in NP since we can guess annotations and thenunify or match resulting skeletons in polynomial time. To show NP completeness, we prove that whenvariables are added determining the existence of a solution is NP hard.Theorem 8 Di�erence unifying s and t, with annotation on only one side is NP hard.Proof: Assume we only allow annotation on the second term t (i.e. delete one of the two hiding rules).We reduce 3SAT to this restricted di�erence uni�cation problem by the following construction which hassimilarities to one used in [KN86]. Let C = fc1; c2; :::; cmg be an instance of 3SAT over the boolean6Without this assumption of �xed arity, the bound becomes linear in the size of the two terms.13



variables x1; ::::; xn. We construct two terms s and t to di�erence unify where s represents the clauses andt the satisfying assignments.The term signature is as follows. Corresponding to each clause ci is the distinct ternary function gi.We also employ the m-ary function h and the 7ary f and the constants 0 and 1. Further, let V , the setof variables be fx1; ::::; xng. We intend that the truth or falsity of a boolean variable xi is simulated byxi = 1 and xi = 0 respectively. For each clause cj , do the following: let x1, x2, x3 be the variables incj . There are exactly 7 sets of truth-value-assignments that make clause cj true. De�ne 7 distinct termsqj1; ::::; qj7 as follows: qji = gj(b1; b2; b3) where bi 2 f0; 1g and the assignment (b1; b2; b3) satis�es cj . Nowlet sj = gj(x1; x2; x3) and tj = f(qj1; :::; qj7). Note that if sj di�erence uni�es with tj than a solutionyields a substitution that is a satisfying assignment for clause cj .Now form terms s and t as follows: s = h(s1; :::; sm) and t = h(t1; :::; tm). Observe that the solution todi�erence matching must pick, for each j, exactly one qji to unify with the variables in clause cj and thecombination of these is a satisfying assignment. Hence if there exists a solution, the clauses are satis�able.Since the reduction is trivially polynomial time computable we have shown NP-hardness. 28 ConclusionsIn [Rob89], J.A. Robinson presented a simple account of uni�cation in terms of di�erence reduction. Heobserved"Uni�ers remove di�erences ... We repeatedly reduce the di�erence between the two givenexpressions by applying to them an arbitrary reduction of the di�erence and accumulate theproduct of these reductions. This process eventually halts when the di�erence is no longernegotiable [reducible via an assignment], at which point the outcome depends on whether thedi�erence is empty or nonempty."In this light, our research can be seen as a direct extension of Robinson's notion of di�erence reduction:we reduce di�erences not just by variable assignment, but also by term structure annotation. What makesour extended notion of uni�cation tenable, indeed attractive, is that this annotation is precisely what isrequired for rippling to remove this di�erence.References[Aub75] R. Aubin. Some generalization heuristics in proofs by induction. In G. Huet and G. Kahn,editors, Actes du Colloque Construction: Amelioration et veri�cation de Programmes. Institutde recherche d'informatique et d'automatique, 1975.[Bac88] Leo Bachmair. Proof by consistency in equational theories. In Symposium on Logic in Com-puter Science, 1988.[BBH92] Richard Barnett, David Basin, and Jane Hesketh. A recursion planning analysis of inductivecompletion. Technical Report MPI-I-92-230, Max-Planck-Institut f�ur Informatik, 1992.[BD77] R.M. Burstall and J. Darlington. A transformation system for developing recursive programs.Journal of the Association for Computing Machinery, 24(1):44{67, 1977.[BS88] Karl Hans Bl�asius and J�org H. Siekmann. Partial uni�cation for graph based equational rea-soning. In 9th International Conference On Automated Deduction, pages 397 { 414, Argonne,Illinois, 1988. Springer-Verlag.[BSvH+92] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. newblock Rippling: Aheuristic for guiding inductive proofs. Research Paper 567, Dept. of Arti�cial Intelligence,Edinburgh, 1991. 14
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