
Restricted Global Grammar Constraints.?

George Katsirelos1, Sebastian Maneth2, Nina Narodytska2, and Toby Walsh2

1 NICTA, Sydney, Australia, email: george.katsirelos@nicta.com.au
2 NICTA and University of NSW, Sydney, Australia, email: sebastian.maneth@nicta.com.au,

ninan@cse.unsw.edu.au, toby.walsh@nicta.com.au

Abstract. We investigate the global GRAMMAR constraint over restricted classes
of context free grammars like deterministic and unambiguous context-free gram-
mars. We show that detecting disentailment for the GRAMMAR constraint in these
cases is as hard as parsing an unrestricted context free grammar. We also consider
the class of linear grammars and give a propagator that runs in quadratic time. Fi-
nally, to demonstrate the use of linear grammars, we show that a weighted linear
GRAMMAR constraint can efficiently encode the EDITDISTANCE constraint, and
a conjunction of the EDITDISTANCE constraint and the REGULAR constraint.

1 Introduction

In domains like staff scheduling, regulations can often be naturally expressed using
formal grammars. Pesant [9] introduced the global REGULAR constraint to express
problems using finite automaton. Sellmann [14] and Quimper and Walsh [11] then in-
troduced the global GRAMMAR constraint for context-free grammars. Unlike parsing
which only finds a single solution, propagating such a constraint essentially consid-
ers all solutions. Nevertheless, a propagator for the REGULAR constraint runs in linear
time and a propagator for the GRAMMAR constraint runs in cubic time just like the cor-
responding parsers. Subsequently, there has been research on more efficient propaga-
tors for these global constraints [12, 10, 4, 7, 6]. Whilst research has focused on regular
and unrestricted context-free languages, a large body of work in formal language the-
ory considers grammars between regular and context-free. Several restricted forms of
context-free grammars have been proposed that permit linear parsing algorithms whilst
being more expressive than regular grammars. Examples of such grammars are LL(k),
LR(1), and LALR. Such grammars play an important role in compiler theory. For in-
stance, yacc generates parsers that accept LALR languages.

In this paper we explore the gap between the second and third levels of the Chom-
sky hierarchy for classes of grammars which can be propagated more efficiently than
context-free grammars. These classes of grammar are attractive because either they
have a linear or quadratic time membership test (e.g., LR(k) and linear grammars, re-
spectively) or they permit counting of strings of given length in polynomial time (e.g.,
unambiguous grammars). The latter may be useful in branching heuristics. One of our
main contributions is a lower bound on the time complexity for propagating grammar

? NICTA is funded by the Australian Government’s Department of Broadband, Communica-
tions, and the Digital Economy and the Australian Research Council.

constraints using deterministic or unambiguous grammars. We prove that detecting dis-
entailment for such constraints has the same time complexity as the best parsing algo-
rithm for an arbitrary context-free grammar. Using LL(k) languages or unambiguous
grammars does not therefore improve the efficiency of propagation. Another contri-
bution is to show that linearity of the grammar permits quadratic time propagation.
We show that we can encode an EDITDISTANCE constraint and a combination of an
EDITDISTANCE constraint and a REGULAR constraint using such a linear grammar.
Experimental results show that this encoding is very efficient in practice.

2 Background

A context-free grammar is a tuple G = 〈N,T, P, S〉, where N is a finite set of non-
terminal symbols, T is a finite set of terminal symbols, P is a set of productions, and
S ∈ N is the start symbol. A production is of the form A → α where A ∈ N and
α ∈ (N ∪T)+. The derivation relation⇒G induced by G is defined as follows: for any
u, v ∈ (N∪T)∗, uAv ⇒G uαv if there exists a productionA→ α in P . Sometimes we
additionally index⇒G by the production that is applied. The transitive, reflexive closure
of⇒G is denoted by⇒∗G. A string in s ∈ T ∗ is generated by G if S ⇒∗G s. The set
of all strings generated by G is denoted L(G). Note that this does not allow the empty
string ε as right-hand side of a production. Hence, ε 6∈ L(G). This is not a restriction:
we can add a new start symbol Z with productions Z → ε | S to our grammars. Our
results can easily be generalized to such ε-enriched grammars. We denote the length of
a string s by |s|. The size of G, denoted by |G|, is

∑
A→α∈P |Aα|.

A context-free grammar is in Chomsky form if all productions are of the form A→
BC where B and C are non-terminals or A → a where a is a terminal. Any ε-free
context-free grammar G can be converted to an equivalent grammar G′ in Chomsky
form with at most a linear increase in its size; in fact, |G′| ≤ 3|G|, see Section 4.5
in [3]. A context-free grammar is in Greibach form if all productions are of the form
A → aα where a is a terminal and α is a (possibly empty) sequence of non-terminals.
Any context-free grammarG can be converted to an equivalent grammarG′ in Greibach
form with at most a polynomial increase in its size; in fact, the size of G′ is in O(|G|4)
in general, and is in O(|G|3) if G has no chain productions of the form A → B for
nonterminals A,B, see [1]. A context-free grammar is regular if all productions are of
the forms A→ w or A→ wB for non-terminals A,B and w ∈ T+.

3 Simple Context-Free Grammars

In this section we show that propagating a simple context-free grammar constraint is at
least as hard as parsing an (unrestricted) context-free grammar. A grammar G is simple
if it is in Greibach form, and for every non-terminal A and terminal a there is at most
one production of the form A → aα. Hence, restricting ourselves to languages recog-
nized by simple context-free grammars does not improve the complexity of propagating
a global grammar constraint. Simple context-free languages are included in the deter-
ministic context-free languages (characterized by deterministic push-down automata),
and also in the LL(1) languages [13], so this result also holds for propagating these

classes of languages. Given finite sets D1, . . . , Dn, their Cartesian product language
L(RD1,...,Dn

) is the cross product of the domains {a1a2 · · · an | a1 ∈ D1, . . . , an ∈
Dn}. Following [14], we define the global GRAMMAR constraint:

Definition 1. The GRAMMAR([X1, . . . , Xn], G) constraint is true for an assignment
variables X iff a string formed by this assignment belongs to L(G).

From Definition 1, we observe that finding a support for the grammar constraint is
equivalent to intersecting the context-free language with the Cartesian product language
of the domains.

Proposition 1. Let G be a context-free grammar, X1, . . . , Xn be a sequence of vari-
ables with domains D(X1), . . . , D(Xn). Then L(G) ∩ L(RD(X1),...,D(Xn)) 6= 0 iff
GRAMMAR([X1, . . . , Xn], G) has a support.

Context-free grammars are effectively closed under intersection with regular gram-
mars. To see this, consider a context-free grammar G in Chomsky form and a reg-
ular grammar R. Following the “triple construction”, the intersection grammar has
non-terminals of the form 〈F,A, F ′〉 where F, F ′ are non-terminals of R and A is a
non-terminal of G. Intuitively, 〈F,A, F ′〉 generates strings w that are generated by A
and also by F , through a derivation from F to wF ′. If A → BC is a production of
G, then we add, for all non-terminals F, F ′, F ′′ of R, the production 〈F,A, F ′′〉 →
〈F,B, F ′〉〈F ′, C, F ′′〉. The resulting grammar is O(|G|n3) in size where n is the num-
ber of non-terminals of R. This is similar to the construction of Theorem 6.5 in [3]
which uses push-down automata instead of grammars. Since emptiness of context-free
grammars takes linear time (cf. [3]) we obtain through Proposition 1 a cubic time algo-
rithm to check whether a global constraint GRAMMAR([X1, . . . , Xn], G) has support.
In fact, this shows that we can efficiently propagate more complex constraints, such as
the conjunction of a context-free with a regular constraint. Note that if R is a Carte-
sian product language then the triple construction generates the same result as the CYK
based propagator for the GRAMMAR constraint [14, 11].

We now show that for simple context-free grammars G, detecting disentailment of
the constraint GRAMMAR([X1, . . . , Xn], G), i.e. testing whether it has a solution, is at
least as hard as parsing an arbitrary context-free grammar.

Theorem 1. Let G be a context-free grammar in Greibach form and s a string
of length n. One can construct in O(|G|) time a simple context-free grammar G′

and in O(|G|n) time a Cartesian product language L(RD(X1),...,D(Xn)) such that
L(G′) ∩ L(RD(X1),...,D(Xn)) 6= ∅ iff s ∈ L(G).

Proof. The idea behind the proof is to determinize an unrestricted context free gram-
mar G by mapping each terminal in G to a set of pairs – the terminal and a pro-
duction that can consume this terminal. This allows us to carry information about
the derivation inside a string in G′. Then, we construct a Cartesian product language
L(RD(X1),...,D(Xn)) over these pairs so that all strings from this language map only to
the string s. Let G = 〈N,T, P, S〉 and fix an arbitrary order of the productions in P .
We now construct the grammar G′ = 〈N,T ′, P ′, S〉. For every 1 ≤ j ≤ |P |, if the j-th
production of P is A→ aα then let (a, j) be a new symbol in T ′ and let the production

A → (a, j)α be in P ′. Next, we construct the Cartesian product language. We define
D(Xi) = {(a, j)|(si = a) ∧ (a, j) ∈ T ′}, i = 1, . . . , n and si is the i-th letter of s.
Clearly, G′ is constructed in O(|G|) time and L(RD(X1),...,D(Xn)) in O(|P |n) time.

(⇒) Let L(G′) ∩ L(RD(X1),...,D(Xn)) be non empty. Then there exits a string s′

that belongs to the intersection. Let s′ = (a1, i1) · · · (an, in). By the definition of
L(RD(X1),...,D(Xn)), the string a1a2 · · · an must equal s. Since s′ ∈ L(G′), there must
be a derivation by G of the form

S ⇒G,p1 a1α⇒G,p2 a1a2α
′ · · · ⇒G,pn a1 · · · an

where pj is the j-th production in P . Hence, s ∈ L(G).
(⇐) Let s ∈ L(G). Consider a derivation sequence of the string s. We replace every

symbol a in s that was derived by the i-th production ofG by (a, i). By the construction
of G′, the string s′ is in L(G′). Moreover, s′ is also in L(RD(X1),...,D(Xn)). ut

Note that context-free parsing has a quadratic time lower bound, due to its connec-
tion to matrix multiplication [8]. Given this lower bound and the fact that the construc-
tion of Theorem 1 requires only linear time, we can deduce the following.

Corollary 1. Let G be a context-free grammar. If G is simple (or deterministic or
LL(1)) then detecting disentailment of GRAMMAR([X1, . . . , Xn], G) is at least as hard
as context-free parsing of a string of length n.

We now show the converse to Theorem 1 which reduces intersection emptiness
of a context-free with a regular grammar, to the membership problem of context-
free languages. This shows that the time complexity of detecting disentailment for the
GRAMMAR constraint is the same as the time complexity of the best parsing algorithm
for an arbitrary context free grammar. Therefore, our result shows that detecting dis-
entailment takes O(n2.4) time [2], as in the best known algorithm for Boolean matrix
multiplication. It does not, however, improve the asymptotic complexity of a domain
consistency propagator for the GRAMMAR constraint [14, 11].

Theorem 2. LetG = 〈N,T, P, S〉 be a context-free grammar andL(RD(X1),...,D(Xn))
be Cartesian product language. One can construct in time O(|G| + |T |2) a context-
free grammar G′ and in time O(n|T |) a string s such that s ∈ L(G′) iff L(G) ∩
L(RD(X1),...,D(Xn)) 6= ∅.

Proof. (Sketch) We assign an index to each terminal in T . For each position i of the
strings of R, we create a bitmap of the alphabet that describes the terminals that may
appear in that position. The j-th bit of the bitmap is 1 iff the symbol with index j may
appear at position i. The string s is the concatenation of the bitmaps for each position
and has size n|T |. First, we add B → 0 and B → 1 to G′. For each terminal in T with
index j, we introduce Tj → Bj−11B|T |−j into G′ to accept any bitmap with 1 at the
j-th position. Then, for each production in G of the form A → aα such that the index
of a is j, we add A → Tjα to G′. In this construction, every production in G′ except
for those with Ti on the left hand side can be uniquely mapped to a production in G. It
can be shown that s ∈ L(G′) iff L(G) ∩ L(RD(X1),...,D(Xn)) 6= ∅. ut

4 Linear Context-Free Grammars

A context-free grammar is linear if every production contains at most one non-terminal
in its right-hand side. The linear languages are a proper superset of the regular lan-
guages and are a strict subset of the context-free languages. Linear context-free gram-
mars possess two important properties: (1) membership of a given string of length n
can be checked in time O(n2) (see Theorem 12.3 in [15]), and (2) the class is closed
under intersection with regular grammars (to see this, apply the “triple construction” as
explained after Proposition 1). The second property opens the possibility of construct-
ing a polynomial time propagator for a conjunction of the the linear GRAMMAR and the
REGULAR constraints. Interestingly, we can show that a CYK-based propagator for this
type of grammars runs in quadratic time. This is then the third example of a grammar,
besides regular and context-free grammars, where the asymptotic time complexity of
the parsing algorithm and that of the corresponding propagator are equal.

Theorem 3. Let G be a linear grammar and GRAMMAR([X1, . . . , Xn], G) be the cor-
responding global constraint. There exists a domain consistency propagator for this
constraint that runs in O(n2|G|) time.

Proof. We convertG = 〈N,T, P, S〉 into CNF. Every linear grammar can be converted
into the form A → aB, A → Ba and A → a, where a, b ∈ T and A,B ∈ N (see
Theorem 12.3 of [15]) in O(|G|) time. To obtain CNF we replace every terminal a ∈ T
that occurs in a production on the right hand side with a new non-terminal Ya and
introduce a production Ya → a.

Consider the CYK-based domain consistency propagator for an arbitrary context-
free grammar constraint [11, 14]. The algorithm runs in two stages. In the first stage, it
constructs in a bottom-up fashion a dynamic programing table Vn×n, where an element
A of Vi,j is a potential non-terminal that generates a substring from the domains of
variables [Xi, . . . , Xi+j]. In the second stage, it performs a top-down traversal of V and
marks an element A of Vi,j iff it is reachable from the starting non-terminal S using
productions of the grammar and elements of V . It then removes unmarked elements,
including terminals. If it removes a terminal at column i of the table, it prunes the
corresponding value of variable Xi.

The complexity of this algorithm is bounded by the number of possible 1-step
derivations from each non-terminal in the table. Let G′ = 〈N ′, T ′, P ′, S′〉 be an
arbitrary context free grammar. There are O(|N ′|n2) non-terminals in the table and
each non-terminal can be expanded in O(F ′(A)n) possible ways, where F ′(A) is the
number of productions in G′ with non-terminal A on the left-hand side. Therefore,
the total time complexity of the propagator for unrestricted context-free grammars is
n2

∑
A∈N ′ nF ′(A) = O(n3|G′|). In contrast, the number of possible 1-step deriva-

tions from each non-terminal in linear grammars is bounded by O(F (A)). Therefore,
the propagator runs in O(n2|G|) for a linear grammar G. ut

Theorem 3 can be extended to the weighted form of the linear GRAMMAR con-
straint, WEIGHTEDCFG [5]. A weighted grammar is annotated with a weight for
each production and the weight of a derivation is the sum of all weights used in it.
The linear WEIGHTEDCFG(G,Z, [X1, . . . , Xn]) constraint holds iff an assignment X

forms a string belonging to the weighted linear grammar G and the minimal weight
derivation of X is less than or equal to Z. The domain consistency propagator for the
WEIGHTEDCFG constraint is an extension of the propagator for GRAMMAR that com-
putes additional information for each non-terminal A ∈ Vi,j—the minimum and the
maximum weight derivations from A. Therefore, this algorithm has the same time and
space asymptotic complexity as the propagator for GRAMMAR, so the complexity anal-
ysis for the linear WEIGHTEDCFG constraint is identical to the non-weighted case.

It is possible to restrict linear grammars further, so that the resulting global con-
straint problem is solvable in linear time. As an example, consider “fixed-growth”
grammars in which there exists l and r with l + r ≥ 1 such that every production
is of the form either A → w ∈ T+ or A → uBw where the length of u ∈ T ∗ equals l
and the length of w ∈ T ∗ equals r. In this case, the triple construction (explained below
Proposition 1) generates O(|G|n) new non-terminals implying linear time propagation
(similarly, CYK runs in linear time as it only generates non-terminals on the diagonal of
the dynamic program). A special case of fixed-growth grammars are regular grammars
which have l = 1 and r = 0 (or vice versa).

5 The EDITDISTANCE Constraint

To illustrate linear context-free grammars, we show how to encode an edit distance
constraint into such a grammar. EDITDISTANCE([X1, . . . , Xn, Y1, . . . , Ym], N) holds
iff the edit distance between assignments of two sequences of variables X and Y is less
than or equal to N . The edit distance is the minimum number of deletion, insertion
and substitution operations required to convert one string into another. Each of these
operations can change one symbol in a string. W.L.O.G. we assume that n = m. We will
show that the EDITDISTANCE constraint can be encoded as a linear WEIGHTEDCFG
constraint. The idea of the encoding is to parse matching substrings using productions
of weight 0 and to parse edits using productions of weight 1.

We convert EDITDISTANCE([X,Y], N) into a linear
WEIGHTEDCFG([Z2n+1, N,Ged) constraint. The first n variables in the se-
quence Z are equal to the sequence X, the variable Zn+1 is ground to the sentinel
symbol # so that the grammar can distinguish the sequences X and Y, and the last
n variables of the sequence Z are equal to the reverse of the sequence Y. We define
the linear weighted grammar Ged as follows. Rules S → dSd with weight w = 0,
∀d ∈ D(X) ∪ D(Y), capture matching terminals, rules S → d1Sd2 with w = 1,
∀d1 ∈ D(X), d2 ∈ D(Y), d1 6= d2, capture replacement, rules S → dS|Sd with
w = 1, ∀d ∈ D(X), capture insertions and deletions. Finally, the rule S → # with
weight w = 0 generates the sentinel symbol. As discussed in the previous section, the
propagator for the linear WEIGHTEDCFG constraint takes O(n2|G|) time. Down a
branch of the search tree, the time complexity is O(n2|G|ub(N)).

We can use this encoding of the EDITDISTANCE constraint into a linear
WEIGHTEDCFG constraint to construct propagators for more complex constraints. For
instance, we can exploit the fact that linear grammars are closed under intersection
with regular grammars to propagate efficiently the conjunction of an EDITDISTANCE
constraint and REGULAR constraints on each of the sequences X,Y. More formally,

let X and Y be two sequences of variables of length n subject to the constraints
REGULAR(X, R1), REGULAR(Y, R2) and EDITDISTANCE(X,Y, N). We construct a
domain consistency propagator for the conjunction of these three constraints, by com-
puting a grammar that generates strings of length 2n + 1 which satisfy the conjunc-
tion. First, we construct an automaton that accepts L(R1)#L(R2)R. This language
is regular and requires an automaton of size O(|R1| + |R2|). Second, we intersect this
with the linear weighted grammar that encodes the EDITDISTANCE constraint using the
“triple construction”. The size of the obtained grammar is G∧ = |Ged|(|R1| + |R2|)2
and this grammar is a weighted linear grammar. Therefore, we can use the linear
WEIGHTEDCFG(Z, N,G∧) constraint to encode the conjunction. Note that the size of
G∧ is only quadratic in |R1|+|R2|, becauseGed is a linear grammar. The time complex-
ity to enforce domain consistency on this conjunction of constraints is O(n2|G∧|) =
O(n2d2(|R1|+ |R2|)2) for each invocation and O(n2d2(|R1|+ |R2|)2ub(N)) down a
branch of the search tree.

Table 1. Performance of the encoding into WEIGHTEDCFG constraints shown in: number of
instances solved in 60 sec / average number of choice points / average time to solve.

n N EDDec ED∧

#solved #choice points time #solved #choice points time
15 2 100 29 0.025 100 6 0.048
20 2 100 661 0.337 100 6 0.104
25 3 93 2892 2.013 100 10 0.226
30 3 71 6001 4.987 100 12 0.377
35 4 58 5654 6.300 100 17 0.667
40 4 40 3140 4.690 100 17 0.985
45 5 36 1040 2.313 100 19 1.460
50 5 26 1180 4.848 100 24 1.989

TOTALS
solved/total 524 /800 800 /800

avg time for solved 2.557 0.732
avg choice points for solved 2454 14

To evaluate the performance of the WEIGHTEDCFG(Z, N,G∧) constraint we
carried out a series of experiments on random problems. In out first model the
conjunction of the EDITDISTANCE constraint and two REGULAR constraints was
encoded with a single WEIGHTEDCFG(Z, N,G∧) constraint. We call this model
ED∧. The second model contains the EDITDISTANCE constraint, encoded as
WEIGHTEDCFG(Z, N,Ged), and two REGULAR constraints. The REGULAR con-
straint for the model EDDec is implemented using a decomposition into ternary table
constraints [11]. The WEIGHTEDCFG constraint is implemented with an incremental
monolithic propagator [5]. The first REGULAR constraint ensures that there are at most
two consecutive values one in the sequence. The second encodes a randomly generated
string of 0s and 1s. To make problems harder, we enforced the EDITDISTANCE con-

straint and the REGULAR constraints on two sequences X#(Y)R and X′#(Y′)R of the
same length 2n+ 1. The EDITDISTANCE constraint and the first REGULAR constraint
are identical for these two sequences, while Y and Y′ correspond to different randomly
generated strings of 0s and 1s. Moreover, X and X′ overlap on 15% of randomly chosen
variables. For each possible value of n ∈ {15, 20, 25, 30, 35, 40, 45, 50}, we generated
100 instances. Note that n is the length of each sequence X, Y, X′ and Y′. N is the
maximum edit distance between X and Y and between X′ and Y′. We used a random
value and variable ordering and a time out of 60 sec. Results for different values of n
are presented in Table 1. As can be seen from the table, the model ED∧ significantly
outperforms the model EDDec for larger problems, but it is slightly slower for smaller
problems. Note that the model ED∧ solves many more instances compared to EDDec.

6 Conclusions

Unlike parsing, restrictions on context free grammars such as determinism do not im-
prove the efficiency of propagation of the corresponding global GRAMMAR constraint.
On the other hand, one specific syntactic restriction, that of linearity, allows propaga-
tion in quadratic time. We demonstrated an application of such a restricted grammar in
encoding the EDITDISTANCE constraint and more complex constraints.

References

1. N. Blum and R. Koch. Greibach normal form transformation revisited. Inf. Comput.,
150:112–118, 1999.

2. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J.
Symbolic Comput., 9:251–280, 1990.

3. J. W. Hopcroft and J. D. Ullman. Introduction to automata theory, languages, and computa-
tion. Addison-Wesley, 1979.

4. S. Kadioglu and M. Sellmann. Efficient context-free grammar constraints. In AAAI, pages
310–316, 2008.

5. G. Katsirelos, N. Narodytska, and T. Walsh. The weighted CFG constraint. In CPAIOR,
pages 323–327, 2008.

6. G. Katsirelos, N. Narodytska, and T. Walsh. Reformulating global grammar constraints. In
CPAIOR09, pages 132–147, 2009.

7. M. Lagerkvist. Techniques for Efficient Constraint Propagation. PhD thesis, KTH, Sweden,
2008.

8. L. Lee. Fast context-free grammar parsing requires fast boolean matrix multiplication. J.
ACM, 49:1–15, 2002.

9. G. Pesant. A regular language membership constraint for finite sequences of variables. In
CP, pages 482–495, 2004.

10. C. Quimper and T. Walsh. Decompositions of grammar constraints. In AAAI, pages 1567–
1570, 2008.

11. C. G. Quimper and T. Walsh. Global grammar constraints. In CP, pages 751–755, 2006.
12. C. G. Quimper and T. Walsh. Decomposing global grammar constraints. In CP, pages

590–604, 2007.
13. G. Rozenberg and A. Salomaa. Handbook of Formal Languages, volume 1. Springer, 2004.
14. M. Sellmann. The theory of grammar constraints. In CP, pages 530–544, 2006.
15. K. Wagner and G. Wechsung. Computational Complexity. Springer, 1986.

