
Backbones and Backdoors in Satisfiability

Philip Kilby
ANU

Canberra, Australia
Philip.Kilby@anu.edu.au

John Slaney
NICTA∗ and ANU
Canberra, Australia

John.Slaney@anu.edu.au

Sylvie Thiébaux
NICTA∗ and ANU
Canberra, Australia

Sylvie.Thiebaux@anu.edu.au

Toby Walsh
NICTA∗ and UNSW

Sydney, Australia
tw@cse.unsw.edu.au

Abstract

We study the backbone and the backdoors of propositional
satisfiability problems. We make a number of theoretical, al-
gorithmic and experimental contributions. From a theoret-
ical perspective, we prove that backbones are hard even to
approximate. From an algorithmic perspective, we present
a number of different procedures for computing backdoors.
From an empirical perspective, we study the correlation be-
tween being in the backbone and in a backdoor. Experiments
show that there tends to be very little overlap between back-
bones and backdoors. We also study problem hardness for
the Davis Putnam procedure. Problem hardness appears to
be correlated with the size of strong backdoors, and weakly
correlated with the size of the backbone, but does not appear
to be correlated to the size of weak backdoors nor their num-
ber. Finally, to isolate the effect of backdoors, we look at
problems with no backbone.

Introduction
Many problems in AI like constraint solving, planning and
learning are intractable in general. Propositional satisfiabil-
ity (or SAT) is typical of such problems. It is a problem of
considerable practical and theoretical importance. SAT was
the first problem shown to be NP-complete (Cook 1971).
It therefore lies at the heart of the theory of computational
complexity. In addition, many real world problems like
planning have been encoded into SAT. Highly optimized
SAT solvers are then used to find solutions.

Due in part to its simplicity, SAT has become a problem
class in which to study search and the causes of intractabil-
ity. A number of fundamental notions have been identi-
fied to explain why search problems are hard. Two such
notions are the backbone of a search problem and a back-
door into a search problem (see next section for their formal
definitions). The first identifies those decisions which are
fixed in all solutions (and so need to be made correctly),
whilst the second identifies those decisions which result in
a polynomial subproblem. Both these notions have been

∗National ICT Australia is funded by the Australian Govern-
ment’s Backing Australia’s Ability initiative, in part through the
Australian Research Council
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

connected to problem hardness (Monassonet al. 1998;
Williams, Gomes, & Selman 2003).

In this paper, we look at the connections between back-
bones, backdoors, and problem hardness. We are interested
as to whether some commonality between backbones and
backdoors explains their connection to problem hardness.
Are backbone literals more or less likely to also likely to
form backdoors? From a practical point of view, we are also
interested in approximations of the backbone set.

Backbones and backdoors
The backbone of a satisfiable SAT problem is the set of
literals which are true in every satisfying truth assignment.
There are a number of different definitions for the backbone
of an unsatisfiable formula (e.g. the set of literals fixed in
every truth assignment maximizing the number of satisfied
clauses (Monassonet al. 1998)). We will avoid this com-
plication by focusing on satisfiable only formulae. Back-
bone size has been associated with problem hardness (Parkes
1997; Monassonet al. 1998; Achlioptaset al. 2000). If a
SAT problem has a large backbone, there are many opportu-
nities to assign variable incorrectly. Such problems tend to
be hard therefore for systematic methods like Davis-Putnam.
A large backbone also means that solutions are clustered.
Such problems therefore can be hard to solve with local
search methods like WalkSAT.

A backdoor into a SAT problem is a (hopefully small)
set of variables which provide a “short cut” into solving
the problem (Williams, Gomes, & Selman 2003). Aweak
backdoor of a satisfiable SAT problem is the set of literals
which give a simplified formula which is satisfiable and can
be solved in polynomial time. Astrong backdoor of a sat-
isfiable or unsatisfiable SAT problem is the set of variables
which, however they are assigned, give a simplified formula
which can be solved in polynomial time.

The definition of backdoors is inherently algorithm de-
pendent - a backdoor set for one algorithm is not necessarily
a backdoor for another. We use as the definition of nacdoor
branch-free search insatzversion 2.15 (Li 1999). That is,
once the backdoor literals have been assigned, the problem
can be solved essentially through unit propagation.

We will typically consider backdoors that areminimal;
that is, no strict subset of the backdoor is itself a backdoor.
Note also that the concept of weak and strong backdoor is

parameterized by a polynomial class of subformulae. This
class may be defined syntactically (e.g. Horn formulae)
or algorithmically (e.g. those formulae polynomially de-
cided by a Davis Putnam procedure). Empirical studies have
shown that many structured SAT problems have small back-
doors, whilst random 3-SAT problems do not. Gomes et al.
argue this may explain why we can typically solve random
3-SAT problems with a only few hundred variables but can
often solve structured problems with thousands of variables
(Williams, Gomes, & Selman 2003). Small backdoors also
help to explain the heavy-tailed behaviour of backtracking
search algorithms (Williams, Gomes, & Selman 2003).

Computational complexity
Computing the backbone or a backdoor of a SAT problem is
intractable in general. To be more precise, finding the back-
bone of a SAT problem is both NP-hard and NP-easy. It is
NP-hard as we can determine the satisfiability of a formula
with a polynomial number of calls to a procedure to find the
backbone (as argued in the proof of Theorem 1). It is NP-
easy as deciding if a literal is in the backbone can be solved
with a single call to a SAT decision procedure. Garey and
Johnson suggest that problems which are both NP-hard and
NP-easy might be called NP-equivalent (Garey & Johnson
1979). Although this class contains problems which do not
belong to NP, the class has the property of NP-complete de-
cision problems that: unless P=NP, no problem in the class
can be solved in polynomial time, and if P=NP then all prob-
lems in the class can be solved in polynomial time. In other
words, the problem of deciding the SAT backbone is poly-
nomial if and only if P=NP.

Finding the backdoor into a SAT problem is also in-
tractable in general (assuming P6= NP). However, if we can
bound the size of the backdoor, it can be tractable in cer-
tain cases. In particular, finding a strong backdoor set (into
either Horn or 2-cnf polynomial subformulae) is tractable
if the size of the backdoor is bounded, but finding a weak
backdoor set is not (Nishimura, Ragde, & Szeider 2004).

Approximation
We now show that even approximating the backbone is in-
tractable in general. Suppose we have a sound approxima-
tion procedure that returns some subset of the backbone.
That is, any literal returned by the procedure is guaranteedto
be in the backbone, but it may not return all of the backbone.

Theorem 1 If P 6= NP then no sound approximation pro-
cedure can return a fixed fractionα or greater of the SAT
backbone in polynomial time.

Proof: Suppose there was such a polynomial time approx-
imation procedure. Since the approximation procedure re-
turns a fixed fraction of the backbone (rounded up) it must
return at least one backbone literal if the backbone is non-
empty. We set this literal to true and simplify the formula.
If the backbone is empty, we set an arbitrary literal to true
and simplify. We then call the approximation procedure and
repeat. This procedure will find a satisfying assignment if
one exists in polynomial time, contradicting the assumption
that P6= NP.2

The same argument shows that, if P6= NP then no sound
approximation procedure can exist that is guaranteed to re-
turn at least one backbone literal when the backbone is non-
empty in polynomial time.

Suppose instead that we have an unsound approximation
procedure. That is, literals returned by the procedure are
not guaranteed to be in the backbone. If we do not limit the
number of literals incorrectly assigned to the backbone, then
there exists a polynomial time approximation that meets any
approximation ratio. For example, consider the procedure
that returns all literals. We therefore consider unsound ap-
proximation procedures which limit the number of literals
falsely assigned to the backbone. An approximation proce-
dure is a “majority-approximation” iff, when the backbone
is non-empty, the ratio of the number of literals falsely as-
signed to the backbone compared to the number returned is
strictly less than 1/2. If the backbone is empty, any number
of literals can be falsely returned as being in the backbone.

Theorem 2 If P 6= NP then no majority-approximation pro-
cedure can be guaranteed to return a fixed fractionα or
greater of the literals in the backbone in polynomial time.

Proof: Suppose there was such a polynomial time approx-
imation procedure. We show how such a procedure can be
used to decide the satisfiability of a set of clausesΣ in poly-
nomial time, contradicting the assumption that P6= NP. Letk
bed 1

α
e. We constructk copies ofΣ augmenting the clauses

as follows. In theith copy, we add the disjunctxi to each
clause, wherexi is a new variable not inΣ. We denote these
modified clauses byΣi. Even if Σ is unsatisfiable, we can
always satisfyΣi by settingxi to true. We now consider
the satisfiable set of clauses:{z} ∪ (

⋃
1≤i≤k Σi) where

z is again a new variable. Note that, asα is fixed, this set
of clauses is polynomial in the size ofΣ. If Σ is satisfi-
able, thenz is the unique backbone literal. IfΣ is unsatisfi-
able, then the backbone is{x1, . . . , xk, z}. We now use our
approximation procedure to compute the backbone of the
constructed formula. If the formulaΣ is satisfiable then the
majority approximation procedure must return justz. If the
formulaΣ is unsatisfiable then the majority approximation
procedure must return at least one literal,xj from the back-
bone. Hence, the backbone literals returned can be used to
decide the satisfiability ofΣ. 2

Note that in the proof, we just computed the backbone of
satisfiable formulae. Hence, the same result holds however
we define the backbone of unsatisfiable formulae.

Algorithms
A series of algorithms was developed to conduct empirical
tests on backdoors and backbones. Algorithms and tests are
based on a modified version ofsatz version 2.15. These
modifications were required to ensure backdoors were ro-
bust to renaming of variables. That is, if the same problem
is presented with variables in a different order, the backdoors
discovered remains the same.

Algorithm M IN WEAK BACKDOOR

This is a simple routine used by all the other algorithms to
reduce an initial weak backdoor into a minimal weak back-

door. It maintains a set of variables (W) which must form
part of a minimal weak backdoor. It selects literals from the
initial set I and tests them for inclusion inW . The algo-
rithm also returns a model consistent with the backdoor set
returned. The backdoor set is minimal in that no proper sub-
set is also a weak backdoor. However, the algorithm is not
guaranteed to return the backdoor set of minimal cardinality
from a given input. A sequential version of this algorithm

Algorithm 1 MinWeakBackdoor (F, I)
Input: FormulaF , Initial weak backdoor setI - i.e. run-

ningsatzonF ∪ I requires no branching.

Output: A set of literalsW forming a minimal backdoor,
and a modelM consistent with the backdoor

1. W ← ∅ ; M ← ∅
2. while I 6= ∅
3. Choose literall ∈ I randomly
4. I ← I \ {l}
5. RunsatzonF ∪W ∪ I
6. if satzrequires branching,
7. then W ←W ∪ {l} ; M ← satzsolution
8. endwhile
9. return W , M

treatsI as a list rather than a set, and chooses the literall in
step 3 sequentially.

Algorithm S ATZ WEAK

This algorithm creates a weak backdoor set using branch-
ing variables selected bysatz. It then reduces the set to a
minimal backdoor using MINWEAKBACKDOOR. It returns
a minimal weak backdoor, and a consistent model.

Algorithm 2 SatzWeak (F)
Input: FormulaF

Output: A minimal weak backdoorW and a consistent
modelM

1. SolveF usingsatz, saving branching literals inB
2. W, M ← M INWEAKBACKDOOR (F, B)
3. return W, M

Algorithm S ATZ LS1
We are interested in weak backdoors of minimum cardinal-
ity. SATZWEAK does not always find the smallest backdoor,
so we use local search to explore “neighbouring” backdoors.

The algorithm maintains an incumbent backdoorW . It
adds literals chosen randomly to that set, and then reduces
it to a minimal backdoor again. The algorithm periodically
restarts with the smallest backdoor found so far. Using the
sequential version of MINWEAKBACKDOOR, the literals in
the current incumbent are tested first for exclusion from the
set. This helps to drive the algorithm to discover new weak
backdoors. The algorithm returnsS – all distinct minimal
weak backdoors discovered.

Three constants are used in the algorithm: Iteration-limit
(the number of iterations per restart); Restart-limit (thenum-
ber of restarts); and Card-mult (the multiplier for the number
of literals added to the incumbent backdoor). For the runs
reported here the following values were chosen after some
initial experimentation: Iteration-limit is

√
n ∗ 3, Restart-

limit is 2. and Card-mult is 2.

Algorithm 3 SatzLS1 (F, W, M)
Input: FormulaF , Initial backdoorW , ModelM

Output: A set of minimal weak backdoorsS
1. S ← ∅ ; B ←W

W is current backdoor,
B is an example of smallest backdoor seen.

2. Restart-count← 0
3. while Restart-count< Restart-limit
4. Restart-count← Restart-count + 1
5. W ← B
6. Iteration-count← 0;
7. while Iteration-count< Iteration-limit
8. Iteration-count← Iteration-count + 1
9. Z ←|W | × Card-mult literals chosen

randomly fromM \W
10. W ← M INWEAKBACKDOOR (F, W ∪ Z)

(sequential version)
11. S ← S ∪W
12. if | W |<| B |
13. then B ←W ; Restart-count← 0
14. endwhile
15. endwhile
16. return S

When a new, smaller backdoor is found at line 12 the
restart counter is reset to give the procedure an opportunity
to find more examples of backdoors of this size. The proce-
dure is called withW andM returned by SATZWEAK(F).

Algorithm S ATZ LS2
SATZLS1 tends to generate backdoor sets from a single
model. As there are often many models for a formula, the
procedure needs to be forced to explore new models. SAT-
ZLS2 was developed to accomplish this.

SATZLS2 uses repeated calls of SATZLS1. The neigh-
bourhood of the backdoor created from thesatzbranching
variables is explored first. The algorithm then explores back-
doors generated using a number of randomly chosen models.
An advantage of the algorithm is that initial weak backdoors
for second and subsequent models are created in a way that
does not rely on thesatzalgorithm. This helps to ensure the
backdoors are not biased by thesatzbranching rules.

The initial backdoor for a model is created by simply
adding literals chosen at random from the model until the
set forms a weak backdoor. It is reduced using MINWEAK-
BACKDOOR.

In tests reported here, the list of modelsL is 9 models
chosen randomly from all possible models ofF , giving a
total of 10 models tested.

Algorithm 4 SatzLS2(F, L)
Input: FormulaF , and a list of modelsL.

Output: A set of minimal weak backdoorsS
1. S ← SATZLS1 (F , SATZWEAK(F)).
2. while L 6= ∅
3. ChooseM from L
4. L← L \M
5. W ← ∅
6. do
7. Choosel randomly fromM \W
8. W ←W ∪ {l}
9. SolveF ∪W usingsatz

10. until no branching required
11. W ← M INWEAKBACKDOOR (F, W)
12. S ← S ∪ SATZLS1 (F, W, M)
13. endwhile
14. return S

Algorithm S TRONGBACKDOOR

A simple algorithm to calculate strong backdoors was writ-
ten which simply tests every combination of literals up to a
fixed cardinality. The algorithm has the advantage that for
small problems, every weak and strong backdoor up to the
given size is generated. However, this procedure can only be

Algorithm 5 StrongBackdoor (F , Max-card)
Input: FormulaF , the maximum cardinality Max-card.

Output: A set of strong backdoorsS, and a set of weak
backdoorsW .

1. S ← W ← ∅
2. for eachsubsetX of the problem variables of size

up to Max-card
3. for eachdistinct set of literalsL corresponding

to the variables inX
4. RunsatzonF ∪ L
5. if branching is not required,

and the formula is satisfiable
6. thenW ←W ∪ L
7. if no literal set required branching
8. then S ← S ∪X
9. return S,W

used on small problems. The search for a strong backdoor in
a satisfiable formula can be sped up considerably using fre-
quency information gathereda priori during local search. A
score representing the number of times the variable appears
in small weak backdoors is calculated in the following way.
First, run SATZLS2 or similar procedure to generate a set
S of weak backdoors. Examine each backdoor inS. For a
backdoor of sizew, and for each variablev corresponding to
a literal in the backdoor, add 1/w to the score forv. During
the search for a strong backdoor, the variables are examined
at line 2 above in order of decreasing score.

We tested the ordering algorithm on problems with 20
variables, using asS the list of all weak backdoors up to

size 3. Compared to the default ordering (1, 2, 3, . . .), the
improved order found a strong backdoor in 40% fewer iter-
ations per problem on average. In problems of size 50 we
used the list of weak backdoors found by SATZLS2. The
new ordering required 25% fewer iterations per problem.

Empirical comparisons
To study the connection between backbones, backdoors and
problem hardness, we ran a number of experiments. For
strong backdoors, we were computationally limited to prob-
lems with up to 50 variables. For weak backdoors, we were
able to study larger problems with up to 225 variables, both
random and more structured. The problem sets used are
listed in Table 1. All problems in all sets are satisfiable,
except uuf50. Correlation between statistics is measured us-
ing Pearson’s r-value, and the corresponding coefficient of
determination (c.o.d.).

Abbrev Description n m Number of Inst.
RTI Random 3-sat 100 429 500
uf20 Random 3-sat 20 91 1000
uf50 Random 3-sat 50 218 1000
uuf50 Random 3-sat 50 218 1000

(unsatisfiable)
uf100 Random 3-sat 100 430 1000
uf125 Random 3-sat 125 538 100
uf150 Random 3-sat 150 645 100
uf175 Random 3-sat 175 753 100
uf200 Random 3-sat 200 860 100
uf225 Random 3-sat 225 960 100
flat30 SAT-encoded

graph colouring
90 300 100

flat50 SAT-encoded
graph colouring

150 545 100

Table 1: Problem Sets

Strong and weak backdoors
Of the 1000 random 3-SAT problems with 20 variables from
SATLIB, 275 can be solved bysatzin pre-processing, and
hence can be said to have a zero length strong and weak
backdoors. We ran the systematic procedure STRONG-
BACKDOOR that looks for backdoors of size up to 3. All
problems have a weak backdoor of length 3 or less. Of
the 725 non-trivial problems, 214 have a strong backdoor
of length greater than 3.

Each formulaF can have a large number of backdoors,
both strong and weak, of various sizes. The cardinality off
the smallest strong and weak backdoor sets are of particu-
lar interest. Let the cardinality of the smallest weak (resp.
strong) backdoor for a formulaF bewF (resp.sF). Strong
backdoors in the test set were only slightly larger than weak
ones. Over the 1000 instances,wF averaged 0.76 literals,
whilst sF averaged 1.1 variables. The set of literals that are
members of smallest weak backdoors are also of interest. In
the following, we useW ∗

F to denote the set of literals that are
members of at least one weak backdoor of sizewF . Simi-
larly S∗

F is the set of variables that appear in at least one
strong backdoor of sizesF .

Backboneversusbackdoor
It is not hard to show that there is no logical connection be-
tween backbones and backdoors. There are problem classes
which are NP-complete in which the backbone and backdoor
variables are disjoint. We can, however, see if there is a sta-
tistical connection. Are backbones likely to be backdoors,
and vice versa? The answer appears to be, not very likely.
In the 1000 tests on problems of size 20,no literals inW ∗

F

were also backbone literals. That is, no backbone literal was
also in a smallest weak backdoor. Results are presented in
Table 2.

Weak backdoors
Mean back- Mean Mean Mean

Problem set bone size wF |W ∗
F | Overlap

uf201 13.7 0.76 4.4 0
uf501 30.8 1.6 18.8 6.5
uf1002 53.6 4.6 10.2 2.7
RTI2 53.8 4.5 9.8 2.5

Strong backdoors
Mean back- Mean Mean Mean

Problem set bone size sF | S∗
F | Overlap

uf201,3 15.5 1.1 3.1 0
uf501,3 43.4 2.0 16.4 13.0

1 These entries are based on systematic search
2 These entries are based on local search
3 Only problems where a strong backdoor of size< 4 was found.
(Hence mean backbone size differs from weak backdoor table)

Table 2: Overlap between backbones and backdoors

In larger problems, the smallest weak backdoor and the
backbone do overlap, but not to a great extent. Strong back-
doors cannot be compared directly to backbones, as strong
backdoors are expressed in terms of variables, while back-
bones are sets of literals. However, we can say a backbone
literal of F is in the overlap set if its corresponding variable
is in S∗

F . Even with this fairly loose definition, there was no
overlap between backbone and smallest strong backdoors in
the size 20 problems. Again, as problem size grew, more
backbone variables appear in the strong backdoor.

Problem hardness
Problem hardness is taken to be the log of the number of
search nodes required bysatz. We present the most inter-
esting correlations with problem hardness in Table 3, and
discuss them in the text following.

The strongest correlation with problem hardness we found
was the size of the smallest strong backdoors. The size of
S∗

F correlated with problem hardness for the problems with
strong backdoors of size< 4. Guessing that the remaining
problems had a strong backdoor length of 4 increased the r-
value to 0.78. The corresponding c.o.d. tells us that about
60% of the variation in problem hardness is accounted for by

Problem set Statistic r-value c.o.d.
uf20 sF 0.71 0.50
uf20 sF + guess 0.78 0.61
uf20 wF 0.58 0.00
uf20 Backbone size -0.88 0.78

uuf50 sF 0.74 0.54

uf50 sF 0.37 0.14
uf50 sF + guess 0.46 0.21
uf50 wF 0.26 0.07
uf50 Backbone size -0.46 0.21

RTI wF 0.03 0.00
uf100 wF -0.01 0.00
uf125 wF -0.03 0.00
uf150 wF 0.07 0.01
uf175 wF 0.01 0.00
uf200 wF -0.13 0.02
uf225 wF -0.05 0.00

RTI Backbone size 0.16 0.03
uf100 Backbone size 0.25 0.06
uf125 Backbone size 0.32 0.10
uf150 Backbone size 0.28 0.08
uf175 Backbone size 0.25 0.06
uf200 Backbone size 0.34 0.12
uf225 Backbone size 0.48 0.23

flat30 Num weak back-
doors overall

-0.31 0.09

flat50 Num weak back-
doors overall

-0.37 0.14

flat30 Num models 0.42 0.18
flat50 Num models 0.54 0.

Table 3: Correlations with problem hardness

variation in strong backdoor length. This strong correlation
was also present in the unsatisfiable, size 50 problems in
uuf50 (all of which had a strong backdoor of size< 4).

The correlation with strong backdoor size was not as
strong with satisfiable problems of size 50. Only 395 of
these had a strong backdoor of size< 4. The correlation
with problem hardness was not as marked as for the pre-
vious problem sets. We have been able to examine only
a few larger problems to see if the effect is evident. The
pigeon-hole problems from SATLIB are very hard forsatz.
The number of search nodes required is typically one or two
orders of magnitude larger than similar-sized random prob-
lems. For example the 6-pigeon-hole problem has 42 vari-
ables and requires 14,604 search nodes, and has a strong
backdoor of size at least 5. The average number of search
nodes for random 50-node problems is 380, and the average
strong backdoor size for non-trivial problems is 2. The hard
problem therefore has a comparatively large strong back-
door. Unfortunately, computation cost prohibited us from
examining any other larger problems.

For the smallest problems, the size of the weak back-
doors is weakly correlated with problem hardness. However,

the effect reduces for the larger problems sizes, so that the
statistic is uncorrelated for problems of size 100 and above.
Surprisingly, problem hardness isnegativelycorrelated with
backbone size in the smallest problems. The larger problems
exhibit the positive correlation observed elsewhere (Slaney
& Walsh 2001).

Number of backdoors
The number of distinct smallest strong backdoors was not
a significant predictor of hardness. Basically all the predic-
tive power was in the 0/1 test “How many 0-length strong
backdoors are there?”, which is equivalent to “Is this prob-
lem trivial?”. Adding length 1, 2, or 3 strong backdoors did
not increase the correlation. The number of distinct small-
est weak backdoors, and the number of distinct weak back-
doors seen overall, were also not well correlated with prob-
lem hardness. This is surprising, as the existence of a small
backdoor, or even many small backdoors, would seem to
suggest the problem may not be hard.

Backbone free problems
What if we eliminate the influence of the backbone by en-
suring problems do not have any backbone? The usual SAT
encoding of a graph coloring problem lacks any backbone
since we can permute any coloring of the graph. Such en-
codings showed interesting results. There was a slight, neg-
ative correlation between problem hardness and the number
of weak backdoors (i.e., weak backdoors of size 1, 2 and
3 combined). Approximately 10% of the variation in hard-
ness is explained by the number of weak backdoors overall.
The negative correlation is as expected, but the effect is not
very strong. Surprisingly, there was a positive correlation
between problem hardness and the total number of models.
As the number of models increases, one would expect the
problem to become easier. For random problems, the corre-
lation was negative in all problem groups, but very weak.

Related Work
Beacham has considered the complexity of computing the
backbone for a range of decision problems like the satisfia-
bility and Hamiltonian path problem (Beacham 2000). He
considers a slightly modified definition of backbone: the
set of decisions whose negation give an unsatisfiable sub-
problem. This definition is equivalent to the usual one for
satisfiable problems but gives every decision for unsatisfi-
able problems. He shows that determining if the backbone
is empty is NP-complete (Beacham 2000).

Zhang has demonstrated experimentally that there is a
sharp transition in the size of the backbone of random MAX
3SAT problems (Zhang 2001). This appears to be correlated
with the transition in the random 3SAT decision problem.

Ruanet al. (Ruan, Kautz, & Horvitz 2004) look at the
backdoor key, the set of dependent variables within a weak
backdoor. They find that the ratio of the size of backdoor
key to the size of whole backdoor set is strongly correlated
with problem hardness. An interesting open question is the
relationship between the backdoor key and the few variables
we observed that are both in the backbone and the backdoor.

Conclusion
We have studied the backbone and the backdoors of propo-
sitional satisfiability problems. We proved that backbones
are hard even to approximate, and gave a number of proce-
dures for computing backdoors. Our experiments showed
that there is very little overlap between backbones and back-
doors. In addition, they demonstrated that problem hardness
appears to be correlated with the size of strong backdoors,
and weakly correlated with the size of the backbone, but
does not appear to be correlated to the size of weak back-
doors nor their number.

Probably the most significant finding of this study is that
backbones and backdoors do not overlap to a great extent.
Backbone-guided heuristics have been demonstrated to be
effective in solving SAT problems (Zhang 2004). However,
our results show that such algorithms are probably not iden-
tifying backdoor sets. Heuristics based on identifying back-
door literals will likely identify different literals, andhave
the potential to be very effective. Second, no one general
statistic appears able to predict problem hardness well. Even
the size of the strong backdoor, which showed the best corre-
lation, only explained about 60% of the variation in problem
hardness.

References
Achlioptas, D.; Gomes, C.; Kautz, H.; and Selman, B. 2000.
Generating satisfiable problem instances. InProc. of 17th Nat.
Conf. on AI.
Beacham, A. 2000. The complexity of problems without back-
bones. Master’s thesis, Dept. of Computing Science, University
of Alberta.
Cook, S. 1971. The complexity of theorem proving procedures. In
Proc. 3rd Annual ACM Symposium on the Theory of Computation,
151–158.
Garey, M., and Johnson, D. 1979.Computers and intractability :
a guide to the theory of NP-completeness. W.H. Freeman.
Li, C. M. 1999. A constrained-based approach to narrow search
trees for satisfiability.Information processing letters71:75–80.
Monasson, R.; Zecchina, R.; Kirkpatrick, S.; Selman, B.; and
Troyansky, L. 1998. Determining computational complexityfor
characteristic ‘phase transitions’.Nature400:133–137.
Nishimura, N.; Ragde, P.; and Szeider, S. 2004. Detecting back-
door sets with respect to horn and binary clauses. InProc. of 7th
Int. Conf. on Theory and Applications of Satisfiability Testing.
Parkes, A. 1997. Clustering at the phase transition. InProc. of
the 14th Nat. Conf. on AI, 340–345.
Ruan, Y.; Kautz, H.; and Horvitz, E. 2004. The backdoor key: A
path to understanding problem hardness. InProc. of the 19th Nat.
Conf. on AI.
Slaney, J., and Walsh, T. 2001. Backbones in optimization and
approximation. InProc. of 17th IJCAI.
Williams, R.; Gomes, C.; and Selman, B. 2003. Backdoors to
typical case complexity. InProc. of the 18th IJCAI.
Zhang, W. 2001. Phase transitions and backbones of 3-SAT and
Maximum 3-SAT. InProc. of 7th Int. Conf. on Principles and
Practice of Constraint Programming (CP2001). Springer.
Zhang, W. 2004. Configuration landscape analysis and backbone
guided local search for satisfiability and maximum satisfiability.
Artificial Intelligence158(1):1–26.

