
Estimating Search Tree Size

Philip Kilby
NICTA and ANU

Canberra, Australia
Philip.Kilby@anu.edu.au

John Slaney
NICTA and ANU

Canberra, Australia
John.Slaney@anu.edu.au

Sylvie Thiébaux
NICTA and ANU

Canberra, Australia
Sylvie.Thiebaux@anu.edu.au

Toby Walsh
NICTA and UNSW
Sydney, Australia

tw@cse.unsw.edu.au

Abstract
We propose two new online methods for estimating the size
of a backtracking search tree. The first method is based on
a weighted sample of the branches visited by chronologi-
cal backtracking. The second is a recursive method based
on assuming that the unexplored part of the search tree will
be similar to the part we have so far explored. We compare
these methods against an old method due to Knuth based on
random probing. We show that these methods can reliably
estimate the size of search trees explored by both optimiza-
tion and decision procedures. We also demonstrate that these
methods for estimating search tree size can be used to select
the algorithm likely to perform best on a particular problem
instance.

Introduction
Anyone who has used a backtracking procedure will proba-
bly have observed some problem instances being solved al-
most immediately, and other problem instances of a simi-
lar size taking an inordinate length of time to solve. Whilst
waiting for such a search procedure to finish, we might pon-
der a number of questions. How do I know if the search
procedure is just about to come back with an answer, or has
it taken a wrong turn? Should I go for coffee and expect to
find the answer on my return? Is it worth leaving this to run
overnight, or should I just quit as this search is unlikely ever
to finish? To help answer such questions, we might wish for
a search method that could estimate how long it is likely to
take. In this paper, we consider how to tackle this problem.

We want to estimate the size of a particular algorithm’s
search tree; that is, the number of nodes that it will actu-
ally visit. We study an old method due to Knuth based on
random probing. We also propose two new online methods,
the weighted backtrack and recursive estimators which sit on
top of a search procedure such as chronological backtrack-
ing with minimal overhead. Such methods for estimating
search tree size have a number of potentially useful applica-
tions beyond informing users of how long they will have to
wait. For example, they can be used to design load balanc-
ing schemes. We might, for example, give an idle processor
the subproblem which is estimated to have the largest search
tree. As a second example, they can be used to inform restart

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

strategies. We might, for instance, decide to restart when-
ever the estimated size of the search tree is over a certain
threshold. As a third example, they can be used to select the
algorithm that is likely to perform best on a problem. We
study such an application in this paper.

Background
We shall consider systematic search procedures like chrono-
logical backtracking which can be used to solve decision
problems, as well as systematic search procedures like
branch and bound which can be used to solve optimization
problems. We distinguish between optimization and unsatis-
fiability problems where we must explore all open branches,
and satisfiability problems where the search may terminate
with the tree only partially explored. For simplicity, we fo-
cus on binary search trees. There are several reasons for this
focus. First, many of the ideas lift easily to non-binary tress.
Limiting ourselves to binary trees keeps the notation simple.
Second, many practical search algorithms (e.g. Davis Put-
nam procedures, constraint toolkits, and many TSP solvers)
use binary branching. Indeed, there are theoretical results
showing that binary branching can result in exponentially
smaller search trees in certain situations.

Knuth’s method
Knuth’s method estimates N , the size of a backtrack tree as
1 + b1 + b1.b2 + . . . where bi is the branching rate observed
at depth i using random probing (Knuth 1975). For binary
trees, if d is the depth of a random probe, then bi = 2 for all
i ≤ d and 0 otherwise, so N is 2d+1 − 1. Knuth’s method
simply averages this estimate over multiple random probes,
giving 〈2d+1−1〉 where 〈. . .〉 represents the average over the
sample. This is an unbiased estimator: the expected value it
computes is the correct tree size.

To illustrate the strengths of Knuth’s method, we consider
a pathological family of imbalanced search trees. Gomes et
al. have observed that that runtime distributions for many
backtracking search procedures are heavy-tailed (Gomes,
Selman, & Crato 1997). They have proposed a simple model
of imbalanced search trees to model such behavior. A simple
instance of such a tree is where, with probability pi(1 − p),
we branch to depth i + 1 and discover the root of a com-
plete binary tree of depth i (Figure 1). Search terminates



when we have completely traversed this subtree. Note that∑
i≥0 pi(1 − p) = 1 as required.

p
p

p

(1−p)

(1−p)
(1−p)

(1−p) p

Figure 1: Imbalanced tree. Terminal nodes marked with a
dot.

To ensure that the expected search tree size is finite, we as-
sume p < 1

2 . This is equivalent to saying that, at any depth,
our heuristic has a better than 50% chance of branching into
the smaller of the two possible trees. The probability p is
thus a measure of heuristic inaccuracy. The expected search
tree size is given by:

〈N〉 =
∑

i≥0

pi(1 − p)(2i+1 + i)

= 2(1 − p)
∑

i≥0

(2p)i + (1 − p)
∑

i≥0

ipi

= 2
1 − p

1 − 2p
+

1

1 − p

For small p, this gives an expected tree size of 3(1 + p) +
O(p2).

While Knuth’s method, being an unbiased estimator, re-
turns the correct expected value, the variance in the size
of the search tree computed by random probes depends on
the heuristic accuracy. If p ≥ 1/16, we hit the heavy tail
and variance in the estimated search tree size is infinite. If
p < 1/16, then the variance is finite and is given by:

σ2 =
∑

i≥0

pi(1 − p)(22i+2 − 1)2 − 〈N〉2

= 16(1 − p)
∑

i≥0

(16p)i − 8(1 − p)
∑

i≥0

(4p)i +

(1 − p)
∑

i≥0

(p)i − 〈N〉2

= 16
1 − p

1 − 16p
− 8

1 − p

1 − 4p
+ 1 − 〈N〉2

For small p, this gives a variance of 204p + O(p2). Thus,
provided heuristic accuracy is large enough, random prob-
ing is successful at estimating the size of these highly im-
balanced trees. This should perhaps not be too surprising
since randomization and restarts works well on such trees
(Gomes, Selman, & Crato 1997).

Limitations of Knuth’s method
Whilst Knuth’s method is very simple and surprisingly ef-
fective in practice, it has a number of limitations. Most
importantly, as it is essentially an offline procedure, it re-
quires that the search tree be available in advance of the ac-
tual search. Search algorithms which determine the tree as

they go, such as SAT solvers which choose the next vari-
able on which to branch by looking at which variables have
been involved in the most nogoods, create search trees which
are opaque to probing until after the event. Knuth himself
notes (Knuth 1975) that his method is not suited to search
trees explored by procedures like branch and bound since the
bounds to be used down a particular branch are not known
in advance. Another difficulty for random probing, as ar-
gued by Purdom (Purdom 1978), is that it is easily misled
if the tree is very unbalanced. More systematic methods are
required in such situations.

It is sometimes possible to use Knuth’s method in an ap-
proximate way by substituting random decisions for the un-
known ones such as the SAT solver’s variable orderings. The
effect of this is that the probe samples from an ensemble of
trees rather than from the specific one searched. There are
cases in which this can still be useful, but it destroys the
unbiased nature of the estimator and in general causes per-
formance to degrade, so again a better solution is required.

In an attempt to tackle these problems, we will propose
two new online methods for estimating for search tree size
that sit on top of chronological backtracking. In their dif-
ferent ways, they take the part of the search tree already en-
countered as the guide to that still to come.

Weighted backtrack estimator
Our first method is heavily inspired by Knuth’s random
probing method. Its cost is minimal: a (small) constant over-
head at each search node. We estimate N at any point during
chronological backtracking by a weighted sum of the form:

∑
d∈D prob(d)(2d+1 − 1)∑

d∈D prob(d)

Where D is the multiset of branch lengths visited so far dur-
ing backtracking, and prob(d) equals 2−d (the probability of
random probing visiting such a branch). If we branch left or
right at random down the tree, the expected value returned
at the end of the first branch by this estimator is exact, and
is thus an unbiased estimate of the search tree size.

This estimator can cope with unbalanced search trees that
have been described as “problematic” for Knuth’s method
(Purdom 1978). Consider a tall, skinny binary tree in which
at each level but the last, one child is a leaf and the other is
not. If the maximum depth is n, then the total tree size is
2n + 1 nodes. We suppose that our backtracking procedure
explores this tree using a random branching heuristic.

As always, the expected size of the search tree computed
by Knuth’s method after probing one or more branches is
exact and equal to 2n + 1 nodes. Whilst a random probe
is unlikely to visit a deep branch, they contribute an expo-
nentially large term to the estimator. As a result, Knuth’s
method frequently over-estimates the search tree size. In
fact, the variance in the search tree size computed by ran-
dom probes grows as Θ(2n) for large n. We will therefore
need to average over a very large number of random probes
to bring this variance down.

By comparison, the weighted backtrack estimator behaves
well on these tall, skinny trees. After exploring one branch,



function search(node,depth)
1: if leaf(node) then
2: if goal(node) then
3: return “success”
4: else return 1
5: else
6: left[depth] := “estimated”
7: result := search(left(node),depth+1)
8: if result=“success” then
9: return “success”
10: else
11: left[depth] := result
12: result := search(right(node),depth+1)
13: if result=“success” then
14: return “success”
15: else return 1 + left[depth] + result

function estimate(node,depth)
1: if leaf(node) then
2: return 1
3: else
4: if left[depth]=“estimated” then
5: leftsize := estimate(left(node),depth+1))
6: rightsize := F(right(node))
7: else
8: leftsize := left[depth]
9: rightsize := estimate(node(right),depth+1)
10: return 1 + leftsize + rightsize

Figure 2: Pseudo-code for the recursive estimator of search
tree size.

the expected search tree size returned by the weighted back-
track estimator is also 2n + 1 nodes, and the variance is
Θ(2n) for large n. However, the variance quickly drops.
After exploring n + 1 branches, we have explored the tree
completely and the weighted backtrack estimator returns the
correct tree size with zero variance.

Recursive estimator
Our second online method is based on a simple recursive
schema. Suppose we are in the process of traversing a binary
tree depth-first and from left to right. We know exactly the
size of the part of the tree to the left of the current position,
since we have visited it and counted the nodes, so the best
estimate of the entire tree size is the sum of that (correct)
figure and the best estimate of the remaining portion of the
tree. Let F(n) be some function that estimates the size of
the subtree rooted at node n of a tree. Then we can build
a recursive estimator using the exact node count for the left
portion of the tree and F for the right portion.

The pseudo-code for this estimator is given in Fig-
ure 2. To perform chronological backtracking, we call
“search(root,0)”. A call to this function returns “success”
when it finds a leaf node which is a goal, or the number of
nodes explored in proving there is no goal within the cur-
rent subtree. We use a global array “left[depth]” in which

to store the size of the left subtree explored at a given depth
down the current branch. At any leaf node, we can get an
estimate of search tree size by calling “estimate(root,0)”.

For the experiments below, we used the simplest
possible estimator F : guess that the right subtree is
the same size as the left subtree. That is, the line
‘rightsize := F(right(node))’ in Figure 2 is instantiated to
’rightsize := leftsize’. This tends to overestimate the tree
size, because the search spends most of its time in the left
subtree just when that is bigger than the right one, but it is
interesting that even a simple F leads to a useful estimator.

Maintaining the global array adds a constant time over-
head to backtracking. Each call to “estimate(root,0)” takes
O(n) time where n is the maximum depth. Thus, if we call
the recursive estimator every n nodes, we do not increase the
amortized time complexity.

Clearly, when the search tree is exhausted, the size of the
search tree returned by this estimator is exact. Similarly, if
we branch left or right at random down the tree, the expected
value returned by this method at the end of the first branch is
the total tree size. The recursive estimator is thus unbiased.
It can also deal with certain types of imbalance that upset the
other estimators. To illustrate this, we introduce a simple
pathological example. Consider a binary tree in which the
left child of the root is a leaf, and the right is a complete
binary tree of depth n−1. We suppose that our backtracking
procedures explores the left child of the root before the right.

The expected search tree size computed by Knuth’s
method using random probing is exact and equal to 2n + 1
nodes. Random probing has a 50% chance to explore the
short left branch. Knuth’s method is therefore likely to
under-estimate the search tree size. In particular, the vari-
ance in the search tree size computed by random probing
grows as Θ(22n) for large n. As there is such a high chance
of hitting the short left branch, we need to average over very
many samples to bring the variance down.

The weighted backtrack method is also misled by the first
short branch. Indeed, we must explore all 2n + 1 nodes in
the tree before the weighted backtrack method compensates
for the under-estimate introduced by the first short branch.
After 1 backtrack its estimate of search tree size is 3 nodes,
and 2n−1+2n+1−1

2n−1+1 nodes after 2 backtracks (which tends to

5 nodes as n → ∞), and 2n−1+j(2n+1−1)
2n−1+j

(which grows as
1 + 4j for j << 2n−1) after j + 1 backtracks where j > 0.
The estimate of the search tree size monotonically increases
towards the exact size of 2n + 1. However, it does not cor-
rectly estimate the tree size until the whole tree is explored.

By comparison, the recursive estimator quickly compen-
sates for the first short branch. Its estimate of the size of the
search tree after 1 backtrack is 3 nodes. However, after just
2 backtracks, its estimate is 2n+1 nodes, where the estimate
stays till all 2n + 1 nodes of the search tree are explored.

Experimental results
We now study the effectiveness of these methods at estimat-
ing search tree size on both decision and optimization prob-
lems.



Unsatisfiable decision problems
We looked first at unsatisfiable random 3-SAT problems
with 300 variables and 1260 clauses. These are problems
at the phase transition in hardness. This problem set is re-
ferred to as 3-unsat. We tested 200 instances, and computed
the ratio of estimated tree size over actual. The SAT solver
used was satz215 (Li 1999), a DPLL-based solver which
uses lookahead in choosing the next variable on which to
branch, but which does not learn nogoods. Figure 3 shows
the evolution of the estimate as the search proceeds. The no-

0 10 20 30 40 50 60 70 80 90 100
Percent through search

0.1

0.2

0.3

0.4
0.5

1

2

3

4
5

10

R
at

io
 - 

es
tim

at
e 

to
 a

ct
ua

l (
m

ed
ia

n 
va

lu
es

)

WBE 
Knuth 
Recursive

Error in Treesize Estimates - Decision Problems
Random 3-SAT (unsatisfiable), 300 vars, 200 instances, <nodes> = 17755

Sat Feb 18 15:54:18 2006

Figure 3: Treesize estimates, unsatisfiable decision prob-
lems “3-unsat”

tion of “percent through search” makes no literal sense for
probing methods such as Knuth’s: the intended reading is
that “100%” is reached when the number of probes equals
the number of branches in the tree.

We also examined performance on structured, unsatisfi-
able decision problems from SATLIB. In Figure 4 we show
the result obtained on the “pigeon-hole” problem (size 8),
and also the average value obtained over 4 instances of cir-
cuit fault analysis problems (the “BF” data set).

0 10 20 30 40 50 60 70 80 90 100
Percent through search

0.1

0.2
0.3
0.4
0.5

1

2
3
4
5

10

R
at

io
 - 

es
tim

at
e 

to
 a

ct
ua

l

WBE (PH)
Knuth (PH)
Recursive (PH)
WBE (BF)
Knuth (BF)
Recursive (BF)

Error in Treesize Estimates - Structured Decision Problems
PH: Pigeon-hole problem 26881 nodes; BF: Circuit Fault Analysis (Ave of 4 inst.) <nodes> = 187

Mon Feb 20 12:24:14 2006

Figure 4: Treesize estimates, unsatisfiable decision prob-
lems “hole-8” and “BF”

Optimization problems
We now turn to predicting the size of a branch and bound
tree. We consider the travelling salesperson problem (TSP).
Our branch and bound algorithm uses depth-first search, ex-
ploring the node with the smallest lower bound at each it-
eration. The lower bound is calculated using a Lagrangian
Relaxation based on 1-trees, which are a form of Minimum
Spanning Tree (MST). The upper bound is calculated by a
single, deterministic run of Or-opt testing all forward and re-
verse moves of blocks of size n/2 down to 1, where n is the
number of cities. Branching forces an edge into the solution
on one side, and out of the solution on the other. The MST
bound is enhanced by eliminating all other edges into a node
if two incident edges are already forced into the solution.
Finally, the edge to force in or out at each iteration is cho-
sen randomly from the (unforced) edges in the current upper
bounding tour. Tests were conducted on problems with 50
cities distributed uniformly and randomly in the 2-D plane.
This data set is referred to as “tsp”. The results are shown in
Figure 5.

0 10 20 30 40 50 60 70 80 90 100
Percent through search

0.1

0.2
0.3
0.4
0.5

1

2
3
4
5

10

R
at

io
 - 

es
tim

at
e 

to
 a

ct
ua

l (
m

ed
ia

n 
va

lu
es

)

WBE
Knuth
Recursive

Error in Treesize Estimates - Optimization
TSP Problems (50 city) - 671 instances - <nodes> = 1239

Sat Feb 18 15:55:51 2006

Figure 5: Treesize estimates, optimization problems “tsp”

The estimates for Knuth’s method are synthetic results
generated after we had solved the problems. As we argued
before, Knuth’s method cannot be applied directly to branch
and bound search trees. For the purposes of comparison,
we saved the search tree generated by our TSP algorithm,
and randomly sampled it a-postiori. Even with this help,
Knuth’s method performs very badly. We conjecture this is
because the search trees are very lop-sided. Because of the
way bounding occurs, many nodes have one leaf and one
non-leaf child. Random probes are very likely therefore to
terminate at a shallow depth.

Satisfiable decision problems
We end this empirical study with the most challenging class
of problems: satisfiable decision problems. With such prob-
lems, search can terminate even if there are many open nodes
down the current branch. We do not therefore expect esti-
mation methods to work as well as on complete search. We
used satisfiable, random 3-SAT problems with 300 variables
and 1260 constraints. This problem set is called “3-sat”.



All methods naturally over-estimated the tree size, but the
estimates were fairly consistent. The results are shown in
Figure 6. Note that this has a log y scale.

0 10 20 30 40 50 60 70 80 90 100
Percent through search

0.1

0.2

0.3

0.4
0.5

1

2

3

4
5

10

R
at

io
 - 

es
tim

at
e 

to
 a

ct
ua

l (
m

ed
ia

n 
va

lu
es

)

WBE
Knuth
Recursive

Error in Treesize Estimates - Satisfiable Decision Problems
Random 3-SAT (satisfiable), 300 vars, 200 instances, <nodes> = 5431

Mon Feb 20 13:28:25 2006

Figure 6: Treesize estimates, satisfiable decision problems
“3-sat”

Midpoint prediction
To illustrate one possible application of our new online
methods, we predict the midpoint of search. That is, we
flag when the number of nodes searched first exceeds half
the estimated size of the search tree. We cannot give a direct
comparison with Knuth’s method as it is not online. To per-
mit some sort of comparison, we allowed Knuth’s method
one probe for each backtrack of the algorithm, though this
would in effect more than double the time required. We mea-
sured the ratio of the number of nodes when the half-way
point was predicted reached to the total size of search tree.
Thus, 0.5 is the desired value. Table 1 gives the results for
tests on the problem classes described above.

Problem Method Median Mean SD Count Miss
3-unsat Knuth 0.49 0.50 0.06 200 0
3-unsat WBE 0.51 0.50 0.13 200 0
3-unsat Recursive 0.53 0.52 0.13 200 0
hole-8 Knuth 0.44 0.44 0.00 1 0
hole-8 WBE 0.12 0.12 0.00 1 0
hole-8 Recursive 0.12 0.12 0.00 1 0
BF Knuth 0.43 0.47 0.04 2 2
BF WBE 0.41 0.60 0.25 3 1
BF Recursive 0.41 0.62 0.24 3 1
tsp Knuth 0.07 0.15 0.20 599 72
tsp WBE 0.18 0.29 0.27 600 71
tsp Recursive 0.56 0.56 0.21 600 71
3-sat Knuth 0.44 0.55 0.22 70 130
3-sat WBE 0.42 0.47 0.24 75 125
3-sat Recursive 0.46 0.52 0.23 67 133

Table 1: Midpoint prediction

Count is the number of instances for which a prediction
was produced. “Miss” gives the number of instances for
which search finished before the midpoint was predicted.

The premature predictions in Hole-8 and tsp are expected
given the under-estimation evident in the corresponding fig-
ures above. However, the success in prediction for satisfi-
able problems is surprising. It appears that if we do not get
lucky and finish very quickly, we can make a relatively good
prediction of the search tree size.

Algorithm selection

Our second application is selecting the algorithm most likely
to perform well on a problem instance. One of the features
of this problem is that estimation methods only need to rank
accurately. A method can, for example, consistently under-
estimate search tree size and still perform well at selecting
the best algorithm. We consider the satz215 algorithm (Li
1999) which is deterministic, and uses lexicographic order-
ing to break ties. The algorithm therefore performs very dif-
ferently on the same problem presented with renamed vari-
ables. The algorithm ShuffleSatz given in Figure 7 exploits
this variance by selecting a lexicographic ordering that is es-
timated to give a smaller tree size. ShuffleSatz can use either
the Knuth, WBE, or Recursive estimators.

1: Generate 10 random lexicographical orderings
2: For each ordering
3: Run satz215 using the ordering to break ties
4: Stop after 50 backtracks (or 50 probes for Knuth)
5: Calculate WBE, Recursive, or Knuth estimate
6: Complete search with the ordering that gives the

lowest estimate

Figure 7: ShuffleSatz

Table 2 shows the results of applying ShuffleSatz to the
86 difficult problem instances in the “3-sat” data set that re-
quired more than 2000 backtracks to solve. We report total
search effort in terms of backtracks required to find a satisfi-
able assignment, plus the number backtracks or probes used
in selecting the best lexicographical ordering. The “Mean”
column gives the mean number of backtracks required by
the lexicographical ordering chosen by the estimator. Any
of the estimation methods is able to speed up the satz215
algorithm. As there are some “magic numbers” in the def-
inition of ShuffleSatz, more work is required to find robust
values for these parameters.

Mean Total Percent
Method Backtracks Backtracks Improve
Orig 5239 450587 0
Knuth 3580 350923 22
WBE 3852 374229 17
Recursive 3951 382820 15

Table 2: Number of backtracks over “3-sat” data set – Shuf-
fleSatz compared to vanilla satz215



Related work
Knuth demonstrated the effectiveness of random probing for
estimating search tree size on the problem of enumerating
uncrossed knight’s tours (Knuth 1975). As mentioned be-
fore, he argued that random probing cannot be used for pro-
cedures like branch and bound. However, he suggested that
it could be used to estimate the work needed to test a bound
for optimality. To reduce variance, Purdom proposed a gen-
eralization of Knuth’s method that uses partial backtrack-
ing, a beam-like search procedure (Purdom 1978). Chen has
proposed a generalization of Knuth’s method called heuris-
tic sampling that stratifies nodes into classes (Chen 1992).
Knuth’s method classifies nodes by depth. Chen applied his
method to estimate the size of depth-first, breadth-first, best-
first and iterative deepening search trees.

Allen and Minton adapted Knuth’s method to con-
straint satisfaction algorithms by averaging over the last ten
branches sampled by backtracking (Allen & Minton 1996).
They used these estimates to select the most promising al-
gorithm. Lobjois and Lemaitre also used Knuth’s method to
select the branch and bound algorithm likely to perform best
(Lobjois & Lemaitre 1998). Cornuéjols, Karamanov and Li
predict the size of a branch and bound search tree by using
the maximum depth, the widest level and the first level at
which the tree is no longer complete to build a simple lin-
ear model of the branching rate. (Cornuéjols, Karamanov,
& Li 2006). Kokotov and Shlyakhter measure the progress
of Davis Putnam solvers using an estimator somewhat simi-
lar to our recursive estimator (Kokotov & Shlyakhter 2000).
Finally, Aloul, Sierawski and Sakallah use techniques based
on decision diagrams to estimate progress of a satisfiability
solver (Aloul, Sierawski, & Sakallah 2002).

Musick and Russell abstracted the search space to con-
struct a Markov model for predicting the runtime of heuris-
tic search methods like hill climbing and simulated anneal-
ing (Musick & Russell 1992). Slaney, Thiébaux and Kilby
have used the search cost to solve easy decision problems
away from the phase boundary as a means to predict the cost
of solving the corresponding optimization problem (Slaney
& Thiébaux 1998; Thiébaux, Slaney, & Kilby 2000). They
showed that good estimates could be found using a small
fraction of the time taken to prove optimality.

Finally, statistical techniques have been applied to predict
the size of search trees. Horvitz and colleagues have used
Bayesian methods to predict runtimes of constraint satisfac-
tion algorithms based on wide range of measures (Horvitz
et al. 2001; Kautz et al. 2002; Ruan, Horvitz, & Kautz
2002). Such predictions are then used to derive good restart
strategies. Leyton-Brown and Nudelman used statistical re-
gression to learn a function to predict runtimes for NP-hard
problems (Leyton-Brown & Nudelman 2002). Their meth-
ods use both domain independent features (like the quality
of the integer relaxation) and domain dependent features.

Conclusion
We have proposed two online methods for estimating the
size of a backtracking search tree. The first is based on
a weighted sample of the branches visited by chronologi-

cal backtracking. The second assumes that the future (an
unexplored right branch) will look much like the past (an
explored left branch). We have compared these methods
against a method due to Knuth based on random probing.
All three are unbiased estimators; the expected value they
return is the total tree size. However, our online methods of-
fer a number of advantages over methods based on probing.
They can, for example, be used within branch and bound
procedures. Initial results are promising. On both struc-
tured and random problems, we can often estimate search
tree size with good accuracy. We can, for instance, select
the algorithm likely to perform best on a given problem.

References
Allen, J., and Minton, S. 1996. Selecting the right heuristic al-
gorithm: Runtime performance predictors. In Proc. of the 11th
Canadian Conf. on Artificial Intelligence, 41–52.
Aloul, F.; Sierawski, B.; and Sakallah, K. 2002. Satometer: How
much have we searched? In Design Automation Conf., 737–742.
IEEE.
Chen, P. 1992. Heuristic sampling: a method for predicting the
performance of tree searching programs. SIAM Journal of Com-
puting 21(2):295–315.
Cornuéjols, G.; Karamanov, M.; and Li, Y. 2006. Early esti-
mates of the size of branch-and-bound trees. INFORMS Journal
on Computing 18(1).
Gomes, C.; Selman, B.; and Crato, N. 1997. Heavy-tailed distri-
butions in combinatorial search. In Smolka, G., ed., Proc. of Third
Int. Conf. on Principles and Practice of Constraint Programming
(CP97), 121–135. Springer.
Horvitz, E.; Ruan, Y.; Gomes, C.; Kautz, H.; Selman, B.; and
Chickering, D. 2001. A bayesian approach to tackling hard com-
putational problems. In Proc. of 17th UAI, 235–244.
Kautz, H.; Horvitz, E.; Ruan, Y.; Gomes, C.; and Selman, B.
2002. Dynamic restart policies. In Proc. of the 18th National
Conf. on AI, 674–681. AAAI.
Knuth, D. 1975. Estimating the efficiency of backtrack programs.
Mathematics of Computation 29(129):121–136.
Kokotov, D., and Shlyakhter, I. 2000. Progress
bar for sat solvers. Unpublished manuscript,
http://sdg.lcs.mit.edu/satsolvers/progressbar.html.
Leyton-Brown, K., and Nudelman, S. 2002. Learning the empiri-
cal hardness of optimization problems: the case of combinatorial
auctions. In Proc. of 8th Int. Conf. on Principles and Practice of
Constraint Programming (CP2002). Springer.
Li, C. M. 1999. A constrained-based approach to narrow search
trees for satisfiability. Information processing letters 71:75–80.
Lobjois, L., and Lemaitre, M. 1998. Branch and bound algorithm
selection by performance prediction. In Proc. of 15th National
Conf. on Artificial Intelligence, 353–358. AAAI.
Musick, R., and Russell, S. 1992. How long will it take. In Proc.
of the 10th National Conf. on AI, 466–471. AAAI.
Purdom, P. 1978. Tree size by partial backtracking. SIAM Journal
of Computing 7(4):481–491.
Ruan, Y.; Horvitz, E.; and Kautz, H. 2002. Restart policies with
dependence among runs: A dynamic programming approach. In
Proc. of 8th Int. Conf. on Principles and Practice of Constraint
Programming (CP2002). Springer.
Slaney, J., and Thiébaux, S. 1998. On the hardness of decision
and optimisation problems. In Proc. of the 13th ECAI, 244–248.
Thiébaux, S.; Slaney, J.; and Kilby, P. 2000. Estimating the
hardness of optimisation. In Proc. of the 14th ECAI, 123–127.


