
A compression algorithm for large arity

extensional constraints⋆

George Katsirelos and Toby Walsh

NICTA and UNSW
[george.katsirelos, toby.walsh]@nicta.com.au

Abstract. We present an algorithm for compressing table constraints
representing allowed or disallowed tuples. This type of constraint is used
for example in configuration problems, where the satisfying tuples are
read from a database. The arity of these constraints may be large. A
generic GAC algorithm for such a constraint requires time exponential
in the arity of the constraint to maintain GAC, but Bessière and Régin
showed in [1] that for the case of allowed tuples, GAC can be enforced in
time proportional to the number of allowed tuples, using the algorithm
GAC-Schema.
We introduce a more compact representation for a set of tuples, which
allows a potentially exponential reduction in the space needed to repre-
sent the satisfying tuples and exponential reduction in the time needed
to enforce GAC. We show that this representation can be constructed
from a decision tree that represents the original tuples and demonstrate
that it does in practice produce a significantly shorter description of
the constraint. We also show that this representation can be efficiently
used in existing algorithms and can be used to improve GAC-Schema

further. Finally, we show that this method can be used to improve the
complexity of enforcing GAC on a table constraint defined in terms of
forbidden tuples.

1 Introduction

The table constraint is an important constraint that is available in most con-
straint toolkits. With this, we are able to express directly a set of acceptable
assignments to a set of variables. These constraints can be generated from data
that has been read from a database in a configuration problem, or may encode
users’ preferences, among other applications. The table constraint is usually
propagated using GAC-Schema, an algorithm proposed in [1] and studied fur-
ther in [9, 8, 4] among others.

In this paper, we introduce a compression algorithm for table constraints.
This algorithm attempts to capture the structure that may exist in a table but

⋆ NICTA is funded by the Australian Government’s Department of Communications,
Information Technology and the Arts and the Australian Research Council through
Backing Australia’s Ability and the ICT Centre of Excellence program. Thanks to
Fahiem Bacchus and Nina Narodytska for their insightful comments.

2 George Katsirelos and Toby Walsh

is not explicitly encoded. In order to achieve this, we propose an alternative
representation of tuples that may capture an exponential number of tuples in
polynomial space, although each compressed tuple may be larger than the arity
n of the constraint. GAC-Schema can be adapted easily to work with such
compressed tuples. Since the runtime of GAC-Schema is proportional to the
number of tuples in the table and we do not increase the cost of examining a
single tuple significantly, we can reasonably expect it to perform better after we
reduce the number of tuples in this way. The approach can also be extended
from the sets of allowed tuples to work also on constraints that are expressed
as sets of forbidden tuples. This can potentially deliver great improvements in
runtime, as the complexity of GAC-Schema+Forbidden is exponential in the
arity of the constraint, whereas with our approach it becomes proportional to
the number of forbidden tuples.

The rest of the paper is organized as follows. We first present the necessary
background in section 2, then we describe the compression algorithm in sec-
tion 3. In section 4 we describe how GAC-Schema can be modified to work on
compressed tables. In section 5, we extend this approach to work on tables of
forbidden tuples. Finally, in section 6 we present experimental confirmation that
GAC-Schema using compressed tuples is faster.

2 Background

A constraint satisfaction problem P is a tuple (V,D, C), where V is a set of
variables, D is a function mapping a variable to a domain of values and C is
a set of constraints. Given V ∈ V and x ∈ D(V), we say that V = x is an
assignment, it assigns to V the value x. The goal is to find a set of assignments
that satisfy the constraints, assigning exactly one value to each variable.

An assignment set is a set of assignments A = {X1 = a1, . . . ,Xk = ak}
such that no variable is assigned more than one value. We use scope(A) to
denote the set of variables assigned values in A. A constraint C consists of an
ordered set of variables, scope(C), and a set of assignment sets. Each of these
specifies an assignment to the variables of scope(C) that satisfies C. We say
that an assignment set A is consistent if it satisfies all constraints it covers:
∀C.scope(C) ⊆ scope(A) ⇒ ∃A′.A′ ∈ C ∧A′ ⊆ A. Thus, a solution to the CSP
is a consistent assignment set containing all of the variables of the CSP.

We deal here with backtracking search algorithms. Constraint propagation
is used during backtracking search to filter the domains of variables so that
values that cannot be part of a solution are removed from the domains of unas-
signed variables. Most solvers maintain generalized arc consistency for the table
constraint.

Definition 1 (Support). A support of a constraint C is a set of assignments

to exactly the variables in scope(C) such that C is satisfied. A support of C that

includes the assignment V = x is called a support of V = x in C.

Compression for large arity constraints 3

Definition 2 (Generalized arc consistency (GAC)). A constraint C is

GAC if there exists a support for all values in the current domains of the vari-

ables in scope(C). A problem P is GAC if all of its constraints are GAC.

Constraints can be defined in several ways, including as a set of satisfying as-
signments; as a set of non-satisfying assignments; as a predicate; or algebraically.
In this paper, we deal with the first two (extensional) representations.

3 The compression algorithm

Representation. Let C be a constraint that is represented in extension as a set
of satisfying tuples. Let UC = {U1, . . . , Uu} be the set of satisfying tuples that
define the constraint, n = |scope(C)| and d = maxV ∈scope(C)|D(V)|.

The set of tuples UC represents the propositional disjunction c(U1) ∨ . . . ∨
c(Uu), where c(Ui) is V1 = di1 ∧ . . . ∧ Vn = din, the propositional form of
the tuple Ui = 〈di1, . . . , din〉. From now on, we refer to these as u-tuples. The
compression scheme that we propose transforms the constraint into a conjunc-
tion of compressed tuples. Each compressed tuple Ci corresponds to a more
compact propositional formula c(Ci) of the form (V1 = di,1,1 ∨ . . . ∨ V1 =
di,1,ki,1

)∧ . . .∧(Vn = di,n,1∨ . . .∨Vn = di,n,ki,n
). A compressed tuple can then be

written Ci = 〈(di,1,1, . . . , di,1,ki,1
), . . . , (di,n,1, . . . , di,n,ki,n

)〉. A compressed tuple
Ci admits any set of assignments that assigns one of di,1,1, . . . , di,1,ki,1

to V1,
one of di,2,1, . . . , di,2,ki,1

to V2 and so on. Note that a compressed tuple can rep-
resent a potentially exponential number of u-tuples. Specifically it will accept
any combination of the ki,1 values for V1, ki,2 values for V2 and so on, so that
it represents ki,1ki,2 . . . ki,n u-tuples. We refer to this representation as c-tuples.
The set of u-tuples represented by a c-tuple c is written u(c).

This compact representation is not new, as it has been used before in different
contexts. Milano and Focacci[3] used it in the context of symmetry breaking,
while Katsirelos and Bacchus[6] used it in the context of nogood learning.

Clearly not all sets of tuples can be compressed in this way. For any set of
domains, there exist two maximum sets of tuples that cannot be compressed.
We derive them by ordering all possible tuples lexicographically and choosing
those with an even (odd) index in this ordering. In general, a set of tuples can be
expressed more succinctly as c-tuples if there exist clusters of tuples with pairwise
Hamming distance 1. For example, consider the set U1 = {〈1, 1, 1〉, 〈1, 2, 2〉}.
Since the two tuples have Hamming distance 2, this cannot be expressed any
more succinctly as a set of c-tuples. The set U2 = {〈1, 1, 1〉, 〈1, 2, 1〉, 〈1, 2, 2〉} has
two pairs of tuples with Hamming distance 1, while the other two have distance
two, and can therefore be expressed either as C2 = {〈(1)(1, 2)(1)〉, 〈(1)(2)(2)〉} or
C ′

2 = {〈(1)(1)(1)〉, 〈(1)(1)(1, 2)〉}. Finally, by adding one more tuple, the set U3 =
{〈1, 1, 1〉, 〈1, 1, 2〉, 〈1, 2, 1〉, 〈1, 2, 2〉}, all tuples have pairwise Hamming distance
1 and can be expressed as the single c-tuple 〈(1)(12)(12)〉.

Note this representation cannot improve the efficiency of existing algorithms
(e.g. AC-*[12]) for propagating binary constraints. Since the arity of these con-
straints is two, each compressed tuple can at best represent a quadratic number

4 George Katsirelos and Toby Walsh

of uncompressed tuples. However, when AC-* examines a value to determine
whether it still has a support, it will only examine the tuples that contain this
value. There is a linear number of such tuples, which can each be checked in
constant time. On the other hand checking the single compressed tuple is done
in linear time also, so in the best case using compressed tuples for binary con-
straints yields no improvement.

The applicability of the representation is also reduced for tables where some
of the variables are functionally dependent on some others. Consider for example
the arithmetic constraint X = Y +Z. For every value of Y and Z, X is uniquely
defined. Thus, we can only attempt to represent more compactly the set of values
of Y and Z that yield a specific value of X. The functional dependency of X on Y
and Z effectively partitions the space of possibly more compact representations
among the different values of X and reduces the arity of the table by 1, as far
as the compression scheme is concerned.

Decision trees. We derive a set of c-tuples from the original u-tuples by creating
a decision tree T (U) that describes the u-tuples and then deriving c-tuples from
the decision tree.

A decision tree is a structure that can describe a Boolean function. Each
non-leaf node v of the tree is labeled with a test l(v). Each leaf is labeled with
either 1 or 0. In order to evaluate the Boolean function f(x), we start at the
root and test x against l(v). The left child of v is visited if the test succeeds and
right child if it fails. When a leaf is reached, the value of f(x) is determined to
be the same as the label of the leaf. For convenience, we also label the edge to
the left child of v with l(v) and the edge to the right child of v with ¬l(v).

Here we treat a set of tuples UC as a function fUC
: {0, 1}dn → {0, 1} where

the tests are literals that correspond to all dn possible assignments. f evaluates
to 1 if its arguments form a tuple in UC and 0 otherwise. Let T (UC) be a decision
tree that describes fUC

. A u-tuple u ∈ UC agrees with a node v if v is the root
or if it agrees with the parent P (v) of v and v is the left child of P (v) and
l(P (v)) ∈ u or v is the right child of P (v) and l(P (v)) /∈ u. A tuple u ∈ UC

is associated with a node v if it agrees with it and the set of all such tuples is
U(v). By this definition, each u-tuple agrees with at most one of the child nodes
of v. Additionally, we enforce that each tuple u ∈ U(v) must agree with exactly
one child of v1 so all the nodes at a level of the tree describe a partition of UC .
If U(v) = ∅ then the node is empty. A literal s (resp. ¬s) is implied in v iff
∀u ∈ U(v) s ∈ u (resp. ∀u ∈ U(v) s /∈ u.)

We can determine the set of tuples poss(v) described by a node v by enumer-
ating all the possible u-tuples that agree with v. A node v completely describes

the set of tuples U(v) associated with it if poss(v) = U(v).
Finally, a c-tuple can be constructed from a node v. Let S(v) be the set of

literals that label the edges in the path from v to the root of the tree. S(v, V) is
the set of values of V that appear in a literal in S(v) if 6 ∃d|V = d ∈ S(v), else it is
D(V)−{d} |V = d ∈ S(v). Then the c-tuple c(v) that describes exactly the same

1 If this is not true, then T (UC) is not a decision tree for the function fUC .

Compression for large arity constraints 5

tuples as v is c(v) = 〈(d1 ∈ D(V1) − S(v, V1)) . . . (dn ∈ D(Vn) − S(v, Vn))〉. For
example, if S(v) = {V1 = 1, V2 6= 2, V2 6= 3, V3 6= 1, V3 6= 2, V4 = 2} and D(V1) =
D(V2) = D(V3) = D(V4) = {1, 2, 3, 4}, then c(v) = 〈(1)(1, 4)(3, 4)(2)〉. We see
that c(v) admits all u-tuples in poss(v).

Proposition 1. Let v be a node in the decision tree. The c-tuple c(v) admits

exactly the tuples poss(v).

Proof. Let u be a tuple in poss(v). We only need to show that for each variable
V , u assigns d to V if and only if V = d is part of c(v). Since u(c(v)) contains
all combinations of assignments to each variable, this is enough to show u ∈
u(c(v)) ⇐⇒ u ∈ poss(v) for all u. Let u assign the value d to variable V . Since
u agrees with v then either V = d ∈ S(v) or V 6= d /∈ S(v). In the first case, c(v)
also assigns d to V . In the second case, c(v) will contain all assignments to V in
D(V) − S(v, V). But since V 6= d /∈ S(v) then d ∈ D(V) − S(v, V). Therefore
V = d ∈ c(v). 2

If v completely describes U(v), c(v) also completely describes U(v) and the
u-tuples in U(v) can be replaced by c(v). This means that given a decision tree
that represents a set of clauses, the set of c-tuples that are constructed from the
non-empty leaves of the tree are exactly equivalent to the original u-tuples.

Example Let C1(V1, V2) be a constraint such that D(V1) = D(V2) =
{0, . . . , d − 1} and U(C1) = {〈0, 1〉, . . . , 〈0, d − 1〉, 〈1, 1〉}. This constraint al-
lows every tuple where V1 = 0 and the tuple 〈1, 1〉. In figure 1(a) we show
an optimal decision tree and the tuples associated with each leaf node. We
also show in 1(b) and 1(c) the decision trees for C2(V1, V2) with U(C2) =
{〈0, 0〉, . . . , 〈0, d − 2〉, 〈1, 0〉, . . . , 〈1, d − 2〉, . . . , 〈d − 2, 0〉, . . . , 〈d − 2, d − 2〉} and
C3(V1, V2) with U(C3) = {〈0, 0〉, . . . , 〈0, d − 3〉, 〈1, d − 2〉, 〈1, d − 1〉}, respec-
tively. In this figure, a round node v is an internal node of the decision tree
and is labeled with the literal that we branch on at v. A square node v is a leaf
node and is either labeled by ∅, in which case is empty, or it completely describes
the tuples U(v) and it is labeled with the corresponding c-tuple. The left child
of a node that branches on s contains tuples that contain s and thus the edge
to the parent is labeled with =, while the right child contains tuples that do not
contain s and the edge to the parent is labeled with 6=.

Constructing decision trees. The problem of constructing a minimum decision
tree (with minimum average branch length) is NP-hard [5]. We have tried to
solve this problem to optimality using constraint programming techniques, but
were unsuccessful in improving significantly over generate-and-test. Thus, we use
a heuristic approach.

Algorithms that construct decision trees follow an outline similar to that
of TableToDecisionTree, shown in figure 2 (see, for example [10]). This
algorithm is straightforward. At each node it checks whether any implied literals
exist and extends the tree with a node for each of them. If no implied literals
exist, it selects a literal to branch on and then expands each of the child nodes. If

6 George Katsirelos and Toby Walsh

Fig. 1 Optimal decision trees for the constraints (a) C1, (b) C2 and (c) C3. Each node
is labeled with the literal on which to branch. Round nodes contain both tuples and
non-tuples, while square nodes are leaves and are either empty and labeled with ∅ or
contain tuples only and are labeled with a c-tuple.

V1 = 0

〈(0)(0, . . . , d − 1)〉

V1 = 1

V2 = 1

∅

〈(1)(1)〉 ∅

= 6=

= 6=

= 6=

(a)

V1 = d − 1

∅

V2 = d − 1

∅

〈(0, . . . , d − 2)(0, . . . d − 2)〉

= 6=

=
6=

V1 = 0

V2 = 0V2 = d − 1

∅
V2 = d − 2

∅
〈(0)(0, . . . , d − 3)〉

V2 = d − 3

∅
〈(1)(d − 2, d − 1)〉

= 6=

= 6=

= 6=

. . .

= 6=

(b) (c)

it creates an empty node (where |U(v)| = 0) or a node that completely describes
U(v), it stops. After construction of the tree, a c-tuple is generated from each
leaf v that completely describes U(v).

The complexity of the algorithm depends on how much work the splitting
heuristic needs to do to select a literal to branch on. Here, we only deal with
heuristics that examine the frequency with which literals appear in U(v). If Vl

is the set of nodes at level l of the binary tree, then we know that the sets
U(v), v ∈ Vl are a partition of UC , therefore at each level of the tree each tuple
in UC will be examined exactly once. Since all tuples have length n, the cost of
choosing a literal to branch on for every node at a level is O(|UC |n). The depth
of the tree is bounded by the total number of literals nd, since a literal cannot be
branched on more than once in the same branch. Thus the total cost of building
the tree is O(|UC |n

2d). Note however that this assumes that no compression can
be achieved on the table. In practice the runtimes are often much lower.

Splitting heuristics. The splitting heuristics we will examine are based on count-
ing the frequency with which literals appear in U(v). We write f(s, v) for the
number of times s appears in a tuple in U(v) and f(¬s, v) = |U(v)| − f(s, v).
We describe the following heuristics.

Compression for large arity constraints 7

Fig. 2 Compression algorithm

TableToDecisionTree(U C, v:Node)
1. if v is empty ∨ v is complete
2. return
3. if ∃ s s.t. s is implied
4. v′ = {Parent:v, EdgeLiteral:s}
5. TableToDecisionTree(U(v′), v′)
6. else
7. s =ChooseLiteral(U(v))
8. v1 = {Parent:v, EdgeLiteral:s}
9. v2 = {Parent:v, EdgeLiteral:¬s}
10. TableToDecisionTree(U(v1), v1)
11. TableToDecisionTree(U(v2), v2)

– MaxFreq. This heuristic chooses the literal with maximum f(s, v) (or mini-
mum f(¬s, v)). The reasoning is that the c-tuples that will be constructed in
the subtree containing s have a better chance of representing more u-tuples,
since s appears often. For example, consider the constraint C1 discussed
earlier, with U(C1) = {〈0, 0〉, . . . , 〈0, d〉, 〈1, 1〉}, with an optimal decision tree
shown in figure 1(a). Since V1 = 0 appears d times, MaxFreq will make
the optimal choice at the root. The branch that contains V1 = 0 completely
describes all u-tuples for which V1 = 0, thus the algorithm stops expanding
at this point. The other branch only contains the tuple 〈1, 1〉 which will
be left uncompressed. Thus this heuristic finds an optimal branching for
this example. On the other hand, consider the constraint C2 with U(C2) =
{〈0, 0〉, . . . , 〈0, d − 2〉, 〈1, 0〉, . . . , 〈1, d − 2〉, . . . , 〈d − 2, 0〉, . . . , 〈d − 2, d − 2〉},
whose optimal decision tree is shown in figure 1(b). Each literal in this
set of u-tuples appears exactly d − 1 times, except for V1 = d − 1 and
V2 = d − 1 which do not appear at all, so MaxFreq chooses one of those
that appear d − 1 times arbitrarily. Assume it chooses V1 = 0. On the
positive branch, each literal of V2 appears once except for V2 = d−1, so once
again MaxFreq chooses one arbitrarily. This continues until each c-tuple
containing V1 = 0 is placed on a separate branch, therefore no compression
occurs. On the negative branch of V1 = 0, each literal of V1 appears d − 1
times and each literal of V2 appears d − 2 times, so another literal of V1

is chosen and the process repeats so that no compression occurs. However,
U(C2) is compressible to the single c-tuple 〈(0, . . . , d − 2)(0, . . . , d − 2〉, so
clearly MaxFreq does not perform optimally in every case.

– MinFreq. This chooses the literal with the minimum f(s, v). If many u-
tuples are similar but contain many different assignments to a single variable
V , then branching on all the values of V that do not appear in the u-tuples
will quickly lead to a subtree that contains these similar u-tuples that can
hopefully be compressed efficiently. It is easy to see that for the constraint
C2 mentioned above MinFreq will find the optimal compression. On the
other hand, it will not do so for the constraint C1.

8 George Katsirelos and Toby Walsh

– MinMinFreq. This chooses the literal with the minimum
min(f(s, v), f(¬s, v)). This is an attempt to combine MinFreq and
MaxFreq, by using f(s, v) and f(¬s, v) respectively as measures of
the fitness of a literal. At each node, the best literals chosen by both
heuristics are compared against each other using this measure and the
best one is branched on. We can see that both C1 and C2 are com-
pressed optimally using MinMinFreq. However, for the constraint
C3 with U(C3) = {〈0, 0〉, . . . , 〈0, d − 3〉, 〈1, d − 2〉, 〈1, d − 1〉} (decision
tree in figure 1(c)), we have f(V1 = 0) = d − 2, f(V1 = 1) = 2 and
f(V2 = k) = 1 for all k. In order to produce the optimum compression
{〈(0)(0, . . . , d − 3)〉, 〈(1)(d − 2, d − 1)〉}, the heuristic needs to branch either
on the literal V0 = 0 or on V0 = 1. However, MinMinFreq will not choose
either of these and neither will MinFreq. MaxFreq will choose the correct
literal to branch on, but we showed that it performs worse in C2.

– MinDiff. This chooses the literal with the minimum |f(s, v) − f(¬s, v)|.
This heuristic tries to create a more balanced tree, therefore a smaller one.
MinDiff will perform optimally on C1 and C3 but not C2.

– MaxGain. This is the heuristic used by ID3 [10] and C4.5 [11]. It calculates
first the information content I(v) for the current node. For each literal s, it
calculates the expected information E(s) of the subtree that will be created
by branching on s and chooses s so that I(v)−E(s) is maximum. This means
that it chooses the literal that gains the most information. The decision tree
under the node v is treated as a source of a message ’T’ or ’N’ for tuples
that belong or do not belong, respectively, to U(v). Then the information of
that tree is

I(v) = −
|U(v)|

|poss(v)|
log2

|U(v)|

|poss(v)|
−

|poss(v) − U(v)|

|poss(v)|
log2

|poss(v) − U(v)|

|poss(v)|

The expected information required if we branch on the literal s is

E(s) =
|poss(v ∪ {s}))|

|poss(v)|
I(v ∪ {s}) +

|poss(v ∪ {¬s})|

|poss(v)|
I(v ∪ {¬s})

where n ∪ {s} and n ∪ {¬s} are the child nodes of v resulting by branching
on s.
Since I(v) is common to all literals, MaxGain chooses the literal that min-
imizes E(s).

Empirical results. We implemented and tested this compression algorithm on all
the instances from the 2005 CSP competition [13] that contain non-binary ta-
bles. We tested for compression efficiency and runtime performance. We omitted
binary instances and binary table constraints in non-binary instances, because
as we already pointed out, modern algorithms for maintaining arc consistency
in binary constraints cannot benefit from compression.

In table 1 we show the compression achieved with three of the heuristics we
mentioned (MinMinFreq, MinDiff and MaxGain) for some of the instances

Compression for large arity constraints 9

Table 1. Compression efficiency for instances from the 2005 CSP competition. The
best ratios t/tC and l/lC are highlighted.

MinMinFreq MinDiff MaxGain

Instance # Tables Avg t Avg l t/tc l/lc time t/tc l/lc time t/tc l/lc time

Golomb-12-sat 4 2631.25 7893.75 1.0 1.0 1.16 1.0 1.0 2.24 1.0 1.0 2.72
Golomb-12-unsat 8 4776.88 14330.62 1.0 1.0 2.05 1.0 1.0 3.15 1.0 1.0 4.36

0-TSP-10 3 7651.0 22953.0 1.0 1.0 12.45 1.0 1.0 24.78 1.0 1.0 26.46
series10 1 90.0 270.0 1.0 1.0 0.0 1.36 1.22 0.0 1.36 1.22 0.0

cril sat nb 0 27 1482.11 15076.22 19.65 13.14 0.01 1.98 1.73 0.03 5.25 4.21 0.01
cril unsat nb 6 9 281.33 1125.33 50.6 18.06 0.0 29.03 9.6 0.0 38.36 12.76 0.0
cril unsat nb 7 9 292.67 1170.67 61.61 20.04 0.0 40.28 11.58 0.0 45.56 13.59 0.0

gr 55 11 a3 1.0 1540 4620.0 1.0 1.0 0.17 1.0 1.0 0.09 1.0 1.0 0.23
random-3-20-20-60-632-forced-1 60 2944.0 8832.0 3.14 1.9 0.06 6.85 2.32 0.04 7.18 2.35 0.06
random-3-24-24-76-632-forced-1 74 5001.28 15003.85 3.6 1.99 0.13 8.15 2.4 0.07 8.48 2.42 0.11
random-3-28-28-93-632-forced-1 91 7967.01 23901.03 4.13 2.08 0.25 9.56 2.47 0.15 9.97 2.49 0.21

renault-merged 89 2182.76 14455.07 7.32 4.08 0.04 51.92 7.65 0.01 14.34 5.53 0.04

we tested. For each instance, we report the number of tables that were com-
pressed, the average number of tuples t and the average number of literals l per
table and for each splitting heuristic the ratios t/tc, l/lc and the average time
to compress a table. The ratio t/tc is the ratio of the number of tuple in the
original table versus the number of tuples in the compressed table, while l/lc
is the ratio of the total number of literals in the expression. Note that for each
constraint C, l is simply t · |scope(C)|. The ratio t/tc gives an indication to how
efficient the compression was. l/lc is an accurate representation of the memory
savings that have been achieved.

We show only one representative instance from most families. The results
tend to be the same for all instances of one family, as they tend to reuse the
same tables. The exception to this is the Golomb ruler problem where the tables
express arithmetic tables over domains that grow with the number of marks on
the ruler, therefore the tables themselves grow as well. We show results for the
largest satisfiable and largest unsatisfiable instance of the Golomb ruler problem.
The cril family of problem also does not follow this pattern, because it is a
collection of instances from different domains.

We see that not all domains are amenable to applying our technique. This is
to be expected, as it is possible that the tuples cannot be more compactly repre-
sented. On the other hand, for three domains the technique works very well and
for those we present results for more instances. In the domains where the tech-
nique achieves no reduction in the number of tuples, the overhead of attempting
and failing to compress the tables is generally small. The only families where it is
even noticeable are the Golomb ruler and travelling salesman problems, in which
case it takes 20 seconds and 60 seconds, respectively, to examine all tables of the
instance. Moreover, in many cases the tables are shared among many instances
and therefore compression can be considered an offline procedure that can be
performed once before solving a set of instances.

In the three domains where compression achieves improvement, we see that
no splitting heuristic dominates. Moreover, the differences can be dramatic. In
the cril family the heuristic MinMinFreq outperforms both the other ones and
in the instance cril sat nb 0 the ratio l/lc is 7 times higher than for MinDiff

and 3 times higher than for MaxGain. On the other hand, in the renault con-

10 George Katsirelos and Toby Walsh

figuration problem, MinDiff performs best and in random problems MaxGain

is the better choice.
In our experiments, we also tried to use the C4.5 algorithm [11]. Although

the ideas for the construction of decision trees are similar, C4.5 was created
with machine learning applications in mind, where the purpose is to improve
the ability of the decision tree to correctly classify tuples that have not yet
been seen. As a result, the software is not suitable for our purposes. We believe
however that our use of the MaxGain heuristic captures the major ideas behind
C4.5.

4 Modifying GAC-Schema

The GAC-Schema algorithm was proposed in three different vari-
ations: GAC-Schema+Allowed, GAC-Schema+Forbidden,
GAC-Schema+Predicate. The first two are intended to work with constraints
expressed in extension by satisfying or conflicting tuples, respectively. The third
works with constraints defined by a predicate which succeeds for satisfying
complete assignments. Here, we only deal with GAC-Schema+Allowed (to
which we refer simply as GAC-Schema). In section 5, we will also deal with
GAC-Schema+Forbidden.

GAC-Schema uses the procedure seekNextSupport to identify a support
for a value V = x. seekNextSupport iterates over the tuples in the table that
contain V = x until it finds a support for V = x, i.e. a tuple such that none of its
values have been pruned. In order to minimize the number of checks performed
by seekNextSupport, GAC-Schema maintains a current support for each
unpruned value. A current support for X = a is a tuple that contains X = a
and is valid. In the context of uncompressed tuples, a tuple is valid if none of the
values that it contains are pruned. It maintains this information in three data
structures: S(U) is the set of values that are currently supported by the tuple
U ; SC(X = a) is the set of tuples that contain X = a and are currently supports
for some values; lastC(X = a) is the last support of value X = a returned by
seekNextSupport. When a value X = a is pruned, new support has to be
found for values that have lost their current support because of this pruning.
These values are in the set P =

⋃
U∈Sc(X=a) S(U). For each value Y = b ∈ P ,

a new support is first sought among Sc(Y = b) and then among tuples that
contain Y = b and have index higher than lastC(Y = b). If no support is found
by either procedure, the value is pruned. If a support U is found in SC(Y = b),
then Y = b is placed in S(U). If a support σ is found by seekNextSupport, it
becomes the new current support for Y = b and the data structures are updated
accordingly. Multidirectionality is exploited by placing the new support σ in
SC(Z = c) for every other value in σ.

In order to work on a table of compressed tuples, we first modify the definition
of a valid tuple, which is needed by seekNextSupport. A c-tuple is invalid
when there exists a variable in the scope of the constraint such that all its values
in the c-tuple are pruned. Note that this allows for a simple but significant
optimization: if all values of a variable appear in a compressed tuple, we can

Compression for large arity constraints 11

simply avoid checking them altogether. However, the complexity of checking
whether a c-tuple is valid is O(nd), as a c-tuple can contain many values from
each variable, as opposed to O(n) for a u-tuple. On the other hand, the greater
the length of the c-tuple, the more u-tuples it represents, so we can expect that
the greater complexity of performing a single constraint check is balanced by the
fact that we need to perform fewer of them.

In order to have GAC-Schema work with c-tuples, we need to note the
following. First, when we prune a value X = a, it is not necessary that all
tuples in SC(X = a) will be invalid, as they may contain other values of X that
have not been pruned. Second, since a c-tuple is valid as long as one value from
each variable is not pruned, it is not necessary to examine the tuple for validity
every time one of the values it contains is pruned. We see that the structure
SC(X = a) serves two purposes: it identifies tuples that may become invalid if
X = a is pruned and it identifies tuples that have already been found to support
other values and may be a support for X = a. In the case of uncompressed
tuples, the two are necessarily identical, as the pruning of a value X = a will
invalidate all tuples X = a appears in. In the case of compressed tuples, we need
to maintain two different structures for the two purposes. The first one is called
WC and the second SC . WC will always be a (not necessarily strict) subset of
SC . Every time a tuple σ is identified as a support for a variable, we choose one
value X = a ∈ σ from each variable in the scope of the constraint and place σ in
WC(X = a). This optimization is similar in spirit to the watch literal technique
used in SAT solvers to unit propagate propositional clauses.

5 GAC-Schema with forbidden tuples

Recall that in constructing a decision tree to compress a set of tuples, we view
this set as a Boolean function that evaluates to 1 if its arguments form a tuple
in U and 0 otherwise. If we were to use this method on a constraint that is
represented as a set of forbidden tuples, we would have no useful way of using the
compressed tuples to perform propagation, as the instantiation of the function
seekNextSupport for GAC-Schema+Forbidden does not iterate over the
tuples, but needs to check whether or not an arbitrary tuple is forbidden.

Note however that we can convert between the two equivalent representa-
tions of a constraint as a set of forbidden or allowed tuples. A constraint on
variables V1, . . . , Vn with domains D1, . . . ,Dn represented as the set of forbid-
den tuples U is equivalent to a constraint represented by the set of allowed tuples
D1 × . . .×Dn −U . In terms of the corresponding Boolean function, this means
that the function evaluates to 1 if its arguments form a tuple not in U and 0
otherwise. This suggests that we can use our compression method to compress
the equivalent constraint that is expressed as a set of satisfying tuples, without
actually generating the satisfying tuples. This is done by generating c-tuples
from the leaves that are empty, as opposed to those that completely describe
U(v). These compressed tuples are allowed and can be used with GAC-Schema

with c-tuples.

12 George Katsirelos and Toby Walsh

For example, consider the ternary table constraint C(V1, V2, V3), with
D(V1) = D(V2) = D(V3) = {1, 2, 3} that disallows the tuples 〈1, 2, 3〉
and 〈3, 2, 1〉. The optimal decision tree for this table is shown in figure 3.
In this decision tree, the leaves that would normally contain the two tu-
ples are instead labeled with the empty set, while the leaves that would be
empty are used to construct c-tuples. The resulting set of allowed c-tuples is
{〈(1, 2, 3)(1, 3)(1, 2, 3)〉, 〈(1)(2)(1, 2)〉, 〈(2)(2)(1, 2, 3)〉, 〈(3)(2)(2, 3)〉}.

Fig. 3 Constructing a set of allowed c-tuples from a table constraint with for-
bidden tuples

V2 = 2

V1 = 1

V3 = 3

∅ 〈(1)(2)(1, 2)〉

〈(1, 2, 3)(1, 3)(1, 2, 3)〉

V1 = 3

V3 = 1

〈(2)(2)(123)〉

∅ 〈(3)(2)(23)〉

=

=

= 6=

6=

6=

= 6=

= 6=

Even though the number of allowed tuples may be exponentially larger than
the number of forbidden tuples, the number of allowed compressed tuples will
not be significantly bigger than the number of forbidden tuples.

Proposition 2. Let C be a constraint on variables V1, . . . , Vn with domains

D1 = . . . = Dn = D and |D| = d, represented as a set of forbidden tuples F .

The size of the set C of compressed tuples generated from the empty leaves of

the decision tree T (F) is O(nd|F |).

Proof. Consider a leaf v that completely describes F (n). Assume that at every
node along this branch, following the alternative branch leads to an empty leaf.
This is the maximum number of empty leaves that may correspond to each
complete leaf. Since the maximum length of any branch is nd and there exist at
most |F | non-empty branches (in which case the set cannot be compressed), the
maximum number of empty leaves is O(nd|F |). 2

Note that this upper bound is a worst case scenario, which assumes that
the decision tree is maximal, thus the set of allowed u-tuples that represent the
constraint cannot be compressed.

6 Empirical Results

We implemented the algorithm GAC3.1r [7] with and without compressed tuples.
We compared the runtime for searching 100,000 nodes (for random problems)

Compression for large arity constraints 13

or 1 million nodes (for the rest) for table constraints with compressed and un-
compressed tuples, in the subset of families from section 3 where our heuristic
algorithms were able to produce a smaller representation. We present our find-
ings for some representative instances in table 2. We used the best splitting
heuristic for each instance, as determined by the results in table 1.

Table 2. CPU time and number of constraint checks needed to search 100,000 nodes
(for random problems) or 1,000,000 (for the cril instances) using both the uncom-
pressed and compressed representation for table constraints, in instances from the
2005 CSP competition

w/compression w/out compression

Instance #Vars #Cons #Tables t/tc l/lc Time #CC×106 Time #CC×106

random-3-20-20-60-632-forced-1 20 60 60 6.85 2.32 76.26 994.90 182.32 2010.40
random-3-20-20-60-632-forced-8 20 58 58 6.74 2.30 73.48 945.76 164.42 1935.04
random-3-20-20-60-632-forced-9 20 59 59 6.78 2.31 120.65 1165.17 234.57 2339.77
random-3-24-24-76-632-forced-1 24 74 74 8.15 2.40 158.87 1661.22 407.64 3207.54
random-3-24-24-76-632-forced-8 24 76 76 8.28 2.42 207.80 2033.63 503.94 4659.31
random-3-24-24-76-632-forced-9 24 74 74 8.12 2.40 97.79 1132.62 288.58 2922.41
random-3-28-28-93-632-forced-1 28 91 91 9.56 2.47 268.93 2495.32 739.16 6297.27
random-3-28-28-93-632-forced-8 28 92 92 9.67 2.48 245.00 2375.20 560.28 5470.00
random-3-28-28-93-632-forced-9 28 91 91 9.59 2.48 494.69 4543.70 1046.52 6440.60

cril sat nb 0 108 35 27 19.65 13.14 22.57 127.14 159.57 362.49
cril unsat nb 6 36 153 9 50.60 18.06 10.99 11.25 11.77 66.89
cril unsat nb 7 36 153 9 61.61 20.04 19.21 25.76 20.08 130.79

For each instance we present the number of variables, number of constraints,
number of tables (which may differ from the number of constraints, as many
constraint may share the same table,) the ratio t/tc and l/lc and finally the time
needed to search 100,000 nodes and the number of constraint checks, in millions.

We see that in random problems using the compressed representation is uni-
formly better. The reduction in the number of constraint checks corresponds
with the reduction in runtime over the simple version of the algorithm. In the
cril instances, the picture is somewhat different. While the reduction in the
number of constraint checks is significant, the difference in runtime does not
reflect this. In the instance cril sat nb 0, the number of constraint checks is
reduced by a factor of 13, but the runtime is only reduced by a factor of 7. In
the other two instances, the number of constraint checks is reduced by a factor
of 6, but the runtime is approximately the same with and without compression.
Part of the reason for this is that these instances contain other constraints, so
the improvement in speed is not apparent. For example, we found by profiling,
that propagating the table constraints for the cril unsat nb 6 only took ap-
proximately 15% of the total runtime for the uncompressed problem, therefore
the improvement of .8 seconds actually corresponds to a 55% improvement in
the time spent propagating the table constraints. This is still less than expected
based on the number of constraint checks performed, however.

Finally, we also ran the renault configuration problem with both compressed
and uncompressed tuples. In that problem, propagation takes too little time and
thus in tests to find the first 2 million solutions, both algorithms performed
identically. In profiling the programs, we found that propagation takes less 1%

14 George Katsirelos and Toby Walsh

of the total runtime and the majority of the time is instead spent on other
aspects of backtracking search.

7 Related work

Our work on constructing small decision trees overlaps with similar work that
has been performed in machine learning [10, 11]. As we mentioned earlier, the
decision trees constructed for machine learning applications are intended to be
used to classify as yet unseen tuples. Misclassification of some tuples is acceptable
if it means keeping the size of the decision tree smaller. In our case, all tuples
are known and we cannot accept any error in the classification.

GAC-Schema has been studied extensively. The work however has focused
on more efficient search of the set of supporting tuples. Lhomme and Régin
proposed the holotuple data structure [9] to avoid checking some tuples. Lecoutre
and Szymanek proposed using binary search to locate a valid support [8]. Both
these techniques are essentially orthogonal to using compressed tuples and can
be used in conjunction with them.

In [4], it is proposed to use tries to represent the set of satisfying tuples. The
tries can be viewed as a way to compress the shared prefixes of tuples. Even
though tries have one leaf per tuple, finding a support may skip up to dn−m

invalid tuples if it encounters a pruned value at level m < n of the trie. However,
tries are restricted to having the same ordering along every branch, while our
method of constructing decision trees is not restricted in this way. Moreover, in
our method many branches may be combined (as we perform binary branching
on the decision trees.) Thus, the reduction in the number of constraint checks
that can be achieved using our method may be significantly better.

Finally, in [2] it is proposed to build a DAG where each node represents a
range of values for a variable. A path from the root to a leaf in the DAG is
equivalent to one c-tuple. However, no method is proposed to derive this DAG
from an arbitrary set of tuples.

As far as we are aware, we are also the first to propose using this technique
to propagate table constraints with sets of forbidden tuples.

8 Conclusions

We have presented an algorithm for compressing table constraints, for both the
case when the table consists of allowed tuples and when the table consists of
forbidden tuples. The representation produced contains c-tuples, each of which
may correspond to exponentially many uncompressed tuples. Existing algorithms
that enforced GAC on tables with allowed tuples can be adapted to work with
c-tuples while maintaining the central structure of the algorithm that involves
examining (c-)tuples for validity. As a result, compression can also deliver expo-
nential time savings. Moreover, compression allows us to enforce GAC on tables
with forbidden tuples in time polynomial in the number of forbidden tuples,
while the best result so far has been exponential in the arity of the constraint.
Finally, we demonstrated that this technique works in practice, using instances

Compression for large arity constraints 15

from the 2005 CSP Competition. Moreover, instances where compression does
not work can be detected relatively quickly.

Besides improving table constraint propagation, this work raises some ques-
tions. First, it appears that the heuristics developed in machine learning for
creating small decision trees are not necessarily better than simpler alternatives.
It would be interesting to develop better heuristics to create smaller trees. Alter-
natively, more effort could be put into finding better solutions to this NP-hard
problem by utilizing constraint programming techniques. Finally, we intend to
evaluate our methods on table constraints with forbidden tuples and integrate
with other improvements to the GAC-Schema algorithm, such as the holotuples
data structure of [9].

References

[1] C. Bessière and J.-C. Régin. Arc consistency for general constraint networks:
Preliminary results. In Proceedings of the Sixteenth International Joint Conference
on Artificial Intelligence, pages 398–404, Nagoya, Japan, 1997.

[2] M. Carlsson. Filtering for the case constraint. Talk given at Advanced School on
Global Constraints, Samos, Greece, 2006.

[3] F. Focacci and M. Milano. Global cut framework for removing symmetries. In
Proceedings of the Seventh International Conference on Principles and Practice
of Constraint Programming, volume 2239 of Lecture Notes in Computer Science.
Springer, 2001.

[4] I. P. Gent, C. Jefferson, I. Miguel, and P. Nightingale. Data structures for gen-
eralised arc consistency for extensional constraints. In Proceedings of the Twenty
Second Conference on Artificial Intelligence (to appear), 2007.

[5] L. Hyafil and R. L. Rivest. Constructing optimal binary decision trees is np-
complete. Information Processing Letters, 5(1):15–17, May 1976.

[6] G. Katsirelos and F. Bacchus. Generalized nogoods in CSPs. In Proceedings of
the Twentieth National Conference on Artificial Intelligence, 2005.

[7] C. Lecoutre and F. Hemery. A study of residual supports in arc consistency. In
Proceedings of the Twentieth International Joint Conference on Artificial Intelli-
gence, pages 125–130, 2007.

[8] C. Lecoutre and R. Szymanek. Generalized arc consistency for positive table
constraints. In Proceedings of the Twelfth International Conference on Principles
and Practice of Constraint Programming CP-06, volume 4204 of Lecture Notes in
Computer Science. Springer, 2006.

[9] O. Lhomme and J.-C. Régin. A fast arc consistency algorithm for n-ary con-
straints. In Proceedings of the Twentieth National Conference on Artificial Intel-
ligence (AAAI-05), 2005.

[10] J. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.
[11] J. Quinlan. Programs for Machine Learning. Morgan Kaurmann Publishers, 1993.
[12] J.-C. Régin. AC-*: A configurable, generic and adaptive arc consistency algo-

rithm. In Proceedings of the Eleventh International Conference on Principles and
Practice of Constraint Programming, volume 3709 of Lecture Notes in Computer
Science, pages 505–519. Springer, 2005.

[13] M. van Dongen, C. Lecoutre, R. Wallace, and Y. Zhang. 2005 CSP solver compe-
tition. In M. van Dongen, editor, “Second International Workshop on Constraint
Propagation and Implementation”, 2005.

