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Abstract. We study the experimental consequences of a recent theor-
etical result by Achlioptas et al. that shows that conventional models of
random problems are trivially insoluble in the limit. We survey the lit-
erature to identify experimental studies that lie within the scope of this
result. We then estimate theoretically and measure experimentally the
size at which problems start to become trivially insoluble. Our results
demonstrate that most (but not all) of these experimental studies are
luckily unaffected by this result. We also study an alternative model of
random problems that does not suffer from this asymptotic weakness.
We show that, at a typical problem size used in experimental studies,
this model looks similar to conventional models. Finally, we generalize
this model so that we can independently adjust the constraint tightness
and deunsity.

1 Introduction

One of the most exciting areas in Al in recent years has been the study of phase
transition behaviour. In a seminal paper that inspired many later researchers,
Cheeseman, Kanefsky, and Taylor demonstrated that the hardest search prob-
lems often occur around a rapid transition in solubility [2]. Problems from such
transitions in solubility are routinely used to benchmark algorithms for many
different NP-complete problems. Experimental results about phase transition
behaviour have come thick and fast since the publication of [2]. For example,
in random 3-SAT, the phase transition was quickly shown to occur when the
ratio of clauses to variables is approximately 4.3 [14]. Unfortunately, theory has
often proved more difficult. A recent result proves that the width of the phase
transition in random 3-SAT narrows as problems increases in size [3]. However,
we only have rather loose but hard won bounds on its actual location [4, 13].
For random constraint satisfaction problems, Achlioptas et al. recently provided
a more negative theoretical result [1]. They show that the conventional ran-
dom models are almost surely trivially insoluble for large enough problems. This
paper studies the impact of this theoretical result on experimental studies.
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2 Constraint satisfaction

A binary constraint satisfaction problem consists of a set of variables, each with
a domain of values, and a set of binary constraints. Each constraint rules out a
subset of the possible values for a pair of variables. Each assignment of values
to variables ruled out is called a nogood. Associated with each problem is a
constraint graph. This has variables as vertices and edges between variables that
appear in nogoods. The constraint satisfaction decision problem is to decide if
there is an assignment of values to variables so that none of the constraints are
violated.

Four models of random problems are used in most experimental and theor-
etical studies. In each model, we generate a constraint graph G, and then for
each edge in this graph, choose pairs of incompatible values. The models differ in
how we generate the constraint graph and how we choose incompatible values.
In each case, we can describe problems by the tuple {n,m,p1,ps), where n is the
number of variables, m is the uniform domain size, p; is a measure of the density
of the constraint graph, and p; is a measure of the tightness of the constraints.

model A: with probability p;, we select each one of the n(n — 1)/2 possible
edges in G, and for each edge with probability p, we pick each one of the
m? possible pairs of values as incompatible;

model B: we uniformly select exactly pin(n — 1)/2 edges for G, and for each
edge we uniformly pick exactly psm? pairs of values as incompatible;

model C: with probability p;, we select each one of the n(n — 1)/2 possible
edges in G, and for each edge we uniformly pick exactly pom? pairs of values
as incompatible;

model D: we uniformly select exactly pin(n — 1)/2 edges for G, and for each
edge with probability p; we pick each one of the m? possible pairs of values
as incompatible.

3 Phase transitions

Constraint satisfaction algorithms are now routinely benchmarked using random
problems from one of these four models. To help unify experimental studies with
different problems, Gent et al. [8] define the constrainedness, s of an ensemble
of combinatorial problems as,
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where N is the log base 2 of the size of the state space, and {Sol) is the expected
number of these states that are solutions. Since 0 < (Sol) < 2N it follows that
% € [0,00). If k = 0 then problems are very under-constrained and soluble. It is
usually very easy to find one of the many solutions. If k¥ = oo then problems are
very over-constrained and insoluble. It is usually relatively easy to prove their
insolubility. If & = 1 then problems are on the “knife-edge” between solubility



and insolubility. It is often difficult to find solutions or prove the insolubility of
such problems. This definition of constrainedness has been used to locate phase
transitions behaviour both in NP-complete problems like constraint satisfaction,
and in polynomial problems like enforcing arc consistency [5].

Consider, for example, binary constraint satisfaction problems from model
B. The state space has m™ states, one for each possible assignment of values to
the n variables. Each of the p1n(n—1)/2 edges in the constraint graph rules out
a fraction (1 — ps) of the possible assignments of values to variables. Thus,

(Sol) = m™(1 — pg)P17n—1)/2 N = nlog,(m)
Substituting these into the definition of constrainedness gives,
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Gent el al. [7] show experimentally that rapid transitions in solubility occur
around x = 1 for a selection of model B problems with between 10 and 110
variables and domains of sizes between 3 and 50. Problem hardness for a wide
variety of algorithms tends to peak around these transitions.

4 The problem with random problems

Achlioptas et al. [1] identify a shortcoming of all four random models. They
prove that if ps > 1/m then, as n goes to infinity, there almost surely exists a
flawed variable, one which has every value unsupported. A value for a variable
is unsupported if, when the value is assigned to the variable, there exists an ad-
jacent variable in the constraint graph that cannot be assigned a value without
violating a constraint. A problem with a flawed variable cannot have a solu-
tion. They argue that therefore “...the currently used models are asymptotically
uninteresting except, perhaps, for a small region of their parameter space ...”7
(when ps < 1/m). Further, they claim that “..the threshold-like picture given
by experimental results [with these models] is misleading, since the problems with
defining parameters in what is currently perceived as the underconstrained region
(because a solution can be found fast) are in fact overconstrained for large n (0b-
viously, larger than the values used in experiments) ... 7. Note that this result
does not apply to problems in which the constraints have certain types of struc-
ture. For example, if each constraint only allows variables to take different values
then problems encode graph colouring, which has good asymptotic properties.
Achlioptas et al. [1] propose an alternative random problem class, model
E which does not suffer from this asymptotic shortcoming, and which does not
separate the generation of the constraint graph from the selection of the nogoods.
In this model, we select uniformly, independently and with repetitions, pm?*n(n—
1)/2 nogoods out of the m?*n(n — 1)/2 possible. They prove that if a random
instance generated using this model has less than n/2 nogoods then it almost
surely has a solution (theorem 6, page 113). They conjecture that substantially



stronger bounds could be derived to increase the number of allowed nogoods. We
note that model E is not entirely novel since Williams and Hogg study random
problems with both a fixed number of nogoods picked uniformly, and with an
uniform probability of including a nogood [15]. As Achlioptas et al. themselves
remark [1], the expected number of repetitions in model E is usually insignificant
(for instance, it is O(1) when the number of nogoods is @(n)), and repetitions
are only allowed to simplify the theoretical analysis. The differences between
model E and the models of Williams and Hogg are therefore likely to be slight.

5 Experimental practice

Achlioptas et al.’s result does not apply to random problems for which p, < 1/m.
To study the practical significance of this restriction, we surveyed the literature
from 1994 (when phase transition experiments with random constraint satisfac-
tion problems first started to appear), covering all papers in the proceedings
of CP, AAAI, ECAI and IJCAI which gave details of experiments on random
constraint satisfaction problems. The results of this survey are summarized in
Tables 1 and 2. An experimental study is deemed “inapplicable” if the problem
sets tested include an ensemble of problems with ps < 1/m.

Conference|lnapplicable| Total
studies [studies

AAAI-94 2 3
ECAI-94 0 4
CP-95 3 4
IJCAI-95 1 5
AAAI-96 0 4
CP-96 3 5
ECAI-96 1 5
AAAT-97 2 4
CP-97 0 7
IJCAI-97 0 1
totals 12 42

Table 1. Summary of results of the literature survey.

Just over a quarter of papers include problems to which the results of [1] do
not apply. The most common exception are random problems with m = 3 and
p2 = 1/9 or 2/9. Model B is the most common model of generation, followed
by model A. Whilst a significant number of papers use problems outside the
scope of [1], nearly three quarters use problem sets that are vulnerable to these
criticisms. In addition, all of the papers which included inapplicable problem
sets also used some instances with ps > 1/m. In conclusion therefore, the results
of [1] apply to most published experiments.



Conference[Author initials Model[(n, m) p2 < 1/m?
AAAL 94 |[DF,RD] B [(25 — 250,3) Py = 1/9,2/9
[DF,RD] B |[(25 —275,3) Py =1/9,2/9
(15 — 60, 6) pa = 4/36
(15 — 35,9) no
[NY,YO,HH] B [(20,10) no
ECAL94 |[PP] D [(20,10), (20, 20, (30, 10) 1o
[BMS] B [(8,10) no
[DL] B [(10,20) no
[DS,ECF] A [{50,8) no
CP-95 [IPG,EM,DD,TW] B (10 _ 110,3) P2 =279
(10, 10Y, (20,10, (10,5 — 50), ... no
[JL,PM] A [(10,10) no
[FB,PR] B [(25,3) pr=1/9
(35,6), (50,6) ps = 4/36
(15,9}, (35,9) no
[FB,AG] B (25, 3) Py =2/9
{25,6), (15,9) no
IJCAL-95 |[ECF,PDH] A [(50,8) o
[DF,RD] B |(125,3) py=1/9
(35,6) ps = 4/36
(250, 3), (50,6), (35,9, ... no
[PM,JL] D [(10,10), (20,10, (30, 10) no
[KK,RD] B [(100,38) no
[BMS,SAG] B |(20,10), (50,10) no
AAAI-96 |[AC,PJ] B [(16,8), (32, 8) o
[ECF,CDE] B [(100,6) no
[IPG,EM,PP,TW] B [{20,10) no
[KK,RD] B [(100,8), (125,6), (150, 4) 1o
CP-96 [CB,ICR] B [(35,6) Ps = 4/36
(125,3), (350,3) pe = 1/9
(35,9), (50,6), (50,20, ... no
DAC,JF,IPG,EM,NT,TW]| B [(20,10) no
IPG,EM,PP,BMS,TW] B [(20 — 50, 10) no
JL,PM] B |(15,5) ps = 1/25 —4/25
(10,10) pa = 1/100 —9/100
RIJW] A [(30,5), (100,5) pa = 0.1
ECAI-96 |[JEB,EPKT,NRW] B [(50,10) o
BC,GV,DM,PB] B [{(50,10), (20,5) no
SAG,BMS] B (30 — 70, 10) no
ACMK,EPKT,JEB] B |(30,5) pa = 0.12
(40, 5) pa = 0.08
(60, 5) P2 = 0.04
(10, 5), (20,5), (10,10, ... no
J1,PM] B [(10,10) no
AAAL97 |[AM,SES,GS| B [(6—-12,9 o
DRG,WKJ,WSH] B [(10,5) no
[IPG,EM,PP,TW] B (10 —120,3) pa = 2/9
(10,10 — 100) 1no
[DF,IR,LV] B (20, 4) py = 0.125
(150, 3) Py = 0.222
(20 — 75,6), (20,10) no
CP-97 [IPG,JLU] D [(10,10) 1o
[IR,DF] B [(100,38) no
DS,ECF] B |(20,20), (40,20) 1no
BMS,SAG] B [(10,10) no
PG,JKH] B |(50,10), (100,15), (250,25), ... no
ED,CB] B (100,20} no
IPG,EM, PP, PS, TW] B (20 — 70,10) no
TJCAL-97 |[RD, CB] B [{20, 10) o

Table 2. Parameters and models used in some previous studies of random constraint

satisfaction problems.




6 Probability of flawed variables

As Achlioptas et al. themselves suggest [1], previous experimental studies will not
have been greatly influenced by the existence of flawed variables since problem
sizes are usually too small. Using the Markov inequality, they give a first moment
bound on the probability of a flawed variable,

Pr{problem has a flawed variable} S n(l — (1 — pg@)n)m

For example, for the popular (n,10,1,1/2) problem class, they calculate that
the probability of a flawed variable is less than 10~° even for n as large as 200.
At what size of problem and sample do flawed variables start to occur?

By making a few simplifying assumptions, we can estimate the probability
of a flawed variable with reasonable accuracy. This estimate might be used to
determine parameters for experimental studies. Our first assumption is that each
variable is connected to exactly py(n—1) others. In practice, some variables have
a greater degree, whilst others have a lesser degree. Fortunately, our experiments
show that this mean-field approximation does not introduce a large error into
the estimate. We also assume independence between the probabilities that the
different variables have at least one unflawed value. The probability that there
are no flawed variables is then simply the product of the probabilities that the
variables have at least one unflawed value. For model A problems, we have,

PI‘{problcm has a flawed variable}

=1- PI‘{there are no flawed variables}

=1- (PI‘{a variable has at least one unflawed valuc})n
=1- (1 — Pr{every value for the variable is ﬂawed})n
=1- (]. — (Pr{a value for the variable is ﬁawed})m)n
—1-(1

=1-(1

—_ ( n

=1- (1 — (1 — (Pr{value consistent with a value of an adjacent variable})pl(n_l))m')n
(
(

PI‘{valuc inconsistent with every value of an adjacent variablc})m)

1-— PI'{value consistent with a value of every adjacent Variable})m)n

=1— ( pl(nfl))m)n
=1 (

1—(1-— (1 — PI‘{valuc inconsistent with every value of adjacent variablc})
1—(1-— (1 — (Pr{value inconsistent with a value of adjacent variable})m)p] (nfl))m)n
For model A, the probability that a given value is inconsistent with every

value of an adjacent variable is p;. Hence, we obtain the estimate,

PI‘{pr()blem has a flawed variable} = 1-— (1 — (1 — (1 — pgb)}ﬂ (nfl))nl)n

A similar derivation can be made for model B problems. In this model each con-
straint is picked uniformly from the ,,2 Cp, 2 possible binary constraints. If we
assign a value to one of the variables involved in a constraint, then ,,2 _,,,Cp,m2 —p,
of the possible constraints have nogoods that rule out all the values for the other
variable. Hence, the probability that a particular value for a variable is incon-
sistent with every value for an adjacent variable is given by,

2 L2
PI'{value inconsistent with every value of adjacent variable} = ( m ™) >/( m o)

P ‘III,2 —m pam”
P2 D2



Thus, for model B problems, we obtain the estimate,

Pr{problcm has a flawed variable} = 1—(1— (1— (1— (p;nﬂigiimm) / (p:::lz ) )pl (n=1) )m)n
Note that we have assumed independence between the probabilities that the
m different values for a given variable are flawed. The probability that every
value for a variable is flawed is then simply the product of the probabilities that
each individual value is flawed. Whilst this independence assumption is valid for
model A, it is not strictly true for model B.

7 Problem size

We can use these estimates for the probability of flawed variables to determine
when flawed variables will start to occur in experimental studies. To test the
accuracy of these estimates and to compare them with the simpler first moment
bound, we generated random problems from the popular model B and calculated
the fraction with a flawed variable. Since flawed variables are more likely in dense
constraint graphs, we generated problems with complete constraint graphs (i.e.
with p; = 1). As in other studies (e.g. [12,6]), we also generated a separate
set of problems in which the average degree of the vertices in the constraint
graph is kept constant. That is, we vary p; as 1/(n — 1). As we argue in Sec-
tion 9, the constraint tightness at the phase transition then remains roughly
constant. Keeping the average degree constant also reduces the probability of
flawed variables occurring. In Table 3, we give the results for (n,10,1,1/2) and
(n,10,19/(n — 1),1/2) with »n from 200 to 4000. In this (and indeed all the
subsequent experiments) our estimate for the probability of a problem having
a flawed variable is very close to the observed fraction of problems with flawed
variables, and much closer than the first moment bound to the observed fraction
of flawed variables.

With complete constraint graphs, flawed variables are observed in samples
of 1000 when the problems have 500 or more variables. This is beyond the size
of problems typically solved with systematic procedures but potentially within
the reach of approximation or local search algorithms. By comparison, with
constraint graphs of constant average degree, flawed variables are not observed
in samples of 1000 even when the problems have thousands of variables. Because
of the greater homogeneity of model B problems, we expect flawed variables to
be less likely than in model A. Our estimates for the probability of a flawed
variable support this conjecture. For example, for (1000,10,1,1/2) problems,
our estimate for the probability that a model A problem has a flawed variable
is 0.99986 whilst for a model B problem it is 0.275.

With constraint graphs of constant average degree, we can estimmate when we
expect to observe flawed variables. If p; = v/(n—1) and a fraction f of problems
contain flawed variables then, by rearranging our estimates for the probability
of a flawed variable, the number of variables ny in model A problems is,

_ log(1 - f)
log(1— (1= (1—=p3")7)™)

nf



sample| fraction with estimate for|1st moment

n|  sizelflawed variables|Pr{flawed variable} bound
200 10° 0.000000 0.000000|  0.000006
500 10* 0.0005 0.0006 0.0370
1000[  10° 0.272 0.275 >1
1200 10° 0.753 0.755 >1
1500{  10° 1.000 0.999 >1
2000 10° 1.000 1.000 >1
4000 10° 1.000 1.000 > 1

(a) (n,10,1,1/2)

sample| {fraction with estimate for|lst moment

n|  sizelflawed variables|Pr{flawed variable} bound
200 10° 0.000 0.000 0.000
500 10° 0.000 0.000 0.037
1000 10° 0.000 0.000 >1
1500 10° 0.000 0.000 >1
2000 10° 0.000 0.000 >1
4000 10° 0.000 0.000 >1

(b) (n,10,19/(n—1),1/2)

Table 3. The impact of flawed variables on model B problems with a domain size of 10
and: (a) complete constraint graphs; (b) constraint graphs of constant average degree.

And in model B problems,

log(1 —f)
(1= (1= (07 ) (e ) o

For instance, for model B problems with similar parameters to those of Table 3
(ie. m =10, v = 19 and py = 1/2), ny /1000 = 3.2 % 10'" and Ny R 2.2 % 10%°.
That is, problems need more than 1017 variables before we start to observe flawed
variables in samples of 1000 problem instances, and more than 10'® variables
before half contain a flawed variable. As a consequence, at this domain size,
constraint tightness, and degree of the constraint graph, experimental studies
can safely ignore flawed variables.

With smaller domain sizes, we expect flawed variables to be more prevalent.
To test this hypothesis, we generated problems with m = 3, p2 = 1/m and either
complete constraint graphs or constraint graphs of constant average degree. Note
that, for model B, ps = 1/m is the smallest possible value which gives flawed
variables. If p, < 1/m then at least one value for each variable must be supported
as each constraint rules out strictly less than m possible values. Note also that
these problems have the same domain size and same constraint tightness as 3-
colouring problems. Table 4 gives the results for (n,3,1,1/3) and (n.3,19/(n —
1),1/3) with n = 10 to 2000. With complete constraint graphs, flawed variables
occur with a significant frequency in problems with as few as 20 variables. This

ny =



is despite p2 being given the minimal possible value. With constraint graphs of
constant average degree, although flawed variables occur in problems with as
few as 20 variables, their frequency increases much more slowly with n. We need
a thousand or more variables to ensure that problems almost always include a
flawed variable. By comparison, with complete constraint graphs, we need just
60 or so variables. Some of the experiments surveyed in Section 5 used random
problems containing hundreds of variables with m = 3 and p; = 1/3. Flawed
variables may therefore have had a significant impact on these experiments.

sample| fraction with estimate for|[lst moment
n|  sizelflawed variables|Pr{flawed variable} bound
0] 10° 0.006 0.011 0.311
20 10° 0.143 0.156 >1
30 10° 0.504 0.536 >1
40 10° 0.869 0.882 >1
50/ 10° 0.987 0.990 >1
60 10° 1.000 1.000 >1

(a) (n,3,1,1/3)

sample| fraction with estimate for|1st moment

n| sizelflawed variables|Pr{flawed variable} bound

20 10° 0.143 0.156 >1
50 10° 0.318 0.345 >1
00l 10° 0.524 0.571 >1
200 10° 0.796 0.816 >1
500 10° 0.986 0.985 >1
1000 10° 0.999 1.000 >1
2000 10° 1.000 1.000 >1

(b) <n> 3, 19/(” - 1)$ 1/3>

Table 4. The impact of flawed variables on model B problems with a small domain size
and: (a) complete constraint graph; (b) constraint graph of constant average degree.

8 Model E

At the sizes typically used in previous experimental studies, how does model E
differ from the conventional models? To explore this issue, we compared problems
from model E with n = 20 and m = 10 against problems of a similar size from
the popular model B. As we argue in the next section, model E quickly gives
problems with complete constraint graphs. We therefore used model B problems
with p; = 1 as a comparison. For model B, we generated 1000 problems at each
value of ps between 1/100 and 99/100. For model E, we generated 1000 problems
at each value of p from 1/190 to 500/190 in steps of 1/190. Note that model E
allows for repetitions when selecting nogoods so p can be greater than 1.
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To aid comparison, we estimated the constrainedness, x of the generated
problems. We have found & a useful measure for comparing algorithm perform-
ance across a wide variety of different problem classes [9]. Since the nogoods
in model E are selected independently and with repetitions, £ is approximately
proportional to p. In Figure 1, we plot the fraction of soluble problems against
the constrainedness. In both models, we see a rapid transition between soluble
and insoluble problems at around k = 1 as predicted. Associated with this trans-
ition is a peak in search cost. In Figure 2, we plot the median consistency checks
performed by the forward checking algorithm with conflict-directed backjumping
and the fail-first heuristic (FC-CBJ-FF). The search cost for the two models is
very similar, depending almost entirely on their constrainedness and size. The
only slight difference is that at very small values of p, model E problems do have
complete constraint graphs and are easier to solve. We discuss the size of the
constraint graph in more detail in the next section.

9 Constraint graph

Some of the experimental studies listed in Section 5 keep p; constant as n in-
creases. Even if problem and sample sizes are small enough that flawed variables
are unlikely, this may not be a very good idea. The transition between soluble and
insoluble problems occurs around s ~ 1. That is, when —%pl log,,(1—p2) =~ 1.
If we fix m and p; then ps decreases as we increase n. Eventually ps is less than
1/m? and, in model B at least, we are unable to generate any non-empty con-
straints. For instance, with p; = 1, m = 3 and s & 1, ps is smaller than 1/m?
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for n larger than about 20. In other words, even though flawed variables cannot
occur since py < 1/m, we cannot run an experiment at the phase transition with
m = 3 and p; = 1 for n larger than about 20.

It may be better experimental practice to maintain the topology of the con-
straint graph by keeping the average degree constant. That is, to vary p; as
1/(n—=1).If K = 1 and p; = v/(n — 1), then pz = 1 —m™2/7 which is constant,.
Hence the phase transition is expected to occur at a roughly constant value of ps
as n varies. Experimental data for small n supports this conclusion. For example,
Figure 2 of [12] shows that the transition in solubility for model B problems with
m = 10 and p; = 4.9/(n—1) occurs at py = 1—m~2/%? =~ 0.6 as n increases from
10 to 50. Of course, since pz > 1/m, such problems contain flawed variables and
are trivially insoluble for large enough n. However, as we argued before, n needs
to be so large that our experiments can safely ignore this fact. For instance, for
m =10, p1 = 4.9/(n — 1), and p, = 0.6, we calculate that n; /1900 = 5.6 * 1013
and ny/; = 3.8 x 108, That is, problems need more than 10'3 variables before
we expect to observe flawed variables in samples of 1000 problem instances, and
more than 10%® variables before half contain a flawed variable.

One shortcoming of model E is that it generates complete constraint graphs
for quite small values of p, even though each constraint contains just a few
nogoods. It is hard therefore to generate sparse constraint graphs with tight
constraints. By comparison, in models A to D we can independently adjust the
constraint tightness and density. In model E, we randomly select pm®n(n —1)/2
nogoods independently and with repetitions. By a coupon collector’s argument,
we expect a complete constraint graph when p = log(n(n — 1)/2)/m?. For ex-



ample, for n = 20, m = 10, we just need p =~ 0.052 before we expect a complete
constraint graph. With a larger number of nogoods, there is a very small probab-
ility that the constraint graph is not complete. Assuming independence between
the nogoods, we can estimate this probability as follows,

Pr{constraint graph is complete}
= Pr{all pairs of vertices are joined}

(PI‘{two given vertices are joincd})n(nil)/2
n—1)/2

)n(n—l)/2
pmzn(nfl)/Z)n(nfl)/Z

1-— PI‘{two given vertices are not joined})n(

= (]. — PI'{no nogoods mention the two variables}
= (1 — (PI‘{a given nogood does not mention the two})

. . pmin(n— 2\n(n—
1— (1 — PI‘{d given nogood does mention the two})Pm n(n 1)/ )"(" 1)/2

As there are n(n — 1)/2 possible pairs of variables that a nogood could men-
tion, the probability that any nogood does not mention two given variables is
simply 2/n(n — 1). Hence,

2

. 2
1— pm n(n—1)/2\n(n—1)/2
( n(n — 1)) )

Pr{constraint graph is complete} = (]. —

For example, for n = 20 and m = 10, the probability that the constraint graph is
incomplete is less than 1072 when p = 1/m, and less than 107'® when p = 1/2.

We can generalize model E to tackle this problem by reversing the usual
process of generating a constraint graph and then selecting nogoods within it. In
model F, we select uniformly, independently and with repetitions, pypam?n(n —
1)/2 nogoods out of the m?n(n — 1)/2 possible. We then generate a constraint
graph with exactly pin(n — 1)/2 edges and throw out any nogoods that are not
between connected vertices in this graph. Note that model E is a special case of
model F in which p; = 1. Using similar arguments to [1], we can show that model
F (like model E) is not trivially insoluble as we increase problem size. In addition,
by setting p; small but ps large, we can generate sparse constraint graphs with
tight constraints. We leave it as an open question if there are models with good
asymptotic properties which admit problems with a few tight constraints, but
which do not throw out nogoods.

10 Non-random problems

Random problems provide a plentiful and unbiased source of problems for bench-
marking. However, we must be careful that our algorithms do not become tuned
to solve random problems and perform poorly on real problems. All of the models
discussed here generate simple binary constraints, but real problems can con-
tain structures that occur very rarely in these models. For example, in a graph
colouring problem derived from a real exam time-tabling problem at Edinburgh
University, Gent and Walsh found a 10 clique of nodes with only 9 colours avail-
able [10]. This was in a 59 node graph with 594 edges. The presence of this clique
dominated the performance of their graph colouring algorithm. Random graphs
of similar size and density are very unlikely to contain such a large clique.



The probability that m given nodes in a random graph with n nodes and e
edges are counected by the right m(m — 1)/2 edges to form a m-clique is,
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Multiplying this probability by ,,C,,, the number of sets of m nodes in a n node
graph, we get the expected number of m-cliques. By the Markov inequality, this
gives a bound on the probability of the graph containing a m-clique,
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For n =59, m = 10 and e = 594, the probability of clique of size 10 or larger is
less than 10710, It is thus very unlikely that a random graph of the same size and
density as the graph in the exam time-tabling problem would contain a regular
structure like a 10-clique. However, cliques of this size are very likely in the real
data due to the module structure within courses.

As another example, Gomes et al. have proposed quasigroup completion as
a coustraint satisfaction benchmark that models some of the structure found in
time-tabling problems [11]. Quasigroup completion is the problem of filling in
the missing entries in a Latin square, a multiplication table in which each entry
appears once in every row and column. An order n quasigroup problem can be
formulated as n-colouring a graph with n? nodes and n%(n — 1) edges. The edges
form 2n cliques, with each clique being of size n and representing the constraint
that each colour appears once in every row or column. For example, an order
10 quasigroup has 20 cliques of size 10 in a 100 node graph with 900 edges.
With a random graph of this size and edge density, the probability of a clique
of size 10 or larger is less than 10729, It is thus unlikely that a random graph of
this size and density would contain a regular structure like a 10-clique, let alone
20 of them linked together. The random models are thus unlikely to generate
problems like the exam time-tabling problem or quasigroup completion.

11 Conclusions

We have performed a detailed study of the experimental consequences of a recent
theoretical result of Achlioptas et al. [1]. This result shows that, as we increase
problem size, the conventional models of random problems almost surely con-
tain a flawed variable and are therefore trivially insoluble. Our survey of previous
experimental studies shows that most meet the restriction on their result that
p2 > 1/m. Fortunately, most (but not all) of these studies use too few variables
and too large domains to be affected by the result. As expected, flawed vari-
ables occur most often with dense constraint graphs and small domains. With
constraint graphs of fixed average degree and large domains, flawed variables



can be safely ignored. Achlioptas et al. propose an alternative random model
which does not suffer from this asymptotic problem. We show that, at a typical
problem size used in experiments, this model gives problems of a similar solubil-
ity and hardness to conventional models. However, it has a small experimental
weakness since we cannot run tests with sparse but tight constraints. We there-
fore generalized the model so that we can independently adjust the constraint
tightness and density. Finally, we showed that some of the structures that occur
in real problems like large cliques are very rare in these random models.

What general lessons can be learnt from this study? First, experiments can
benefit greatly from theory. Flawed variables are likely to have occurred in a
small but significant number of previous experimental studies. A simple arc con-
sistency algorithm would therefore have solved some of these problems. Experi-
mental practice can now be improved to ensure that either we use an alternative
model without this asymptotic problem, or we use a conventional model but
choose parameters so that flawed variables are unlikely. Second, theory can be-
nefit greatly from experiments. Theory provided an estimate for the probability
of problems having flawed variables. Experiments quickly determined the accur-
acy of this estimate. Third, we must continue to improve and extend our random
models so that we can generate a wide range of hard problems with which to
test our algorithms.
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