
Scenario-based Stochastic Constraint Programming

Suresh Manandhar and Armagan Tarim
Department of Computer Science

University of York, England
email: {suresh,at}@cs.york.ac.uk

Toby Walsh
Cork Constraint Computation Centre

University College Cork, Ireland.
email: tw@4c.ucc.ie.

Abstract

To model combinatorial decision problems involv-
ing uncertainty and probability, we extend the
stochastic constraint programming framework pro-
posed in [Walsh, 2002] along a number of impor-
tant dimensions (e.g. to multiple chance constraints
and to a range of new objectives). We also provide a
new (but equivalent) semantics based on scenarios.
Using this semantics, we can compile stochastic
constraint programs down into conventional (non-
stochastic) constraint programs. This allows us to
exploit the full power of existing constraint solvers.
We have implemented this framework for decision
making under uncertainty in stochastic OPL, a lan-
guage which is based on the OPL constraint mod-
elling language [Hentenryck et al., 1999]. To il-
lustrate the potential of this framework, we model
a wide range of problems in areas as diverse as fi-
nance, agriculture and production.

1 Introduction
Many decision problems contain uncertainty. Data about
events in the past may not be known exactly due to errors in
measuring or difficulties in sampling, whilst data about events
in the future may simply not be known with certainty. For ex-
ample, when scheduling power stations, we need to cope with
uncertainty in future energy demands. As a second example,
nurse rostering in an accident and emergency department re-
quires us to anticipate variability in workload. As a final ex-
ample, when constructing a balanced bond portfolio, we must
deal with uncertainty in the future price of bonds. To deal
with such situations, [Walsh, 2002] has proposed an exten-
sion of constraint programming, called stochastic constraint
programming, in which we distinguish between decision vari-
ables, which we are free to set, and stochastic (or observed)
variables, which follow some probability distribution. This
framework combines together some of the best features of
traditional constraint satisfaction, stochastic integer program-
ming, and stochastic satisfiability.

In this paper, we extend the expressivity of this framework
considerably by adding multiple chance constraints, as well
as a range of objective functions like maximizing the down-
side. We show how such stochastic constraint programs can

be compiled down into conventional (non-stochastic) con-
straint programs using a scenario-based interpretation. This
compilation allows us to use existing constraint solvers with-
out any modification, as well as call upon the power of hybrid
solvers which combine constraint solving and integer pro-
gramming techniques. We also propose a number of tech-
niques to reduce the number of scenarios and to generate ro-
bust solutions. We have implemented this framework for de-
cision making under uncertainty in a language called stochas-
tic OPL. This is an extension of the OPL constraint modelling
language [Hentenryck et al., 1999]. Finally, we describe a
wide range of problems that we have modelled in stochastic
OPL that illustrate some of its potential.

2 Stochastic constraint programs
In a one stage stochastic constraint satisfaction problem
(stochastic CSP), the decision variables are set before the
stochastic variables. The stochastic variables, independent
of the decision variables, take values with probabilities given
by a probability distribution. This models situations where
we act now and observe later. For example, we have to de-
cide now which nurses to have on duty and will only later
discover the actual workload. We can easily invert the instan-
tiation order if the application demands, with the stochastic
variables set before the decision variables. Constraints are
defined (as in traditional constraint satisfaction) by relations
of allowed tuples of values. Constraints can, however, be im-
plemented with specialized and efficient algorithms for con-
sistency checking.

We allow for both hard constraints which are always sat-
isfied and “chance constraints” which may only be satisfied
in some of the possible worlds. Each chance constraint has a
threshold, θ and the constraint must be satisfied in at least a
fraction θ of the worlds. A one stage stochastic CSP is satis-
fiable iff there exists values for the decision variables so that,
given random values for the stochastic variables, the hard
constraints are always satisfied and the chance constraints are
satisfied in at least the given fraction of worlds. Note that
[Walsh, 2002] only allowed for one (global) chance constraint
so the definition here of stochastic constraint programming is
strictly more general.

In a two stage stochastic CSP, there are two sets of decision
variables, Vd1 and Vd2, and two sets of stochastic variables,
Vs1 and Vs2. The aim is to find values for the variables in Vd1,

so that given random values for Vs1, we can find values for
Vd2, so that given random values for Vs2, the hard constraints
are always satisfied and the chance constraints are again sat-
isfied in at least the given fraction of worlds. Note that the
values chosen for the second set of decision variables Vd2 are
conditioned on both the values chosen for the first set of de-
cision variables Vd1 and on the random values given to the
first set of stochastic variables Vs1. This can model situations
in which items are produced and can be consumed or put in
stock for later consumption. Future production then depends
both on previous production (earlier decision variables) and
on previous demand (earlier stochastic variables).

An m stage stochastic CSP is defined in an analogous way
to one and two stage stochastic CSPs. Note that [Walsh,
2002] insisted that the stochastic variables take values inde-
pendently of each other. This prevents us representing a num-
ber of common situations. For example, if the market goes
down in the first quarter, it is probably more likely to go down
in the second quarter. A second stage stochastic variable
representing the market index is therefore dependent on the
first stage stochastic variable representing the market index.
There is, however, nothing in the semantics given for stochas-
tic constraint programs nor in the solution methods proposed
in [Walsh, 2002] that used this assumption. We therefore al-
low later stage stochastic variables to take values which are
conditioned by the earlier stage stochastic variables.

A stochastic constraint optimization problem (stochastic
COP) is a stochastic CSP plus a cost function defined over
the decision and stochastic variables. In [Walsh, 2002], the
only goal considered was to find a solution that satisfies the
stochastic CSP which minimizes or maximizes the expected
value of the objective function. We now extend this to a much
wider range of goals. For example, we might wish to limit the
downside (i.e. maximize the least value of the cost function),
or to minimize the spread (i.e. minimize the difference be-
tween the least and the largest value of the cost function).

3 Scenario-based semantics
In [Walsh, 2002], a semantics for stochastic constraint pro-
grams is given based on policies. A policy is a tree of de-
cisions. Each path in a policy represents a different possi-
ble scenario (set of values for the stochastic variables), and
the values assigned to decision variables in this scenario. To
find satisfying policies, [Walsh, 2002] presents backtracking
and forward checking algorithms which explores the implicit
AND/OR graph. Stochastic variables give AND nodes as we
must find a policy that satisfies all their values, whilst deci-
sion variables give OR nodes as we only need find one satis-
fying value.

An alternative semantics, which suggests an alternative so-
lution method, comes from a scenario-based view [Birge and
Louveaux, 1997]. A scenario is any possible set of values for
the stochastic variables. Thus, a scenario is associated with
each path in the policy. Within each scenario, we have a con-
ventional (non-stochastic) constraint program to solve. We
simply replace the stochastic variables by the values taken
in the scenario, and ensure that the values found for the de-
cision variables are consistent across scenarios. Note that

certain decision variables are shared across scenarios. The
first stage decisions are, for example, shared by all scenar-
ios. The great advantage of this approach is that we can use
conventional constraint solvers to solve stochastic constraint
programs. We do not need to implement specialized solvers.
Of course, there is a price to pay as the number of scenar-
ios grows exponentially with the number of stages. However,
our results show that a scenario-based approach is feasible
for many problems. Indeed, we observe much better perfor-
mance using this approach on the production planning exam-
ple introduced in [Walsh, 2002]. In addition, as we discuss
later, we have developed a number of techniques like Latin
hypercube sampling to reduce the number of scenarios con-
sidered.

4 Stochastic OPL
We have implemented this framework on top of the OPL con-
straint modelling language [Hentenryck et al., 1999]. An
OPL model consists of two parts: a set of declarations,
followed by an instruction. Declarations define the data
types, (input) data and the (decision) variables. An OPL in-
struction is either to satisfy a set of constraints or to maxi-
mize/minimize an objective function subject to a set of con-
straints. We have extended the declarations to include the
declaration of stochastic variables, and the instructions to in-
clude chance constraints, and a range of new goals like max-
imizing the expectation of an objective function.

4.1 Variable declaration
We now declare both decision and stochastic variables.
Stochastic variables are set according to a probability distri-
bution using a command of the form:

stoch <Type> <Id> <Dist>;

Where <Type> is (as with decision variables) a data type
(e.g. a range of values, or an enumerated list of values),
<Id> is (as with decision variables) the variable name, and
<Dist> defines the probability distribution of the stochas-
tic variable(s). Probability distributions include uniform,
poisson(lambda), and user defined via a list of (not nec-
essarily normalized) values. Other types of distribution can
be supported as needed. We insist that stochastic variables
are arrays, with the last index describing the stage. Here are
some examples:

stoch 0..1 market[Years] uniform;
stoch 100..102 demand[Quarter] {1,2,3};

In the first, we have a 0/1 variable in each year which takes
either value with equal probability. In the last, we have a de-
mand variable for each quarter, which takes the value 100 in 1
out of 6 cases, 101 in 2 out 6 cases, and 102 in the remaining
3 cases.

4.2 Constraint posting
We can post both hard constraints (as in OPL) and chance
constraints. Chance constraints hold in some but not neces-
sarily all scenarios. They are posted using a command of the
form:

prob(<Constraint>) <ArithOp> <Expr>;

Where <Constraint> is any OPL constraint,
<ArithOp> is any of the arithmetically comparison
operations (=,<>,<,>, <=, or >=) and <Expr> is any arith-
metic expression (it may contain decision variables or may
just be a rational or a float in the range 0 to 1). For example,
the following command specifies the chance constraint that
in each quarter the demand (a stochastic variable) does not
exceed the production (a decision variable) plus the stock
carried forward in each quarter (this auxiliary is modelled,
as in conventional constraint programming, by a decision
variable) with 80% probability:

forall(i in 1..n)
prob(demand[i] <=

production[i]+stock[i])
>= 0.80;

Constraints which are not chance constraints are hard and
have to hold in all possible scenarios. For example, the stock
carried forwards is computed via the hard constraint:

forall(i in 1..n)
stock[i+1] = stock[i] + production[i]

- demand[i];

4.3 Optimization
Stochastic OPL supports both stochastic constraint satisfac-
tion and optimization problems. We can maximize or mini-
mize the expectation of an objective function. For example,
in the book production example of [Walsh, 2002], we can
minimize the expected cost of storing surplus books. Each
book costs $1 per quarter to store. This can be specified by
the following (partial) model:

minimize expected(cost)
subject to

cost =
sum(i in 1..n) max(stock[i+1],0);

forall(i in 1..n)
stock[i+1] = stock[i] + production[i]

- demand[i];

Stochastic OPL also supports a number of other optimization
goals. For example:

minimize spread(profit)
maximize downside(profit)
minimize upside(cost)

The spread is the difference between the value of the objective
function in the best and worst scenarios, whilst the downside
(upside) is the minimum (maximum) objective function value
a possible scenario may take.

5 Compilation of stochastic OPL
These stochastic extensions are compiled down into conven-
tional (non-stochastic) OPL models automatically by exploit-
ing the scenario-based semantics. The compiler is written
in Lex and Yacc, with a graphical interface in Visual C++.
Compilation involves replacing stochastic variables by their
possible values, and decision variables by a ragged array of
decision variables, one for each possible scenario. Consider
again the chance constraint:

prob(
demand[i] <= production[i]+stock[i])

>= 0.80;

This is compiled into a sum constraint of the form:

sum(j in Scenarios) p[j]*
(demand[i,j] <=

production[i,j]+stock[i,j])
>= 0.80;

Where Scenarios is the set of scenarios, p[j] is the prob-
ability of scenario j, demand[i,j] is the demand in sce-
nario j and quarter i, etc. Note that the bracketing of the
inequality reifies the constraint so that it takes the value 1 if
satisfied and 0 otherwise.

Hard constraints are also transformed. Consider, for exam-
ple, the hard constraint:

wealth[t] = bonds[t] + stocks[t];

This is compiled into a forall constraint of the form:

forall(j in Scenarios)
wealth[t,j] = bonds[t,j] + stocks[t,j];

Where wealth[t,j] is the wealth at time t in scenario
j, etc. Maximization and minimization instructions are also
transformed. Consider, for example, the optimization instruc-
tion:

maximize expected(wealth[n])
subject to ...

This is compiled into an instruction of the form:

maximize sum(j in Scenarios)
p[j]*wealth[n,t]

subject to ...

The rest of the stochastic OPL model is transformed in a sim-
ilar manner.

6 Value of information and stochastic
solutions

For stochastic optimization problems, we compute two statis-
tics which quantify the importance of randomness. The value
of a stochastic solution (VSS) is the difference in the objec-
tive function for the stochastic problem (call it the stochas-
tic solution, SS) and the objective value for the determinis-
tic problem computed by replacing stochastic variables by
their expectations (call it the expected value solution, EVS):
V SS = SS − EV S. This computes the benefit of know-
ing the distributions of the stochastic variables. Clearly, VSS
is non-negative. We also compute the expected value of the
wait-and-see solution (WSS). To calculate this, we give the
stochastic variables values according to their probability dis-
tributions, and then find the best values for the decision vari-
ables. The difference between WSS and SS is the expected
value of perfect information (EVPI): EV PI = WSS − SS.
This measures how much more you can expect to win if you
have perfect information about the stochastic components of
the problem. In other words, EVPI measures the value of
knowing the future with certainty. This is therefore the most
that should be spent in gathering information about the uncer-
tain world.

7 Scenario reduction
One problem with a scenario-based approach is the large
number of scenarios, each of which introduces new decision
variables. We have therefore implemented several techniques
to reduce the number of scenarios. The simplest is to consider
just a single scenario in which stochastic variables take their
expected values. This is supported with the command:

scenario expected;

The user may also be content to consider just the most proba-
ble scenarios and ignore rare events. We support this with the
command:

scenario top <Num>;

Another option is to use Monte Carlo sampling. The user can
specify the number of scenarios to sample using a command
of the form:

scenario sample <Num>;

The probability distributions of the stochastic variables is
used to bias the construction of these scenarios.

We also implemented one of the best sampling methods
from experimental design, and one of the best scenario re-
duction methods from operations research. Latin hypercube
sampling [McKay et al., 1979], ensures that a range of val-
ues for a variable are sampled. Suppose we want n sample
scenarios. We divide the unit interval into n intervals, and
sample a value for each stochastic variable whose cumulative
probability occurs in each of these interval. We then con-
struct n sample scenarios from these values, enforcing the
condition that the samples use each value for each stochastic
variable exactly once. More precisely, let fi(a) be the cumu-
lative probability that Xi takes the value a or less, πi(j) be
the jth element of a random permutation πi of the integers
{0, . . . , n − 1}, and r be a random number uniformly drawn
from [0, 1]. Then, the jth Latin hypercube sample value for
the stochastic variable Xi is:

f−1

i
(
πi(j) + r

n
)

Finally, we implemented a scenario reduction method used in
stochastic programming due to Dupacova, Growe-Kuska and
Romisch [Dupacova et al., 2003]. They report power pro-
duction planning problems on which this method offers 90%
accuracy sampling 50% of the scenarios and 50% accuracy
sampling just 2% of the scenarios. The method heuristically
deletes scenarios to approximate as closely as possible the
original scenarios according to a Fortet-Mourier metric on the
stochastic parameter space.

8 Some examples
To illustrate the potential of this framework for decision mak-
ing under uncertainty, we now describe a wide range of prob-
lems that we have modelled. In the first problem, we compare
a scenario-based approach to the previous tree search meth-
ods for solving stochastic constraint satisfaction problems. In
the next three problems, we illustrate the effectiveness of the
different scenario reduction techniques.

8.1 Production planning
This problem comes from [Walsh, 2002]. The results in Table
1 show that a scenario-based approach offers much better per-
formance on this problem than the forward checking or back-
tracking tree search algorithms also introduced in this paper.
The problem involves planning production over m quarters.
In each quarter, we expect to sell between 100 and 105 copies
of a book. To keep customers happy, we want to satisfy de-
mand over all m quarters with 80% probability. This prob-
lem is modelled by an m stage stochastic CSP. There are m
decision variables, xi representing production in each quar-
ter. There are also m stochastic variables, yi representing
demand in each quarter. To limit stock carried forward, we
use a simple heuristic which picks the smallest possible val-
ues for the decision variables. An alternative is to convert
the problem into an optimization problem with a cost to keep
books in store. We do not explore this option here, though
it is very easy to implement in stochastic OPL, as we cannot
then compare our results with those of the forward checking
or backtracking algorithms from [Walsh, 2002].

8.2 Portfolio management
This portfolio management problem of [Birge and Louveaux,
1997] can be modelled as a stochastic COP. Suppose we have
$P to invest in any of I investments and we wish to exceed a
wealth of $G after t investment periods. To calculate the util-
ity, we suppose that exceeding $G is equivalent to an income
of q% of the excess while not meeting the goal is equivalent
to borrowing at a cost r% of the amount short. This defines
a concave utility function for r > q. The uncertainty in this
problem is the rate of return, which is a random variable, on
each investment in each period. The objective is to deter-
mine the optimal investment strategy, which maximizes the
investor’s expected utility.

The problem has 8 stages and 5760 scenarios. To com-
pare the effectiveness of the different scenario reduction al-
gorithms, we adopt a two step procedure. In the first step, the
scenario reduced problem is solved and the first period’s de-
cision is observed. We then solve the full-size (non scenario
reduced) problem to optimality with this first decision fixed.
The difference between the objective values of these two so-
lutions is normalized by the range [optimal solution, observed
worst solution] to give a normalized error for committing to
the scenario reduced first decision. In Fig. 1, we see that
Dupacova et al’s algorithm is very effective, that Latin hy-
percube sampling is a small distance behind, and both are
far ahead of the most likely scenario method (which requires
approximately half the scenarios before the first decision is
made correctly).

8.3 Yield management
Farmers must deal with uncertainty since weather and many
other factors affect crop yields. In this example (also taken
from [Birge and Louveaux, 1997]), we must decide on how
many acres of his fields to devote to various crops before the
planting season. A certain amount of each crop is required for
cattle feed, which can be purchased from a wholesaler if not
raised on the farm. Any crop in excess of cattle feed can be
sold up to the EU quota; any amount in excess of this quota

Backtracking (BT) Forward Checking (FC) Scenario-Based (SB)
No. Stages Nodes CPU/sec Nodes CPU/sec Failure Choice Points CPU/sec

1 28 0.01 10 0.01 4 5 0.00
2 650 0.09 148 0.03 4 8 0.02
3 17,190 2.72 3,604 0.76 8 24 0.16
4 510,356 83.81 95,570 19.07 42 125 1.53
5 15,994,856 3,245.99 2,616,858 509.95 218 690 18.52
6 – – – – 1260 4035 474.47

Table 1: A Comparison of BT, FC and SB Approaches on the Book Production Problem (Sec.8.1)

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

Number of Scenarios (%)

Error (%)

Dupacova Alg.

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

r

r

r

Latin Hypercube

c
cc

ccccccc
cc

c
c
cc

cc
c
cc

c

c

c
c
cc

c

cccc
c

c

c

c

c

cccc

c
c

c

ccc

c
c

c
cc

c
c

c

c

cc
c

c

c

Mostlikely Scen.

××××××××××××
××××××

×
×
××
××
×
××
××
×

×

×
××××××××××××××××××××××××××××

×

Figure 1: Portfolio Management

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

Number of Scenarios (%)

Error (%)

Dupacova Alg.

rrrrrrrrrrrrrrrrrrrrr

r

Latin Hypercube

ccccccccccccccccccccc c

c

Mostlikely Scen.

××××××××××××××

×××××

×
×

×

Figure 2: Agricultural Yield Management

will be sold at a low price. Crop yields are uncertain, de-
pending upon weather conditions during the growing season.
This problem has 4 stages and 10,000 scenarios. In Fig. 2,
we again see that Dupacova et al’s algorithm and Latin hyper-
cube sampling are very effective, and both are far ahead of the
most likely scenario method (which requires approximately
one third the scenarios before the first decision is made cor-
rectly).

8.4 Production/Inventory control
Uncertainty plays a major role in production and inventory
planning. In this simplified production/inventory planning
example, there is a single product, a single stocking point,

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

Number of Scenarios (%)

Error (%)

Dupacova Alg.

rrrrrrrrrrrrrrrrrrrrr

r

Latin Hypercube

cccccccccccc

c

cc

c

cccc

c

c

Mostlikely Scen.

××××××××××××××
×××××××

×

Figure 3: Production/Inventory Control

production capacity constraints and stochastic demand. The
objective is to find the minimum expected cost policy. The
cost components take into account holding costs, backlogging
costs, fixed replenishment (or setup) costs and unit produc-
tion costs. The optimal policy gives the timing of the replen-
ishments as well as the order-up-to-levels. Hence, the exact
order quantity can be known only after the realization of the
demand, using the scenario dependent order-up-to-level deci-
sions. This problem has 5 stages and 1,024 scenarios. In Fig.
3, we again see that Dupacova et al’s algorithm and Latin hy-
percube sampling are very effective, but both are now only a
small distance ahead of the most likely scenario method.

9 Robust solutions
Inspired by robust optimization methods in operations re-
search [Kouvelis and Yu, 1996], stochastic OPL also allows
us to find robust solutions to stochastic constraint programs.
That is, solutions in which similar decisions are made in the
different scenarios. It will often be impossible or undesirable
for all decision variables to be robust. We therefore identify
those decision variables whose values we wish to be identical
across scenarios using commands of the form:

robust <Var>;

For example, in production/inventory problem of Sec.8.4
the decision variables “order-up-to-levels” and “replenish-
ment periods” can be declared as robust variables. The values
of these two sets of decision variables are then fixed at the
beginning of the planning horizon. A robust solution damp-
ens the nervousness of the solution, an area of very active re-

search in production/inventory management. As the expected
cost of the robust solution is always higher, the tradeoff be-
tween nervousness and cost may have to be taken into ac-
count.

10 Related and future work
Stochastic constraint programs are closely related to Markov
decision problems (MDPs) [Puterman, 1994]. Stochastic
constraint programs can, however, model problems which
lack the Markov property that the next state and reward de-
pend only on the previous state and action taken. The current
decision in a stochastic constraint program will often depend
on all earlier decisions. To model this as an MDP, we would
need an exponential number of states. Another significant
difference is that stochastic constraint programs by using a
scenario-based interpretation can immediately call upon com-
plex and powerful constraint propagation techniques.

Stochastic constraint programming was inspired by both
stochastic integer programming and stochastic satisfiability
[Littman et al., 2000]. It is designed to take advantage of
some of the best features of each framework. For example,
we are able to write expressive models using non-linear and
global constraints, and to exploit efficient constraint propaga-
tion algorithms. In operations research, scenarios are used in
stochastic programming. Indeed, the scenario reduction tech-
niques of Dupacova, Growe-Kuska and Romisch [Dupacova
et al., 2003] implemented here are borrowed directly from
stochastic programming.

There are a number of extensions of conventional con-
straint satisfaction problem to model constraints that are un-
certain, probabilistic or not necessarily satisfied. For exam-
ple, in probabilistic constraint satisfaction each constraint has
a certain probability independent of all other probabilities of
being part of the problem [Fargier and Lang, 1993] whilst in
semi-ring constraint satisfaction each tuple in a constraint has
a value associated with it [Bistarelli et al., 1996]. However,
none of these extensions deal with variables that may have
uncertain or probabilistic values. Stochastic constraint pro-
gramming could, however, easily be combined with most of
these techniques.

11 Conclusions
To model combinatorial decision problems involving uncer-
tainty and probability, we have extended the stochastic con-
straint programming framework proposed in [Walsh, 2002]
along a number of important dimensions. In particular, we
have relaxed the assumption that stochastic variables are in-
dependent, and added multiple chance constraints as well as
a range of objective functions like maximizing the down-
side. We have also provided a new (but equivalent) seman-
tics for stochastic constraint programs based on scenarios.
Based on this semantics, we can compile stochastic constraint
programs down into conventional (non-stochastic) constraint
programs. The advantage of this compilation is that we can
use the full power of existing constraint solvers without any
modification. We have also proposed a number of techniques
to reduce the number of scenarios, and to generate robust so-
lutions.

We have implemented this framework for decision making
under uncertainty in a language called stochastic OPL. This
is an extension of the OPL constraint modelling language
[Hentenryck et al., 1999]. To illustrate the potential of this
framework, we have modelled a wide range of problems in
areas as diverse as finance, agriculture and production. There
are many directions for future work. For example, we want
to allow the user to define a limited set of scenarios that are
representative of the whole. As a second example, we want
to explore more sophisticated notions of solution robustness
(e.g. limiting the range of values used by a decision variable).

Acknowledgements
This project was funded by EPSRC under GR/R30792, and
the Science Foundation Ireland. We thank the members of
the APES Research Group and 4C Lab for their feedback.

References
[Birge and Louveaux, 1997] J. R. Birge and F. Louveaux. In-

troduction to Stochastic Programming. Springer-Verlag,
New York, 1997.

[Bistarelli et al., 1996] S. Bistarelli, H. Fargier, U. Monta-
nari, F. Rossi, T. Schiex, and G. Verfaillie. Semi-ring
based CSPs and valued CSPs: Basic properties and com-
parison. In M. Jample, E. Freuder, and M. Maher, editors,
Over-Constrained Systems, LNCS 1106, pages 111–150.
Springer-Verlag, 1996.

[Dupacova et al., 2003] J. Dupacova, N. Growe-Kuska, and
W. Romisch. Scenario reduction in stochastic program-
ming: an approach using probability metrics. Mathemati-
cal Programming, Series A 95:493–511, 2003.

[Fargier and Lang, 1993] H. Fargier and J. Lang. Uncer-
tainty in constraint satisfaction problems: a probabilis-
tic approach. In Proceedings of ECSQARU, LNCS 747.
Springer-Verlag, 1993.

[Hentenryck et al., 1999] P. Van Hentenryck, L. Michel,
L. Perron, and J-C. Regin. Constraint programming in
OPL. In G. Nadathur, editor, Principles and Practice
of Declarative Programming, LNCS 1702, pages 97–116.
Springer-Verlag, 1999.

[Kouvelis and Yu, 1996] P. Kouvelis and G. Yu. Robust Dis-
crete Optimization and Its Applications. Nonconvex opti-
mization and its applications: volume 14. Kluwer, 1996.

[Littman et al., 2000] M. L. Littman, S. M. Majercik, and
T. Pitassi. Stochastic boolean satisfiability. Journal of Au-
tomated Reasoning, 2000.

[McKay et al., 1979] M. D. McKay, R. J. Beckman, and
W. J. Conover. A comparison of three methods for select-
ing values of input variables in the analysis of output from
a computer code. Technometrics, 21(2):239–245, 1979.

[Puterman, 1994] M. L. Puterman. Markov Decision Pro-
cess: Discrete Stochastic Dynamic Programming. John
Wiley and Sons, 1994.

[Walsh, 2002] Toby Walsh. Stochastic constraint program-
ming. In Proceedings of the 15th ECAI, European Confer-
ence on Artificial Intelligence. IOS Press, 2002.

