

Three generalizations of the FOCUS constraint

Nina Narodytska $^1\cdot$ Thierry Petit $^{2,3}\cdot$ Mohamed Siala $^4\cdot$ Toby Walsh^5

Published online: 1 December 2015 © Springer Science+Business Media New York 2015

Abstract The FOCUS constraint expresses the notion that solutions are concentrated. In practice, this constraint suffers from the rigidity of its semantics. To tackle this issue, we propose three generalizations of the FOCUS constraint. We provide for each one a complete filtering algorithm. Moreover, we propose ILP and CSP decompositions.

Keywords Constraint propagation · Global constraints

Mohamed Siala mohamed.siala@insight-centre.org

> Nina Narodytska nina.n@samsung.com

Thierry Petit tpetit@wpi.edu

Toby Walsh toby.walsh@nicta.com.au

- ¹ Samsung Research America, Mountain View, CA, USA
- ² School of Business, Worcester Polytechnic Institute, Worcester, MA, USA
- ³ Mines Nantes, Nantes, France
- ⁴ Insight Centre for Data Analytics, Department of Computer Science, University College Cork, Cork, Ireland
- ⁵ UNSW and Data61 (formerly NICTA), Sydney, Australia Now at TU Berlin funded by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under AMPLIFY 670077.

1 Introduction

Many discrete optimization problems have constraints on the objective function. Being able to represent such constraints is fundamental to deal with many real world industrial problems. Constraint programming is a paradigm to express and filter such constraints. In particular, several constraints have been proposed for obtaining well-balanced solutions [9, 11, 17]. Recently, the FOCUS constraint [12] was introduced to express the opposite notion. It captures the concept of concentrating the high values in a sequence of variables to a small number of intervals. We recall its definition. Throughout this paper, $X = [x_0, x_1, \ldots, x_{n-1}]$ is a sequence of integer variables and $s_{i,j}$ is a sequence of indices of consecutive variables in X, such that $s_{i,j} = [i, i + 1, \ldots, j], 0 \le i \le j < n$. For each variable x, we denote by D(x) the domain of x and finally, we let |E| be the size of a collection E.

Definition 1 ([12]) Let y_c be a variable. Let k and *len* be two integers, $1 \le len \le |X|$. An instantiation of $X \cup \{y_c\}$ satisfies FOCUS (X, y_c, len, k) iff there exists a set S_X of *disjoint* sequences of indices $s_{i,j}$ such that three conditions are all satisfied:

1. $|S_X| \leq y_c$

- 2. $\forall x_l \in X, x_l > k \Leftrightarrow \exists s_{i,j} \in S_X \text{ such that } l \in s_{i,j}$
- 3. $\forall s_{i,j} \in S_X, j-i+1 \leq len$

Example 1 Let k = 0, $D(y_c) = \{2\}$, $X = [x_0, ..., x_5]$, $D(x_0) = \{1\}$, $D(x_1) = \{3\}$, $D(x_2) = \{1\}$, $D(x_3) = \{0\}$, $D(x_4) = \{1\}$, $D(x_5) = \{0\}$. If len = 6, then FOCUS (X, y_c, len, k) is satisfied since we can have 2 disjoint sequences of length ≤ 6 of consecutive variables with a value strictly positive, *i.e.*, $\langle x_0, x_1, x_2 \rangle$, and $\langle x_4 \rangle$. If len = 2, FOCUS (X, y_c, len, k) becomes violated since it is impossible to include all the strictly positive variables in X with only 2 sequences of length ≤ 2 .

FOCUS can be used in various contexts including cumulative scheduling problems where some excesses of capacity can be tolerated to obtain a solution [12]. In a cumulative scheduling problem, we are scheduling activities, and each activity consumes a certain amount of some resource. The total quantity of the resource available is limited by a capacity. Excesses can be represented by variables [4]. In practice, excesses might be tolerated by, for example, renting a new machine to produce more resource. Suppose the rental price decreases proportionally to its duration: it is cheaper to rent a machine during a single interval than to make several rentals. On the other hand, rental intervals have generally a maximum possible duration. FOCUS can be set to concentrate (non null) excesses in a small number of intervals, each of length at most *len*.

Unfortunately, the usefulness of FOCUS is hindered by the rigidity of its semantics. For example, we might be able to rent a machine from Monday to Sunday but not use it on Friday. It is a pity to miss such a solution with a smaller number of rental intervals because FOCUS imposes that all the variables within each rental interval take a high value. Moreover, a solution with one rental interval of two days is better than a solution with a rental interval of four days. Unfortunately, FOCUS only considers the *number* of disjoint sequences, and does not consider their *length*.

Consider a simple example of a resource R with a capacity equal to 3. We use a sequence of variables $[x_0, ..., x_9]$ to model the amount of consumed capacity at time unit *i* (e.g., one day). Suppose that some activities are already scheduled on R such that the current assignment of $[x_0, ..., x_9]$ is:

 $[x_0, ..., x_9]:$ 4 2 4 2 2 0 0 0 0 0

In this example, the first day requires a capacity equal to 4, the second requires 2, etc. The standard capacity constraints are exceeded in x_0 and x_2 .

Suppose that an additional activity has to be scheduled on this resource. The new activity has a duration of 5 days, each of which consumes 2 units of capacity. The followings sequence (denoted S_1) shows the new resource consumption if we start the new activity at x_1 . The bold values show the new capacity requirement after adding the new activity.

$$[x_0, ..., x_9]$$
 4 4 6 4 4 2 0 0 0 0

The new sequence S_1 satisfies FOCUS (X, [1, 1], 5, 3) since we have only one subsequence where the capacity constraints are all exceeded (i.e. $\langle x_0, x_1, x_2, x_3, x_4 \rangle$). However, there is no possible way to satisfy the constraint if the length is equal to 3. FOCUS (X, [1, 1], 3, 3) is violated.

Consider now a form of relaxation by allowing some variables in the sub-sequences to have values that do not exceed capacity. In this case, a solution is possible if we start the additional activity at x_5 (denoted S_2). That is:

$$[x_0, ..., x_9]:$$
 4 2 4 2 2 2 2 2 2 2 2 2

The unique subsequence in S_2 where some capacity constraints are exceeded is $\langle x_0, x_1, x_2 \rangle$. Relaxing FOCUS in this sense might be very useful in practice.

Consider now again FOCUS (X, [2, 2], 5, 3). The two solutions S_1 and S_2 satisfy the constraint. Notice that there is 6 capacity excesses in S_1 (i.e., in x_0 , x_1 , x_2 , x_3 , x_4) and only 2 in S_2 (i.e., in x_0 and x_2). Therefore, one might prefer S_2 since we have less capacity excesses although the project ends later. Restricting the length subsequences to be at most 2 in this example will prune the first solution.

We tackle those issues in this paper by means of three generalizations of FOCUS. SPRINGYFOCUS tolerates within each sequence $s_{i,j} \in S_X$ some values $v \leq k$. To keep the semantics of grouping high values, their number is limited in each $s_{i,j}$ by an integer argument. SPRINGYFOCUS adds a variable to count the length of sequences, equal to the number of variables taking a value v > k. The most generic one, WEIGHT-EDSPRINGYFOCUS, combines the semantics of SPRINGYFOCUS and WEIGHT-EDFOCUS. Propagating such constraints, i.e. complementary to an objective function, is well-known to be important [10, 18]. We present and experiment with filtering algorithms and decompositions therefore for each constraint. One of the decompositions highlights a relation between SPRINGYFOCUS and a tractable Integer Linear Programming (ILP) problem.

The rest of this paper is organized as follows : We give in Section 2 a short background on Constraint Programming and Network Flows. Next, in Sections 3, 4 and 5, we present three generations of the FOCUS constraint (denoted by SPRINGYFOCUS, WEIGHT-EDFOCUS, and WEIGHTEDSPRINGYFOCUS respectively). In particular, we provide complete filtering algorithms as well as ILP formulations and CSP decompositions. Finally, we evaluate, in Section 6, the impact of the new filtering compared to decompositions.

2 Background

A constraint satisfaction problem (CSP) is defined by a set of variables, each with a finite domain of values, and a set of constraints specifying allowed combinations of values for subsets of variables. For each variable x, we denote by min(x) (respectively max(x)) the minimum (respectively maximum) value in D(x). Given a constraint C, we denote by Scope(C) the set of variables constrained by C. A solution is an assignment of values to the variables satisfying the constraints.

Constraint solvers typically explore partial assignments enforcing a local consistency property using either specialized or general purpose *filtering algorithms* [16]. A filtering algorithm (called also a propagator) is usually associated with one constraint, to remove values that cannot belong to an assignment satisfying this constraint. A local consistency formally characterizes the impact of filtering algorithms. The two most used local consistencies are *domain consistency* (DC) and *bound consistency* (BC). A *support* for a constraint *C* is a tuple that assigns a value to each variable in *Scope*(*C*) from its domain which satisfies *C*. A *bounds support* for a constraint *C* is a tuple that assigns a value to each variable in *Scope*(*C*) which is between the maximum and minimum in its domain which satisfies *C*. A constraint *C* is *domain consistent* (DC) if and only if for each variable $x_i \in Scope(C)$, every value in the current domain of x_i belongs to a *support*. A constraint *C* is *bounds consistent* (BC) if and only if for each variable $x_i \in Scope(C)$, there is a *bounds support* for the maximum and minimum value in its current domain. A *CSP* is DC/BC if and only if each constraint is DC/BC. Regarding FOCUS, a complete filtering algorithm (i.e. achieving *domain consistency*) is proposed in [12] running in *O*(*n*) time complexity.

A *flow network* is a weighted directed graph G = (V, E) where each edge *e* has a capacity between non-negative integers l(e) and u(e), and an integer $\cot w(e)$. A *feasible flow* in a flow network between a source (*s*) and a sink (*t*), (*s*, *t*)-flow, is a function $f : E \to \mathbb{Z}^+$ satisfying two conditions: $f(e) \in [l(e), u(e)], \forall e \in E$ and the *flow conservation* law that ensures that the amount of incoming flow should be equal to the amount of outgoing flow for all nodes except the source and the sink. The *value* of a (*s*, *t*)-flow is the amount of flow leaving the sink *s*. The *cost* of a flow *f* is $w(f) = \sum_{e \in E} w(e) f(e)$. A *minimum cost flow* is a feasible flow with the minimum cost [1].

3 Springy FOCUS

3.1 Definition

In Definition 1, each sequence in S_X contains *exclusively* values v > k. In many practical cases, this property is too strong.

Consider one simple instance of the problem in the introduction (depicted in Fig. 1) for a given resource of capacity 3. Each variable $x_i \in X$ represents the resource consumption

and is defined per unit of time (e.g., one day). Initially, 4 activities are fixed (drawing A) as follows:

- 1. Activity 1 starts at day 0 and requires 4 units of capacity during one day
- 2. Activity 2 starts at day 1 and requires 2 units of capacity during one day
- 3. Activity 3 starts at day 2 and requires 4 units of capacity during one day
- 4. Activity 4 starts at day 3 and requires 2 units of capacity during two days

Suppose now that an additional activity with 2 units of capacity and a duration of 5 days remains to be scheduled. Suppose also that the domain of the starting time of the new activity is D(st) = [1, 5]. If FOCUS($X, y_c = 1, 5, 3$) is imposed then this activity must start at day 1 (solution B). We have one 5 day rental interval.

Assume now that the new machine may not be used every day. Solution (C) gives one rental of 3 days instead of 5. Furthermore, if len = 4 the problem will have no solution using FOCUS, while this latter solution still exists in practice. This is paradoxical, as relaxing the condition that sequences in the set S_X of Definition 1 take only values v > k deteriorates the concentration power of the constraint. Therefore, we propose a soft relaxation of FOCUS, where *at most h* values less than *k* are tolerated within each sequence in S_X .

Definition 2 Let y_c be a variable and k, len, h be three integers, $1 \le len \le |X|$, $0 \le h < len - 1$. An instantiation of $X \cup \{y_c\}$ satisfies SPRINGYFOCUS (X, y_c, len, h, k) iff there exists a set S_X of *disjoint* sequences of indices $s_{i,j}$ such that four conditions are all satisfied:

- 1. $|S_X| \leq y_c$
- 2. $\forall x_l \in X, x_l > k \Rightarrow \exists s_{i,j} \in S_X \text{ such that } l \in s_{i,j}$
- 3. $\forall s_{i,j} \in S_X, j i + 1 \le len, x_i > k \text{ and } x_j > k.$
- 4. $\forall s_{i,j} \in S_X, |\{l \in s_{i,j}, x_l \le k\}| \le h$

3.2 Filtering algorithm

Bounds consistency (BC) on SPRINGYFOCUS is equivalent to *domain consistency*: any solution can be turned into a solution that only uses the lower bound $min(x_l)$ or the upper

Fig. 1 Introducing SPRINGYFOCUS Example of a resource with capacity equal to 3. Each day is represented by one unit in the horizontal axis. The capacity usage is represented by the vertical axis. **A** Problem with 4 fixed activities: activity 1 scheduled on day 0 with 4 units of capacity; activity 2 scheduled on day 1 with 2 units of capacity; activity 3 scheduled on day 2 with 4 units of capacity; and activity 4 scheduled on days 3 and 4 with 2 units of capacity each. An additional activity of length 5 should start from time 1 to 5 (i.e. the domain of the starting time of the new activity is D(st)=[1,5]). **B** Solution satisfying FOCUS(*X*, [1, 1], 5, 3), with a new machine rented for 5 days. **C** Practical solution violating FOCUS(*X*, [1, 1], 5, 3), with a new machine rented for 3 days but not used on the second day

bound $\max(x_l)$ of the domain $D(x_l)$ of each $x_l \in X$ (this observation was made for FOCUS [12]). Thus, we propose a BC algorithm. The first step is to traverse X from x_0 to x_{n-1} , to compute the minimum possible number of disjoint sequences in S_X (a lower bound for y_c), the *focus cardinality*, denoted f c(X). We give a formal definition.

Definition 3 Focus cardinality

Let X be a sequence of variables subject to SPRINGYFOCUS(X, y_c , len, h, k). The focus cardinality of any subsequence $s \subset X$, denoted fc(s), is defined as follows:

$$fc(s) = \min_{\omega \in D(y_c)} \text{SPRINGYFOCUS}(s, y_c^{\omega}, len, h, k) \text{ is satisfiable } | D(y_c^{\omega}) = \{\omega\}$$

Definition 4 Given $x_l \in X$, we consider three quantities.

- 1. $p(x_l, v_{\leq})$ is the focus cardinality of $[x_0, x_1, \dots, x_l]$, assuming $x_l \leq k$, and $\forall s_{i,j} \in \overline{S_{[x_0, x_1, \dots, x_l]}}, j \neq l$.
- 2. $\underline{p_S}(x_l, v_{\leq}), 0 < l < n-1$, is the focus cardinality of $[x_0, x_1, \dots, x_j]$, where l < j < n, assuming $x_l \leq k$ and $\exists i, 0 \leq i < l, s_{i,j} \in S_{[x_0, x_1, \dots, x_j]}$. $\underline{p_S}(x_0, v_{\leq}) = \underline{p_S}(x_{n-1}, v_{\leq}) = n+1$.
- 3. $p(x_l, v_>)$ is the focus cardinality of $[x_0, x_1, \dots, x_l]$ assuming $x_l > k$.

Any quantity is equal to n + 1 if the domain $D(x_l)$ of x_l makes impossible the considered assumption.

We shall use the above notations throughout the paper.

Property 1 $fc(X) = \min(p(x_{n-1}, v_{\leq}), p(x_{n-1}, v_{>})).$

Proof By construction from Definitions 2 and 4.

To compute the quantities of Definition 4 for $x_l \in X$ we use two additional measures.

Definition 5 <u>*plen*(x_l) is the minimum length of a sequence in $S_{[x_0,x_1,...,x_l]}$ containing x_l among instantiations of $[x_0, x_1, ..., x_l]$ where the number of sequences is $fc([x_0, x_1, ..., x_l])$. $plen(x_l) = 0$ if $\forall s_{i,j} \in S_{[x_0,x_1,...,x_l]}$, $j \neq l$.</u>

Definition 6 <u>card</u>(x_l) is the minimum number of values $v \le k$ in the current sequence in $S_{[x_0,x_1,...,x_l]}$, equal to 0 if $\forall s_{i,j} \in S_{[x_0,x_1,...,x_l]}$, $j \ne l$. <u>card</u>(x_l) assumes that $x_l > k$. It has to be decreased it by one if $x_l \le k$.

Proofs of following recursive Lemmas 1 to 4 omit the obvious cases where quantities take the default value n + 1.

Lemma 1 (initialization) $\underline{p}(x_0, v_{\leq}) = 0$ if $\min(x_0) \leq k$, and n+1 otherwise; $\underline{p_S}(x_0, v_{\leq}) = n+1$; $\underline{p}(x_0, v_{>}) = 1$ if $\max(x_0) > k$ and n+1 otherwise; $\underline{plen}(x_0) = 1$ if $\max(x_0) > k$ and 0 otherwise; $\underline{card}(x_0) = 0$.

Proof From item 4 of Definition 2, a sequence in S_X cannot start with a value $v \le k$. Thus, $\underline{p_S}(x_0, v_\le) = n + 1$ and $\underline{card}(x_0) = 0$. If x_0 can take a value v > k then by Definition 4, $\overline{p(x_0, v_>)} = 1$ and $\underline{plen}(x_0) = 1$.

We now consider a variable $x_l \in X$, 0 < l < n.

Lemma 2 $(\underline{p}(x_l, v_{\leq}))$ If $\min(x_l) \leq k$ then $\underline{p}(x_l, v_{\leq}) = \min(\underline{p}(x_{l-1}, v_{\leq}), \underline{p}(x_{l-1}, v_{>})))$, else $p(x_l, v_{\leq}) = n + 1$.

Proof If $\min(x_l) \le k$ then $\underline{p_S}(x_{l-1}, v_{\le})$ must not be considered: it would imply that a sequence in S_X ends by a value $v \le k$ for x_{l-1} . From Property 1, the focus cardinality of the previous sequence is $\min(\underline{p}(x_{l-1}, v_{\le}), \underline{p}(x_{l-1}, v_{>}))$.

Lemma 3 $(\underline{p}_S(x_l, v_{\leq}))$ If $\min(x_i) > k$, $\underline{p}_S(x_i, v_{\leq}) = n + 1$. Otherwise, if $\underline{plen}(x_{i-1}) \in \{0, len - 1, len\} \lor \underline{card}(x_{i-1}) = h$ then $\underline{p}_S(x_i, v_{\leq}) = n + 1$, else $\underline{p}_S(x_i, v_{\leq}) = \min(\underline{p}_S(x_{i-1}, v_{\leq}), \underline{p}(x_{i-1}, v_{>}))$.

Proof If $\min(x_i) \le k$ we have three cases to consider. (1) If either $\underline{plen}(x_{i-1}) = 0$ or $\underline{plen}(x_{i-1}) = len$ then from item 3 of Definition 2 a sequence in S_X cannot start with a value $v_i \le k$: $\underline{p_S}(x_i, v_{\le}) = n + 1$. (2) If $\underline{plen}(x_{i-1}) = len - 1$ then from Definition 2 the current variable x_i cannot end the sequence with a value $v_i \le k$. (3) Otherwise, from item 3 of Definition 2, $\underline{p}(x_{i-1}, v_{\le})$ is not considered. Thus, from Property 1, $\underline{p_S}(x_i, v_{\le}) = \min(p_S(x_{i-1}, v_{\le}), p(x_{i-1}, v_{>}))$.

Lemma 4 $(\underline{p}(x_l, v_>))$ If $\max(x_l) \le k$ then $\underline{p}(x_l, v_>) = n + 1$. Otherwise, If <u> $plen(x_{l-1}) \in \{0, len\}, p(x_l, v_>) = \min(p(x_{l-1}, v_>) + 1, p(x_{l-1}, v_{\leq}) + 1), else p(x_l, v_>) = \min(p(x_{l-1}, v_>), p_S(x_{l-1}, v_{\leq}), p(x_{l-1}, v_{\leq}) + 1).$ </u>

Proof If $\underline{plen}(x_{l-1}) \in \{0, len\}$ a new sequence has to be considered: $\underline{ps}(x_{l-1}, v_{\leq})$ must not be considered, from item 3 of Definition 2. Thus, $\underline{p}(x_l, v_{>}) = \min(\underline{p}(x_{l-1}, v_{>}) + 1, \underline{p}(x_{l-1}, v_{\leq}) + 1)$. Otherwise, either a new sequence has to be considered ($\underline{p}(x_{l-1}, v_{\leq}) + 1$) or the value is equal to the focus cardinality of the previous sequence ending in x_{l-1} . \Box

Proposition 1 (*plen*(x_l)) *If* min($\underline{p}_S(x_{l-1}, v_{\leq}), \underline{p}(x_{l-1}, v_{>})$) < $\underline{p}(x_{l-1}, v_{\leq}) + 1 \land \underline{plen}(x_{l-1}) < len then \underline{plen}(x_l) = \underline{plen}(x_{l-1}) + 1$. Otherwise, if $\underline{p}(x_l, v_{>})$) < n + 1 then $\underline{plen}(x_l) = 1$, else $plen(x_l) = 0$.

Proof By construction from Definition 5 and Lemmas 1,2,3,4.

Proposition 2 (*card*(x_l)) If *plen*(x_l) = 1 then *card*(x_l) = 0. Otherwise, if $\underline{p}(x_l, v_>) = n + 1$ then *card*(x_l) = *card*(x_{l-1}) + 1, else *card*(x_l) = *card*(x_{l-1}).

Proof By construction from Definition 5,6 and Lemmas 1 and 4.

```
Algorithm 1: MINCARDS(X, len, k, h): Integer matrix
1 pre := \text{new Integer}[|X|][4][];
2 for l \in 0..n - 1 do
3
       pre[l][0] := new Integer[2];
                                                 /* Initialization from Lemma 1 */
4 if \min(x_0) \leq k then
5
       pre[0][0][0] := 0;
6 else
       pre[0][0][0] := n + 1;
7
8 pre[0][0][1] := n + 1;
9 if \max(x_0) > k then
10
       pre[0][1] := 1;
11 else
       pre[0][1] := n + 1;
12
13 if \max(x_0) > k then
14
       pre[0][2] := 1;
15 else
       pre[0][2] := 0;
16
17 pre[0][3] := 0;
18 for l \in 1..n - 1 do
                                                                             /* Lemma 2 */
19
       if \min(x_l) \leq k then
20
            pre[l][0][0] := min(pre[l-1][0][0], pre[l-1][1]);
       else
21
            pre[l][0][0] := n + 1;
22
                                                                             /* Lemma 3 */
23
       if \min(x_l) > k then
24
            pre[l][0][1] := n + 1;
25
       else
            if pre[l-1][2] \in \{0, len - 1, len\} \lor pre[l-1][3] = h then
26
27
                pre[l][0][1] := n + 1;
28
            else
                pre[l][0][1] := min(pre[l-1][0][1], pre[i-1][0][0]);
29
                                                                             /* Lemma 4 */
30
       if \max(x_l) \leq k then
31
            pre[l][1] := n + 1;
32
       else
33
            if pre[l-1][2] \in \{0, len\} then
                pre[l][1] = min(pre[l-1][1] + 1, pre[l-1][0][0] + 1);
34
35
            else
                pre[l][1] = min(pre[l-1][1], pre[l-1][0][1], pre[l-1][0][0] + 1)
36
                                                                     /* Proposition 1 */
       if min (pre[l-1][0][1], pre[l-1][1]) < pre[l-1][0][0] + 1 \land pre[l-1][2] < len then
37
38
            pre[l][2] = pre[l-1][2] + 1;
       else
39
40
            if pre[l][1] < n + 1 then
                pre[l][2] := 1;
41
42
            else
                pre[l][2] := 0;
43
                                                                     /* Proposition 2 */
44
       if pre[l][2] = 1 then
45
            pre[l][3] := 0;
46
       else
47
            if pre[l][1] = n + 1 then
48
                pre[l][3]) := pre[l-1] + 1;
49
            else
                pre[l][3]) := pre[l-1];
50
51 return pre;
```

Algorithm 1 implements the lemmas with $pre[l][0][0] = p(x_l, v_{\leq}), pre[l][0][1] = p_S(x_l, v_{\leq}), pre[l][1] = p(x_l, v_{>}), pre[l][2] = plen(x_l), pre[l][\overline{3}] = card(x_l).$

The principle of Algorithm 2 is the following. First, lb = fc(X) is computed with x_{n-1} . We execute Algorithm 1 from x_0 to x_{n-1} and conversely (arrays *pre* and *suf*). We thus have for each quantity two values for each variable x_l . To aggregate them, we implement regret mechanisms directly derived from Propositions 1 and 2,, according to the parameters *len* and *h*. Line 4 is optional but it avoids some work when the variable y_c is fixed, thanks to the same property as FOCUS (see [12]). Algorithm 2 performs a constant number of traversals of the set X. Its time complexity is O(n), which is optimal.

Algorithm 2: FILTERING (X, y_c, len, k, h) : Set of variables
1 $pre := MINCARDS(X, len, k, h);$
2 Integer $lb := \min(pre[n-1][0][0], pre[n-1][1]);$
3 if $\min(y_c) < lb$ then $D(y_c) := D(y_c) \setminus [\min(y_c), lb]$ if $\min(y_c) = \max(y_c)$ then
4 $suf := MINCARDS([x_{n-1}, x_{n-2},, x_0], len, k, h);$
5 for $l \in 0n - 1$ do
6 if $pre[l][0][0] + suf[n-1-l][0][0] > max(y_c)$ then
7 Integer $regret := 0$; Integer $add := 0$;
8 if $pre[l][1] \le pre[l][0][1]$ then $add := add + 1$ if
$suf[n-1-l][1] \le suf[n-1-l][0][1]$ then $add:=add+1$ if
$pre[l][2] + suf[n-1-l][2] - 1 \leq len \land$
$pre[l][3] + suf[n-1-l][3] + add - 1 \le h$ then $regret := 1$ if
$pre[l][0][1] + suf[n-1-l][0][1] - regret > max(y_c)$ then $D(x_i) :=$
$D(x_i)ackslash [\min(x_i),k]$
9 Integer $regret := 0;$
10 if $pre[l][2] + suf[n-1-l][2] - 1 \le len \land pre[l][3] + suf[n-1-l][3] - 1 \le h$
then $regret := 1$ if $pre[l][1] + suf[n-1-l][1] - regret > max(y_c)$ then
11 $D(x_i) := D(x_i) \setminus [k, \max(x_i)];$
12 return $X \cup \{y_c\}$;

3.3 Integer Linear Programming formulation

In this section we present a new Integer Linear Programming (ILP) formulation of SPRINGYFOCUS. This connection highlights a relation between SPRINGYFOCUS and a tractable ILP problem. It adds one more constraint to a bag of constraints that can be propagated using shortest path or network flow reformulations [6, 13, 14].

We first present a bounds disentailment technique. We use the following notations from [12].

Definition 7 ([12]) Given an integer k, a variable $x_l \in X$ is:

- Penalizing, (P_k) , iff $\min(x_l) > k$.
- Neutral, (N_k) , iff $\max(x_l) \le k$.
- Undetermined, (U_k) , otherwise.

We say $x_l \in P_k$ iff x_l is labelled P_k , and similarly for U_k and N_k .

The main observation behind the reformulation is that we can relax the requirement of disjointness of sequences in S_X (Definition 2) and find a solution of the SPRINGYFO-CUS constraint. This solution can be transformed into a solution where sequences in S_X

are disjoint as we can truncate the overlaps. If we drop the requirement of disjointness of sequences in S_X then we only need to consider at most *n* possible sequences $s_{i,i+len_i-1}$, $i \in \{0, 1, ..., n-1\}$, x_i and x_{i+len_i-1} are not neutral, and len_i is the maximal possible length of a sequence that starts at the *i*th position. Note that len_i does not have to be equal to *len* as $s_{i,i+len_i-1}$ can cover at most *h* variables that take values less than or equal to *k*. We call the set of these sequences S_X^o .

Example 2 Consider $X = [x_0, x_1, ..., x_8]$ and SPRINGYFOCUS (X, [3,3], 3, 1, 0) with $D(x_0) = D(x_2) = D(x_5) = D(x_7) = D(x_8) = \{1\}, D(x_1) = D(x_3) = D(x_4) = 0$ and $D(x_6) = \{0, 1\}$. There are 9 sequences to consider as there are 9 variables. We have 5 valid sequences that are schematically shown in black in Fig. 2a. Hence, $S_X^o = \{s_{0,2}, s_{5,7}, s_{6,8}, s_{7,8}, s_{8,8}\}$. The remaining 4 sequences, $s_{1,2}, s_{2,3}, s_{3,3}$ and $s_{4,6}$, are discarded, as a sequence should not start(finish) at a neutral variable. We highlighted invalid sequences in grey.

We denote the SPRINGYFOCUS constraint without the disjointness requirement SPRINGYFOCUSOVERLAP. More formally we define SPRINGYFOCUSOVER-LAP as follows.

Definition 8 Let y_c be a variable and k, len, h be three integers, $1 \le len \le |X|$, $0 \le h < len - 1$. An instantiation of $X \cup \{y_c\}$ satisfies SPRINGYFOCUSOVER-LAP (X, y_c, len, h, k) iff there exists a set $S_X \subseteq S_X^o$ of sequences (not necessary disjoint) of indices $s_{i,j}$ such that four conditions are all satisfied:

- 1. $|S_X| \leq y_c$
- 2. $\forall x_l \in X, x_l > k \Rightarrow \exists s_{i,j} \in S_X \text{ such that } l \in s_{i,j}$
- 3. $\forall s_{i,j} \in S_X, j-i+1 \leq len, x_i > k \text{ and } x_j > k$
- 4. $\forall s_{i,j} \in S_X, |\{l \in s_{i,j}, x_l \le k\}| \le h$

SpringyFocus([x₀,x₁,x₂,x₃,x₄,x₅,x₆,x₇,x₈],y_c=3,h=1,len=3,k=0)

Fig. 2 The set of possible sequences in S_X from Example 2

Lemma 5 SPRINGYFOCUS (X, y_c, len, h, k) has a solution iff SPRINGYFOCUS OVERLAP (X, y_c, len, h, k) has a solution.

Proof ⇐ Let $I[X \cup \{yc\}]$ be a solution of PRINGYFOCUSOVERLA. We order sequences in S_X by their starting points and process them in this order. Let $s_{i,i+len_i-1}$ and $s_{j,j+len_j-1}$ be the first two consecutive sequences in S_X that overlap. We update S_X . First, we remove $s_{j,j+len_j-1}$: $S_X = S_X \setminus \{s_{j,j+len_j-1}\}$. Consider a sequence $s_{i+len_i,j+len_j-1}$. By definition, $x_{j+len_j-1} > k$. If $s_{i+len_i,j+len_j-1}$ has a prefix that contains only neutral variables then we cut it from the sequence and obtain $s_{i',j+len_j-1}$. We add this sequence to our set: $S_X =$ $S_X \cup \{s_{i',j+len_j-1}\}$. So, we cut the prefix of $s_{j,j+len_j-1}$ to avoid the overlap and made sure that the new sequence does not start or end at a neutral variable. This does not change the cardinality $|S_X|$. We continue this procedure for the rest of the sequences. The updated set S_X covers the same set of penalizing variables as the original set and all sequences are disjoint.

 \Rightarrow Let $I[X \cup \{y_c\}]$ be a solution of SPRINGYFOCUS. We extend each sequence to its maximal length to the right. This gives a solution of PRINGYFOCUSOVERLAP.

Example 3 Consider SPRINGYFOCUSOVERLAP from Example 2. $S_X = \{s_{0,2}, s_{5,7}, s_{7,8}\}$ is a possible solution (dashed lines in Fig. 2a). We can cut the prefix of $s_{7,8}$ to avoid an overlap between $s_{5,7}$ and $s_{7,8}$. We obtain $s_{8,8}$ which does not start or finish at a neutral variable. Hence, $S_X = (S_X \cup \{s_{8,8}\}) \setminus \{s_{7,8}\} = \{s_{0,2}, s_{5,7}, s_{8,8}\}$.

Thanks to Lemma 5 we build an ILP reformulation for SPRINGYFOCUSOVERLAP, solve this ILP and transform to a solution of the SPRINGYFOCUS constraint. We introduce one Boolean variable sv_i for each sequence in S_X^o . We can write an integer linear program:

$$\text{Minimize} \sum_{\substack{i:s_{i} \neq lew} \in S_{\mathbf{x}}^{g}} sv_{i} \tag{1}$$

$$\sum_{\{sv_i:x_j \in s_{i,i+len_i-1}\}} sv_i \ge 1 \ \forall x_j \in P_k \tag{2}$$

$$sv_i \in \{0, 1\} \quad \forall sv_i.$$
 (3)

Lemma 6 SPRINGYFOCUSOVERLAP (X, y_c, len, h, k) is satisfiable iff the ILP system 1–3 has a solution of cost less than or equal to $\max(y_c)$.

Proof \Leftarrow Suppose the system described by (1)–(3) has a solution I[sv]. We define $S = \{s_{i,i+len_i} | sv_i = 1\}$. Equation 2 ensures that at least one sequence covers a penalizing variable. Equation 1 ensures that the number of selected sequences is at most max(y_c).

As the rest of uncovered variables in X are undetermined or neutral variables, we can construct an assignment based on S_X . We set all undetermined variables covered by S_X to 1 and all undetermined variables uncovered by S_X to 0. This assignment clearly satisfies SPRINGYFOCUSOVERLAP(X, y_c , len, h, k).

⇒ Suppose there is a solution of the SPRINGYFOCUSOVERLAP(X, y_c, len, h, k) constraint $I[X \cup \{y_c\}]$ and $S_X = \{s_{i_1, j_1}, \dots, s_{i_p, j_p}\}$ be the set of corresponding sequences. We set variable sv_i to 1 iff $s_{i,i+len_i-1} \in S_X$. This assignment satisfies (1)–(3).

Next we note that the ILP system (1)–(3) has the consecutive ones properties on columns. This means that the corresponding matrix can be transformed to a network flow matrix

using a procedure described by Veinott and Wagner [19]. We consider the transformation on SPRINGYFOCUS from Example 5. This transformation is similar to the one used to propagate the SEQUENCE constraint [6].

Example 4 Consider SPRINGYFOCUS from Example 2. We build an ILP that corresponds to an equivalent SPRINGYFOCUSOVERLAP constraint using (1)–(3). Note that we do not introduce variables sv_1 , sv_2 , sv_3 and sv_4 for discarded sequences $s_{1,3}$, $s_{2,3}$, $s_{3,3}$ and $s_{4,6}$:

$$\text{Minimize} \sum_{i \in \{0.5, 6, 7, 8\}} sv_i \tag{4}$$

$$sv_0 \ge 1$$
 (5)

$$sv_5 \ge 1$$
 (6)

$$sv_5 + sv_6 + sv_7 \ge 1,$$
 (7)

$$sv_6 + sv_7 + sv_8 \ge 1,$$
 (8)

where $sv_i \in \{0, 1\}$. By introducing surplus/slack variables, z_i , we convert this to a set of equalities:

$$\text{Minimize} \sum_{i \in \{0.5, 6, 7, 8\}} sv_i \tag{9}$$

$$sv_0 - z_0 = 1 \tag{10}$$

$$sv_5 - z_1 = 1$$
 (11)

$$sv_5 + sv_6 + sv_7 - z_2 = 1, (12)$$

$$sv_6 + sv_7 + sv_8 - z_3 = 1, (13)$$

In matrix form, this is:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} sv_0 \\ \vdots \\ sv_8 \\ z_0 \\ \vdots \\ z_3 \end{pmatrix} = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

We append a row of zeros to the matrix and subtract the *i*th row from i + 1th row for i = 1 to 4. These operations do not change the set of solutions. This gives:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & -1 & 0 \\ 0 & -1 & 0 & 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & -1 & -1 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} sv_0 \\ \vdots \\ sv_8 \\ z_0 \\ \vdots \\ z_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \end{pmatrix}$$

The corresponding network flow graph is shown in Fig. 2b. The dashed arcs have cost zero and solid arcs have cost one. Capacities are shown on arcs. We number nodes from 0 to 4 as we have 4 equations in the transformed ILP. We highlighted in grey a possible solution of cost 3. This solution corresponds to the solution from Example 3.

As the right hand side (RHS) of the ILP system (1)–(2) is a unit vector, the RHS in the

transformed ILP is a vector (1, 0, ..., 0, -1). In other words, we need to consume one unit of flow that enters the first node in the graph and leaves the last node in the graph. Hence, the problem of finding a min cost flow is equivalent to the problem of finding a shortest path in this graph from 0th to *m*th node, where *m* is the number of equations in ILP. Moreover, a shortest path can be found in linear time.

Lemma 7 Let G be a directed graph that corresponds to the SPRINGY FOCUS (X, y_c, len, h, k) . A shortest path from 0th to mth node can be found in O(n) time.

Proof We show that there exists a shortest path from 0th to *m*th node that does not contain arcs $(i+1, i), i \in \{0, 1, ..., m-1\}$. We call these arcs backward arcs and call the remaining arcs – forward arcs.

First, we observe that each node in G has an outgoing arc, because the *i*th node, $i \in \{0, ..., m-1\}$ corresponds to the *i*th penalizing variable in the constraint and a sequence that starts at a penalizing variable is in S_X^o .

Let π be a shortest path from 0 to m node that uses a backward arc. Consider the first occurrence of a sequence of backward arcs in π : $\pi = (0, \ldots, j, i', \ldots, i, g, f, \ldots, m)$, where i', \ldots, i is a path using only backward arcs. As (i, g) is present in G then $(i', g'), g \leq g'$ is present in G. Hence, we can modify the path π to $\pi = (0, \ldots, j, i', g', \pi', f, \ldots, m)$, where (g', π', f) is a path that uses backward arcs to reach f from g' if $(g', f) \notin G$. As the weight π' is 0, the weight of the updated path π is the same as the weight of the original path. Then we apply the same argument to g' and so on.

Hence, we can use a simple greedy algorithm to find the shortest path. We start at the 0th node and select the longest outgoing arc (0, i). In the node *i*, we again select the longest arc until will reach the *m*th node. As we know that there exists a shortest path that only uses forward arcs the greedy algorithm is optimal.

The same ILP reformulation can be done for the FOCUS constraint [12], which is a special case of SPRINGYFOCUS. For these two constraints, we can use such a bounds disentailment procedure to obtain a $O(n^2)$ filtering algorithm by successively applying the program to the two bounds of the domain of each variable in X.

4 Weighted FOCUS

We present WEIGHTEDFOCUS, that extends FOCUS with a variable z_c limiting the the sum of lengths of all the sequences in S_X , i.e., the number of variables *covered* by a sequence in S_X .

4.1 Definition

WEIGHTEDFOCUS distinguishes between solutions that are equivalent with respect to the number of sequences in S_X but not with respect to their length, as Fig. 3 shows.

Definition 9 Let y_c and z_c be two integer variables and k, *len* be two integers, such that $1 \le len \le |X|$. An instantiation of $X \cup \{y_c\} \cup \{z_c\}$ satisfies WEIGHTEDFOCUS

Fig. 3 The same initial configuration of Fig. 1 (a) Problem with 4 fixed activities and one activity of length 5 that can start from time 3 to 5 (i.e., D(st)=[3,5]). We assume $D(y_c) = \{2\}$, *len* = 3 and k = 0. **b** Solution satisfying WEIGHTEDFOCUS with $z_c = 4$. (C) Solution satisfying WEIGHTEDFOCUS with $z_c = 2$

 (X, y_c, len, k, z_c) iff there exists a set S_X of *disjoint* sequences of indices $s_{i,j}$ such that four conditions are all satisfied:

- 1. $|S_X| \leq y_c$
- 2. $\forall x_l \in X, x_l > k \Leftrightarrow \exists s_{i,j} \in S_X \text{ such that } l \in s_{i,j}$
- 3. $\forall s_{i,j} \in S_X, j-i+1 \leq len$
- 4. $\sum_{s_{i,j} \in S_X} |s_{i,j}| \le z_c.$

It should be noted that there are some similarities between WEIGHTEDFOCUS and STRETCH [8]. Indeed given a sequence of variables, the STRETCH constraint restricts the occurrences of consecutive identical values. The particular case of WEIGHTEDFO-CUS with Boolean variables is similar to a very specific case of STRETCH with Boolean variables, where only the occurrences of consecutive 1s is bounded. However, STRETCH does not restrict the number of such subsequences. Even though, the semantics behind STRETCH is quite different as the limitation of consecutive values is usually for many values along with many patterns whereas inWEIGHTEDFOCUS the restriction in only for values greater than a threshold. One limitation of WEIGHTEDFOCUS compared to STRETCH is that we do not restrict the minimum size of subsequences with excess. Another limitation is the non-penalization of the extra resource consumption at each unit of time. That is, if k = 2, then excess of type x = 10 might be very costly compared to two excess of the type x = 5.

4.2 Filtering algorithm

Dynamic Programming (DP) principle Given a partial instantiation I_X of X and a set of sequences S_X that covers all penalizing variables in I_X , we consider two terms: the number of variables in P_k and the number of *undetermined* variables, in U_k , covered by S_X . We want to find a set S_X that minimizes the second term. Given a sequence of variables $s_{i,j}$, the cost $cst(s_{i,j})$ is defined as $cst(s_{i,j}) = |\{p|x_p \in U_k, x_p \in s_{i,j}\}|$. We denote cost of S_X , $cst(S_X)$, the sum $cst(S_X) = \sum_{s_{i,j} \in S_X} cst(s_{i,j})$. Given I_X we consider $|P_k| = |\{x_i \in P_k\}|$. We have: $\sum_{s_{i,j} \in S} |s_{i,j}| = \sum_{s_{i,j} \in S} cst(s_{i,j}) + |P_k|$.

We start with explaining the main difficulty in building a propagator for WEIGHTED-FOCUS. The constraint has two optimization variables in its scope (i.e. y_c and z_c) and we might not have a solution that optimizes both variables simultaneously.

Example 5 Consider the set $X = [x_0, x_1, ..., x_5]$ with domains $[1, \{0, 1\}, 1, 1, \{0, 1\}, 1]$ and WEIGHTEDFOCUS(X, [2, 3], 3, 0, [0, 6]), solution $S_X = \{s_{0,2}, s_{3,5}\}, z_c = 6$, minimizes $y_c = 2$, while solution $S_X = \{s_{0,1}, s_{2,3}, s_{5,5}\}, y_c = 3$, minimizes $z_c = 4$.

Example 5 suggests that we need to fix one of the two optimization variables and only optimize the other one. Our algorithm is based on a dynamic program [3]. For each prefix of variables $[x_0, x_1, \ldots, x_j]$ and given a cost value c, it computes a cover of focus cardinality, denoted $S_{c,j}$, which covers all penalized variables in $[x_0, x_1, \ldots, x_j]$ and has cost exactly c. If $S_{c,j}$ does not exist we assume that $S_{c,j} = \infty$. $S_{c,j}$ is not unique as Example 6 demonstrates.

Example 6 Consider $X = [x_0, x_1, ..., x_7]$ and WEIGHTEDFOCUS (X, [2, 2], 5, 0, [7, 7]), with $D(x_i) = \{1\}, i \in I, I = \{0, 2, 3, 5, 7\}$ and $D(x_i) = \{0, 1\}, i \in \{0, 1, ..., 7\} \setminus I$. Consider the subsequence of variables $[x_0, ..., x_5]$ and $S_{1,5}$. There are several sets of minimum cardinality that cover all penalized variables in the prefix $[x_0, ..., x_5]$ and has cost 2, e.g. $S_{1,5}^1 = \{s_{0,2}, s_{3,5}\}$ or $S_{1,5}^2 = \{s_{0,4}, s_{5,5}\}$. Assume we sort sequences by their starting points in each set. We note that the second set is better if we want to extend the last sequence in this set as the length of the last sequence $s_{5,5}$ is shorter compared to the length of the last sequence in $S_{1,5}^1$, which is $s_{3,5}$.

Example 6 suggests that we need to put additional conditions on $S_{c,j}$ to take into account that some sets are better than others. We can safely assume that none of the sequences in $S_{c,j}$ starts at undetermined variables as we can always set it to zero. Hence, we introduce a notion of an ordering between sets $S_{c,j}$ and define conditions that this set has to satisfy.

Ordering of sequences in $S_{c,j}$. We introduce an order over sequences in $S_{c,j}$. Given a set of sequences in $S_{c,j}$, we sort them by their starting points. We denote $last(S_{c,j})$ the last sequence in $S_{c,j}$ in this order. If $x_j \in last(S_{c,j})$ then $|last(S_{c,j})|$ is, naturally, the length of $last(S_{c,j})$, otherwise $|last(S_{c,j})| = \infty$.

Ordering of sets $S_{c,j}$, $c \in [0, \max(z_c)]$, $j \in \{0, 1, ..., n-1\}$ We define a comparison operation between two sets $S_{c,j}$ and $S_{c',j'}$:

- $S_{c,j} < S_{c',j'} \text{ iff } |S_{c,j}| < |S_{c',j'}| \text{ or } |S_{c,j}| = |S_{c',j'}| \text{ and } |last(S_{c,j})| < |last(S_{c',j'})|.$
- $S_{c,j} = S_{c',j'}$ iff $|S_{c,j}| = |S_{c',j'}|$ and $|last(S_{c,j})| = |last(S_{c',j'})|$.

Note that we do not take account of cost in the comparison as the current definition is sufficient for us. Using this operation, we can compare all sets $S_{c,j}$ and $S'_{c,j}$ of the same cost for a prefix $[x_0, \ldots, x_j]$. We say that $S_{c,j}$ is optimal iff satisfies the following 4 conditions.

Proposition 3 (Conditions on $S_{c,i}$)

- 1. $S_{c,j}$ covers all P_k variables in $[x_0, x_1, \ldots, x_j]$,
- 2. $cst(S_{c,j}) = c$,
- 3. $\forall s_{h,g} \in S_{c,j}, x_h \notin U_k$,
- 4. $S_{c,j}$ is the first set in the order among all sets that satisfy conditions 1–3.

As can be seen from definitions above, given a subsequence of variables $x_0, \ldots, x_j, S_{c,j}$ is not unique and might not exist. However, if $|S_{c,j}| = |S_{c',j'}|$, c = c' and j = j', then $last(S_{c,j}) = last(S_{c',j'})$.

Example 7 Consider WEIGHTEDFOCUS from Example 6. Consider the subsequence $[x_0, x_1]$. $S_{0,1} = \{s_{0,0}\}$, $S_{1,1} = \{s_{0,1}\}$. Note that $S_{2,1}$ does not exist. Consider the subsequence $[x_0, \ldots, x_5]$. We have $S_{0,5} = \{s_{0,0}, s_{2,3}, s_{5,5}\}$, $S_{1,5} = \{s_{0,4}, s_{5,5}\}$ and $S_{2,5} = \{s_{0,3}, s_{5,5}\}$. By definition, $last(S_{0,5}) = s_{5,5}$, $last(S_{1,5}) = s_{5,5}$ and $last(S_{2,5}) = s_{5,5}$. Consider the set $S_{1,5}$. Note that there exists another set $S'_{1,5} = \{s_{0,0}, s_{2,5}\}$ that satisfies conditions 1–3. Hence, it has the same cardinality as $S_{1,5}$ and the same cost. However, $S_{1,5} < S'_{1,5}$ as $|last(S_{1,5})| = 1 < |last(S'_{1,5})| = 3$.

Bounds disentailment Each cell in the dynamic programming table $f_{c,j}$, $c \in [0, z_c^U]$, $j \in \{0, 1, ..., n-1\}$, where $z_c^U = \max(z_c) - |P_k|$, is a pair of values $q_{c,j}$ and $l_{c,j}$, $f_{c,j} = \{q_{c,j}, l_{c,j}\}$, stores information about $S_{c,j}$. Namely, $q_{c,j} = |S_{c,j}|$, $l_{c,j} = |last(S_{c,j})|$ if $last(S_{c,j}) \neq \infty$ and ∞ otherwise. We say that $f_{c,j}/q_{c,j}/l_{c,j}$ is a dummy (takes a dummy value) iff $f_{c,j} = \{\infty, \infty\}/q_{c,j} = \infty/l_{c,j} = \infty$. If $y_1 = \infty$ and $y_2 = \infty$ then we assume that they are equal. We introduce a dummy variable x_{-1} , $D(x_{-1}) = \{0\}$ and a row $f_{-1,j}$, $j = -1, \ldots, n-1$ to keep uniform notations.

A	gorithm 3: Weighted FOCUS (x_0, \ldots, x_{n-1})
1	for $c\in -1z_c^U$ do
2	for $j\in -1n-1$ do
3	$f_{c,j} \leftarrow \{\infty, \infty\};$
4	$f_{0,-1} \leftarrow \{0,0\}$;
5	for $j \in 0n-1$ do
6	for $c\in 0j$ do
7	if $x_j \in P_k$ then /* penalizing */
8	if $(l_{c,j-1} \in [1, len)) \lor (q_{c,j-1} = \infty)$ then
9	$f_{c,j} \leftarrow \{q_{c,j-1}, l_{c,j-1}+1\};$
10	else $f_{c,j} \leftarrow \{q_{c,j-1}+1,1\}$
11	if $x_i \in U_k$ then /* undetermined */
12	if $(l_{c-1,j-1} \in [1, len) \land q_{c-1,j-1} = q_{c,j-1}) \lor (q_{c,j-1} = \infty)$ then
	$f_{c,j} \leftarrow \{q_{c-1,j-1}, l_{c-1,j-1}+1\}$ else $f_{c,j} \leftarrow \{q_{c,j-1}, \infty\}$
13	if $x_j \in N_k$ then /* neutral */
14	$f_{c,j} \leftarrow \{q_{c,j-1}, \infty\}$
15	return f:

Algorithm 3 gives pseudocode for the propagator. The intuition behind the algorithm is as follows. We emphasize again that by cost we mean the number of covered variables in U_k .

If $x_j \in P_k$ then we do not increase the cost of $S_{c,j}$ compared to $S_{c,j-1}$ as the cost only depends on undetermined variables. Hence, the best move for us is to extend $last(S_{c,j-1})$ or start a new sequence if it is possible. This is encoded in lines 9 and 10 of the algorithm. Fig. 4a gives a schematic representation of these arguments.

If $x_j \in U_k$ then we have two options. We can obtain $S_{c,j}$ from $S_{c-1,j-1}$ by increasing $cst(S_{c-1,j-1})$ by one. This means that x_i will be covered by $last(S_{c,j})$. Alternatively, from $S_{c,j-1}$ by interrupting $last(S_{c,j-1})$. This is encoded in line 12 of the algorithm (Fig. 4b).

Fig. 4 Representation of one step of algorithm 3

If $x_j \in N_k$ then we do not increase the cost of $S_{c,j}$ compared to $S_{c,j-1}$. Moreover, we must interrupt $last(S_{c,j-1})$, line 14 (Fig. 4c, ignore the gray arc).

First we prove a property of the dynamic programming table. We define a comparison operation between $f_{c,j}$ and $f_{c',j'}$ induced by a comparison operation between $S_{c,j}$ and $S_{c',j'}$:

$$\begin{array}{l} - \quad f_{c,j} < f_{c',j'} \text{ if } (q_{c,j} < q_{c',j'}) \text{ or } (q_{c,j} = q_{c',j'} \text{ and } l_{c,j} < l_{c',j'}). \\ - \quad f_{c,j} = f_{c',j'} \text{ if } (q_{c,j} = q_{c',j'} \text{ and } l_{c,j} = l_{c',j'}). \end{array}$$

In other words, as in a comparison operation between sets, we compare by the cardinality of sequences, $|S_{c,j}|$ and $|S_{c',j'}|$, and, then by the length of the last sequence in each set, $last(S_{c,j})$ and $last(S_{c',j'})$.

First, we prove two technical results.

Lemma 8 Consider SPRINGYFOCUS($[x_0, \ldots, x_{n-1}], y_c, len, k, z_c$). Let f be dynamic programming table returned by Algorithm 3. Then the non-dummy values of $f_{c,j}$ are consecutive in each column, so that there do not exist $c, c', c'', 0 \le c < c' < c'' \le z_c^U$, such that $f_{c',j}$ is dummy and $f_{c,j}, f_{c'',j}$ are non-dummy.

Proof We prove by induction on the length of the sequence. The base case is trivial as $f_{0,-1} = \{0, 0\}$ and $f_{c,-1} = \{\infty, \infty\}, c \in [-1] \cup [1, z_c^U]$. Suppose the statement holds for j - 1 variables.

Suppose there exist $c, c', c'', 0 \le c < c' < c'' \le z_c^U$, such that $f_{c',j}$ is dummy and $f_{c,j}, f_{c'',j}$ are non-dummy.

Case 1 Consider the case $x_j \in P_k$. By Algorithm 3, lines 9 and 10, $q_{c,j} \in [q_{c,j-1}, q_{c,j-1} + 1]$, $q_{c',j} \in [q_{c',j-1}, q_{c',j-1} + 1]$ and $q_{c'',j} \in [q_{c'',j-1}, q_{c'',j-1} + 1]$. As $f_{c',j}$ is dummy and $f_{c,j}, f_{c'',j}$ are non-dummy, $f_{c',j-1}$ must be dummy and $f_{c,j-1}, f_{c'',j-1}$ must be non-dummy. This violates induction hypothesis.

Case 2 Consider the case $x_j \in U_k$. By Algorithm 3, line 12, $q_{c,j} = \min(q_{c-1,j-1}, q_{c,j-1})$, $q_{c',j} = \min(q_{c'-1,j-1}, q_{c',j-1})$ and $q_{c'',j} = \min(q_{c''-1,j-1}, q_{c'',j-1})$. As $f_{c',j}$ is dummy, then both $f_{c'-1,j-1}$ and $f_{c',j-1}$ must be dummy. As $f_{c,j}$ is non-dummy, then one of $f_{c-1,j-1}$ and $f_{c,j-1}$ is non-dummy. As $f_{c'',j}$ is non-dummy, then one of $f_{c''-1,j-1}$ and $f_{c'',j-1}$ is non-dummy. As $f_{c'',j-1} = 1 < c' < c'' < c'' < c'' < c''$. This leads to violation of induction hypothesis.

Case 3 Consider the case $x_j \in N_k$. By Algorithm 3, line 14, $q_{c,j} = q_{c,j-1}$, $q_{c',j} = q_{c',j-1}$ and $q_{c'',j} = q_{c'',j-1}$. Hence, $f_{c',j-1}$ is dummy and $f_{c,j-1}$, $f_{c'',j-1}$ are non-dummy. This leads to violation of induction hypothesis.

Proposition 4 Consider SPRINGYFOCUS($[x_0, ..., x_{n-1}], y_c, len, k, z_c$). Let f be dynamic programming table returned by Algorithm 3. The elements of the first row are non-dummy: $f_{0,j}$, j = -1, ..., n are non-dummy.

Proof We prove by induction on the length of the sequence. The base case is trivial as $f_{0,-1} = \{0, 0\}$. Suppose the statement holds for j - 1 variables.

Case 1 Consider the case $x_j \in P_k$. As $f_{0,j-1}$ is non-dummy then by Algorithm 3, lines 9–10, $f_{0,j}$ is non-dummy.

Case 2 Consider the case $x_j \in U_k$. Consider the condition $(l_{-1,j-1} \in [1, len) \land q_{-1,j-1} = q_{0,j-1}) \lor (q_{0,j-1} = \infty)$ at line 12. By the induction hypothesis, $q_{0,j-1} \neq \infty$. By the initialization procedure of the dummy row, $q_{-1,j-1} = \infty$. Hence, this condition does not hold and, by line 12, $f_{0,j}$ is non-dummy.

Case 3 Consider the case $x_j \in N_k$. As $f_{0,j-1}$ is non-dummy then by Algorithm 3, line 13, $f_{0,j}$ is non-dummy.

We can now prove an interesting monotonicity property of Algorithm 3.

Lemma 9 Consider SPRINGYFOCUS (X, y_c, len, k, z_c) . Let f be dynamic programming table returned by Algorithm 3. Non-dummy elements $f_{c,j}$ are monotonically non increasing in each column, so that $f_{c',j} \leq f_{c,j}, 0 \leq c < c' \leq z_c^U, j = [0, ..., n - 1].$

Proof By transitivity and consecutivity of non-dummy values (Lemma 8) and the result that all elements in the 0th row are non-dummy (Proposition 4), it is sufficient to consider the case c' = c + 1.

We prove by induction on the length of the sequence. The base case is trivial as $f_{0,-1} = \{0, 0\}$ and $f_{c,0}$ are dummy, $c \in [0, z_c^U]$. Suppose the statement holds for j - 1 variables.

Consider the variable x_j . Suppose, by contradiction, that $f_{c,j} < f_{c+1,j}$. Then either $q_{c,j} < q_{c+1,j}$ or $q_{c,j} = q_{c+1,j}$, $l_{c,j} < l_{c+1,j}$. By induction hypothesis, we know that $f_{c,j-1} \ge f_{c+1,j-1}$, hence, either $q_{c,j-1} > q_{c+1,j-1}$ or $q_{c,j-1} = q_{c+1,j-1}$, $l_{c,j-1} \ge l_{c+1,j-1}$.

We consider three cases depending on whether x_j is a penalizing variable, an undetermined variable or a neutral variable.

Case 1 Consider the case $x_j \in P_k$. If $q_{c,j-1} = \infty$ then $q_{c+1,j-1} = \infty$ by the induction hypothesis. Hence, by Algorithm 3, line 9, $f_{c,j}$ and $f_{c+1,j}$ are dummy and equal. Suppose $q_{c,j-1} \neq \infty$. Then we consider four cases based on relative values of $q_{c,j'}, q_{c+1,j'}, l_{c,j'}, l_{c+1,j'}, j' \in \{j-1, j\}$.

- **Case 1a** Suppose $q_{c,j} < q_{c+1,j}$ and $q_{c,j-1} > q_{c+1,j-1}$. By Algorithm 3, lines 9 and 10, $q_{c,j} \ge q_{c,j-1}$ and $q_{c+1,j} \le q_{c+1,j-1} + 1$. Hence, $q_{c,j} < q_{c+1,j}$ implies $\mathbf{q_{c+1,j-1}} < q_{c,j} < \mathbf{q_{c+1,j-1}} + 1$. We derive a contradiction.
- **Case 1b** Suppose $q_{c,j} < q_{c+1,j}$ and $q_{c,j-1} = q_{c+1,j-1}$, $l_{c,j-1} \ge l_{c+1,j-1}$. By Algorithm 3, lines 9 and 10, $q_{c,j} \ge q_{c,j-1}$ and $q_{c+1,j} \le q_{c+1,j-1} + 1$. Hence, $q_{c,j} < q_{c+1,j-1}$ implies $\mathbf{q_{c+1,j-1}} = q_{c,j-1} \le q_{c,j} < q_{c+1,j-1} \le \mathbf{q_{c+1,j-1}} + \mathbf{1}$. Hence, $q_{c+1,j-1} = q_{c,j-1} = q_{c,j}$ and $q_{c+1,j-1} + 1$. As $q_{c,j-1} = q_{c,j}$ then $l_{c,j-1} \in [1, len)$ by

Algorithm 3 line 9. As $q_{c+1,j} = q_{c+1,j-1} + 1$ then $l_{c+1,j-1} \in \{len, \infty\}$ by Algorithm 3 line 10. This leads to a contradiction as $l_{c,j-1} \ge l_{c+1,j-1}$.

- **Case 1c** Suppose $q_{c,j} = q_{c+1,j}$, $l_{c,j} < l_{c+1,j}$ and $q_{c,j-1} > q_{c+1,j-1}$. Symmetric to Case 1b.
- **Case 1d** Suppose $q_{c,j} = q_{c+1,j}, l_{c,j} < l_{c+1,j}$ and $q_{c,j-1} = q_{c+1,j-1}, l_{c,j-1} \ge l_{c+1,j-1}$. By Algorithm 3, lines 9 and 10, $q_{c,j} \ge q_{c,j-1}$ and $q_{c+1,j} \le q_{c+1,j-1} + 1$. Hence, $q_{c,j} = q_{c+1,j}$ implies $\mathbf{q_{c+1,j-1}} = q_{c,j-1} \le q_{c,j} = q_{c+1,j} \le \mathbf{q_{c+1,j-1}} + 1$. Therefore, either $q_{c,j} = q_{c,j-1} \land q_{c+1,j} = q_{c+1,j-1}$ or $q_{c,j} = q_{c,j-1} + 1 \land q_{c+1,j} = q_{c+1,j-1} + 1$.

If $q_{c,j} = q_{c,j-1}$ and $q_{c+1,j} = q_{c+1,j-1}$ then $l_{c,j-1} \in [1, len)$ and $l_{c+1,j-1} \in [1, len)$ by Algorithm 3 line 9. Hence, $l_{c,j} = l_{c,j-1} + 1$ and $l_{c+1,j} = l_{c+1,j-1} + 1$. As $l_{c,j-1} \ge l_{c+1,j-1}$, then $l_{c,j} \ge l_{c+1,j}$. This leads to a contradiction with the assumption $l_{c,j} < l_{c+1,j}$.

If $q_{c,j} = q_{c,j-1} + 1 \land q_{c+1,j} = q_{c+1,j-1} + 1$ then $l_{c,j-1} \in \{len, \infty\}$ and $l_{c+1,j-1} \in \{len, \infty\}$ by Algorithm 3 line 10. Hence, $l_{c,j} = 1$ and $l_{c+1,j} = 1$. This leads to a contradiction with the assumption $l_{c,j} < l_{c+1,j}$.

Case 2 Consider the case $x_j \in U_k$. If $q_{c,j-1} = \infty$ then $q_{c+1,j-1} = \infty$ by the induction hypothesis. Hence, by Algorithm 3, line 12, $f_{c,j}$ and $f_{c+1,j}$ are dummy and equal.

Suppose $q_{c,j-1} \neq \infty$. Then we consider four cases based on relative values of $q_{c,j'}, q_{c+1,j'}, l_{c,j'}, l_{c+1,j'}, j' \in \{j-1, j\}$.

- **Case 2a** Suppose $q_{c,j} < q_{c+1,j}$ and $q_{c,j-1} > q_{c+1,j-1}$. By Algorithm 3, line 12, we know that $q_{c+1,j-1} \le q_{c+1,j} \le q_{c,j-1}$ and $q_{c,j-1} \le q_{c,j} \le q_{c-1,j-1}$. By induction hypothesis, $q_{c+1,j-1} \le q_{c,j-1} \le q_{c-1,j-1}$. Hence, if $q_{c,j} \le q_{c+1,j}$ then $\mathbf{q_{c,j-1}} \le q_{c,j-1} \le q_{c,j-1} \le q_{c+1,j}$ then $\mathbf{q_{c,j-1}} \le q_{c,j-1} \le q_{c+1,j}$. Therefore, if $q_{c,j} < q_{c+1,j}$ then we derive a contradiction.
- Case 2b Identical to Case 2b.
- **Case 2c** Suppose $q_{c,j} = q_{c+1,j}$, $l_{c,j} > l_{c+1,j}$ and $q_{c,j-1} > q_{c+1,j-1}$. As $q_{c,j-1} \neq q_{c+1,j-1}$ then $q_{c+1,j-1} = q_{c+1,j}$ (line 12). We also know $\mathbf{q_{c,j-1}} \leq q_{c,j} \leq q_{c+1,j} \leq \mathbf{q_{c,j-1}}$ from Case 1a. Putting everything together, we get $\mathbf{q_{c,j-1}} \leq q_{c,j} \leq q_{c+1,j-1} < \mathbf{q_{c,j-1}}$. This leads to a contradiction.
- **Case 2d** Suppose $q_{c,j} = q_{c+1,j}, l_{c,j} < l_{c+1,j}$ and $q_{c,j-1} = q_{c+1,j-1}, l_{c,j-1} \ge l_{c+1,j-1}$. As we know from Case 1a $q_{c+1,j-1} \le q_{c+1,j} \le q_{c,j-1}, q_{c,j-1} \le q_{c,j} \le q_{c-1,j-1}$ and $\mathbf{q_{c,j-1}} \le q_{c,j} \le q_{c+1,j} \le \mathbf{q_{c,j-1}}$. Hence, $q_{c+1,j-1} = q_{c+1,j} = q_{c,j-1} = q_{c,j}$.

Consider two subcases. Suppose $q_{c,j-1} < q_{c-1,j-1}$. Then $l_{c,j} = \infty$ (line 12). Hence, our assumption $l_{c,j} < l_{c+1,j}$ is false.

Suppose $q_{c,j-1} = q_{c-1,j-1}$. If $l_{c-1,j-1} = len$ then $l_{c,j} = \infty$ (line 12). Hence, our assumption $l_{c,j} < l_{c+1,j}$ is false. Therefore, $l_{c-1,j-1} \in [1, len)$ and $l_{c,j-1} = l_{c-1,j-1} + 1$. By induction hypothesis as $q_{c+1,j-1} = q_{c,j-1} = q_{c-1,j-1}$ then $l_{c+1,j-1} \le l_{c,j-1} \le l_{c-1,j-1}$. Hence, $l_{c,j-1} \in [1, l_{c-1,j-1}] \subseteq [1, len)$. Therefore, $l_{c+1,j} = l_{c,j-1} + 1 \le l_{c-1,j-1} + 1 = l_{c,j-1}$. This contradicts our assumption $l_{c,j} < l_{c+1,j}$.

Case 3 Consider the case $x_j \in N_k$. This case follows immediately from Algorithm 3, line 14, and the induction hypothesis.

Lemma 10 Consider WEIGHTEDFOCUS (X, y_c, len, k, z_c) . The dynamic programming table $f_{c,j} = \{q_{c,j}, l_{c,j}\}c \in [0, z_c^U], j = 0, ..., n - 1$, is correct in the sense that if $f_{c,j}$

exists and it is non-dummy then a corresponding set of sequences $S_{c,j}$ exists and satisfies conditions 1–4. The time complexity of Algorithm 3 is $O(n \max(z_c))$.

Proof We start by proving correctness of the algorithm. We use induction on the length of the sequence. Given $f_{c,j}$ we can reconstruct a corresponding set of sequences $S_{c,j}$ by traversing the table backward.

The base case is trivial as $x_1 \in P_k$, $f_{0,0} = \{1, 1\}$ and $f_{c,0} = \{\infty, \infty\}$. Suppose the statement holds for j - 1 variables.

Case 1 Consider the case $x_j \in P_k$. Note, that the cost can not be increased on seeing $x_j \in P_k$ as cost only depends on covered undetermined variables. By the induction hypothesis, $S_{c,j-1}$ satisfies conditions 1–4. The only way to obtain $S_{c,j}$ from $S_{c',j-1}$, $c' \in [0, z_c^U]$, is to extend $last(S_{c,j-1})$ to cover x_j or start a new sequence if $|last(S_{c,j-1})| = len$. If $S_{c,j-1}$ does not exist then $S_{c,j}$ does not exist. The algorithm performs this extension (lines 9 and 10). Hence, $S_{c,j}$ satisfies conditions 1–4.

Case 2 Consider the case $x_j \in U_k$. In this case, there exist two options to obtain $S_{c,j}$ from from $S_{c',j-1}, c' \in [0, z_c^U]$. The first option is to cover x_j . Hence, we need to extend $last(S_{c-1,j-1})$. Note that we should not start a new sequence if $last(S_{c-1,j-1}) = len$ as it is never optimal to start a sequence on seeing a neutral variable.

The second option is not to cover x_i . Hence, we need to interrupt $last(S_{c,i-1})$.

By Lemma 9 we know that $f_{c,j-1} \le f_{c-1,j-1}$, $0 < c \le C$. By the induction hypothesis, $S_{c,j-1}$ and $S_{c-1,j-1}$ satisfy conditions 1–4. Hence, $S_{c,j-1} \le S_{c-1,j-1}$.

Consider two cases. Suppose $|S_{c,j-1}| < |S_{c-1,j-1}|$. In this case, it is optimal to interrupt *last* ($S_{c,j-1}$).

Suppose $|S_{c,j-1}| = |S_{c-1,j-1}|$ and $|last(S_{c,j-1})| \leq |last(S_{c-1,j-1})|$. If $|last(S_{c-1,j-1})| < len$ then it is optimal to extend $last(S_{c-1,j-1})$. If $|last(S_{c-1,j-1})| = len$ then it is optimal to interrupt $last(S_{c,j-1})$, otherwise we would have to start a new sequence to cover an undetermined variable x_j , which is never optimal. If $S_{c,j-1}$ and $S_{c-1,j-1}$ do not exist then $S_{c,j}$ does not exist. If $S_{c,j-1}$ does not exist then case analysis is similar to the analysis above.

This case-based analysis is exactly what Algorithm 3 does in line 12. Hence, $S_{c,j}$ satisfies conditions 1–4.

Case 3 Consider the case $x_j \in N_k$. Note that the cost can not be increased on seeing $x_j \in N_k$ as cost only depends on covered undetermined variables. By the induction hypothesis, $S_{c,j-1}$ satisfies conditions 1–4. The only way to obtain $S_{c,j}$ from $S_{c',j-1}$, $c' \in [0, z_c^U]$, is to interrupt *last*($S_{c,j-1}$). If $S_{c,j-1}$ does not exist then $S_{c,j}$ does not exist. The algorithm performs this extension in line 14. Hence, $S_{c,j}$ satisfies conditions 1–4.

Regarding the worst case time complexity, it is clear that this algorithm requires $O(n \max(z_c)) = O(n^2)$ as we have $O(n \max(z_c))$ elements in the table and we only need to inspect a constant number of elements to compute f(c, j).

Example 8 Table 1 shows an execution of Algorithm 3 on WEIGHTEDFOCUS from Example 6. Note that $|P_0| = 5$. Hence, $z_c^U = \max(z_c) - |P_0| = 2$. As can be seen from the table, the constraint has a solution as there exists a set $S_{2,7} = \{s_{0,3}, s_{5,7}\}$ such that $|S_{2,7}| = 2$.

c	$D(x_0)$ [1, 1]	$D(x_1)$ [0, 1]	$D(x_2)$ [1, 1]	$D(x_3)$ [1, 1]	$D(x_4)$ [0, 1]	$D(x_5)$ [1, 1]	$D(x_6)$ [0, 1]	$D(x_7)$ [1, 1]
0	{1, 1}	$\{1,\infty\}$	{2, 1}	{2, 2}	$\{2,\infty\}$	{3, 1}	$\{3,\infty\}$	{4, 1}
1		{1, 2}	{1, 3}	{1, 4}	$\{1,\infty\}$	{2, 1}	$\{2,\infty\}$	{3, 1}
$z_{c}^{U} = 2$					{1,5}	{2, 1}	{2, 2}	{2, 3}

Table 1 An execution of Algorithm 3 on WEIGHTEDFOCUS from Example 6. Dummy values $f_{c,j}$ are removed

Bounds consistency To enforce BC on the sequence $[x_0, x_1, ..., x_{n-1}]$, we compute an additional DP table $b, b_{c,j}, c \in [0, z_c^U], j \in [-1, n-1]$ on the reverse sequence of variables (i.e. $[x_{n-1}, ..., x_1, x_0]$).

Lemma 11 Consider WEIGHTEDFOCUS(X, y_c, len, k, z_c). Bounds consistency can be enforced in $O(n \max(z_c))$ time.

Proof We build dynamic programming tables f and b. We will show that to check if $x_i = v$ has a support it is sufficient to examine $O(z_c^U)$ pairs of values $f_{c_1,i-1}$ and $b_{c_2,n-i-2}, c_1, c_2 \in [0, z_c^U]$ which are neighbour columns to the *i*th column. It is easy to show that if we consider all possible pairs of elements in $f_{c_1,i-1}$ and $b_{c_2,n-i-2}$ then we determine if there exists a support for $x_i = v$. There are $O(z_c^U \times z_c^U)$ such pairs. The main part of the proof shows that it sufficient to consider $O(z_c^U)$ such pairs. Next, we provide a formal proof.

Consider dynamic programming tables f and b and a variable-value pair $x_i = v$. We will show that to check if $x_i = v$ has a support it is sufficient to examine $O(z_c^U)$ pairs of values $f_{c_1,i-1}$ and $b_{c_2,n-i-2}$, $c_1, c_2 \in [0, z_c^U]$. We introduce two dummy variables x_{-1} and x_n , $D(x_{-1}) = D(x_n) = 0$ to keep uniform notations.

Consider a variable-value pair $x_i = v$, v > k. Note that it is sufficient to find a support one value v, v > k as all values greater than k are indistinguishable. Due to Lemma 10 it is sufficient to consider only elements in the neighbouring columns to the *i*th column in f and b. Namely, the (i - 1)th column in f and (n - i - 2) in b. The reason for that is that elements in these columns $f_{c_1,i-1}$ and $b_{c_2,n-i-2}$, $c_1, c_2 \in [0, z_c^U]$ correspond to sets of sequences, $S_{c_1,i-1}$ and $S_{c_2,n-i-2}$, that are optimal with respect to conditions 1–4 for the prefix $[x_0, \ldots, x_{j-1}]$ and the suffix $[x_{j+1}, \ldots, x_{n-1}]$, respectively. The main goal is to check whether we can 'glue' the corresponding partial covers $S_{c_1,i-1}, S_{c_2,n-i-2}$ with $x_i = v$ into a single cover S over all variables that satisfies the constraint. To glue $S_{c_1,i-1}, S_{c_2,n-i-2}$ and $x_i = v$ into a single cover we have few options:

- The first and the most expensive option is to create a new sequence s' of length 1 to cover x_i . Then the union $S = S_{c_1,i-1} \cup S_{c_2,n-i-2} \cup \{s'\}$ forms a cover s.t. $cst(S) = c_1 + c_2 + 1$ and $|S| = |S_{c_1,i-1}| + |S_{c_2,n-i-2}| + 1$.
- The second option is to extend $last(S_{c_1,i-1})$ to the right by one if $|last(S_{c_1,i-1})| < len$. Hence, the updated set $S'_{c_1,i-1}$ is identical to $S_{c_1,i-1}$ except the last sequence is increased by one element on the right. Then the union $S = S'_{c_1,i-1} \cup S_{c_2,n-i-2}$ forms a cover: $cst(S) = c_1 + c_2 + 1$ and $|S| = |S_{c_1,i-1}| + |S_{c_2,n-i-2}|$.
- The third option is to extend $last(S_{c_2,n-i-2})$ to the left by one if $|last(S_{c_2,n-i-2})| < len$. This case is symmetric to the previous case.

- The fourth and the cheapest option is to glue $last(S_{c_1,i-1}), x_v$ and $last(S_{c_2,n-i-2})$ to a single sequence if $|last(S_{c_1,i-1})| + |last(S_{c_2,n-i-2})| < len$. Hence, $S'_{c_1,i-1} = S_{c_1,i-1} \setminus last(S_{c_1,i-1}), S'_{c_2,n-i-2} = S_{c_2,n-i-2} \setminus last(S_{c_2,n-i-2})$ and s' is a concatenation of $last(S_{c_1,i-1}), x = v$ and $last(S_{c_2,n-i-2})$. Then the union $S = S'_{c_1,i-1} \cup S'_{c_2,n-i-2} \cup \{s'\}$ forms a cover: $cst(S) = c_1 + c_2 + 1$ and $|S| = |S_{c_1,i-1}| + |S_{c_2,n-i-2}| - 1$.

We can go over all pairs $f_{c_1,i-1}$ and $b_{c_2,n-i-2}$, c_1 , $c_2 \in [0, z_c^U]$ and check the four cases above. If obtained cover S is such that $cst(S) \leq z_c^U$ and $|S| \leq \max(y_c)$ then we have found a support for $x_i = v$. Otherwise, $x_i = v$ does not have a support due to Lemma 10. However, if we need to consider all pairs $f_{c_1,i-1}$ and $b_{c_2,n-i-2}$, c_1 , $c_2 \in [0, z_c^U]$ then finding a support takes $O((z_c^U)^2)$ time. We show next that it is sufficient to consider a linear number of pairs. We observe that in all four options above the cost of resulting cover S is $c_1 + c_2 + 1$. Therefore, we only need to consider pairs $f_{c_1,i-1}$ and $b_{c_2,n-i-2}$ such that $c_1 + c_2 + 1 \leq z_c^U$. Therefore, for each $f_{c_1,i-1}$ it is sufficient to consider only one element $b_{c_2,n-i-2}$ such that $b_{c_2,n-i-2}$ is non-dummy and c_2 is the maximum value that satisfies inequality $c_1 + c_2 + 1 \leq z_c^U$.

We prove by contradiction. Suppose, there exists a pair $f_{c_1,i-1}$ and $b_{c'_2,n-i-2}$ such that $c_1 + c'_2 + 1 \leq z_c^U$ and $S_{c_1,i-1}$ and $S_{c'_2,n-i-2}$ can be extended to a support. However, $S_{c_1,i-1}$ and $S_{c_2,n-i-2}$ can not be extended to a support for $x_i = v$, $c_1 + c_2 + 1 \leq z_c^U$ and $c'_2 < c_2$. By Lemma 9, we know $b_{c'_2,n-i-2} \leq b_{c_2,n-i-2}$. However, in this case, $|S_{c_1,i-1}| + |S_{c_2,n-i-2}| \leq |S_{c_1,i-1}| + |S_{c'_2,n-i-2}| \leq \max(y_c) + 1$. In the case of equality, we know that $last(S_{c_2,n-i-2}) < last(S_{c'_2,n-i-2})$. Hence, if $S_{c_1,i-1}$ and $S_{c'_2,n-i-2}$ can be extended to a support. This leads to a contradiction.

Note that we do not need to search for each $f_{c_1,i-1}$ as we can find its pair $b_{c_2,n-i-2}$ in O(1) due to consecutivity property of non-dummy values in each column (Lemma 8). Hence, we need $O(z_c^U) = O(\max(z_c))$ time to check for support for $x_i = v$.

Consider a variable-value pair $x_i = v, v \le k$. Note that it is sufficient to find a support for one value $v, v \le k$ as all values less than or equal to k are indistinguishable. We again consider all pairs in the neighbouring columns, $f_{c_1,i-1}$ and $b_{c_2,n-i-2}$ and consider how to 'glue' the corresponding partial covers $S_{c_1,i-1}, S_{c_2,n-i-2}$ with $x_i = v$ into a single cover Sover all variables to satisfy the constraint. In this case, there is only one option to join $S_{c_1,i-1}$ and $S_{c_2,n-i-2}$. Then union $S = S_{c_1,i-1} \cup S_{c_2,n-i-2}$ forms a cover: $cst(S) = c_1 + c_2$ and $|S| = |S_{c_1,i-1}| + |S_{c_2,n-i-2}|$. We can go over all pairs $f_{c_1,i-1}$ and $b_{c_2,n-i-2}, c_1, c_2 \in [0, z_c^U]$ to check if such a pair exists. We again show that it is sufficient to consider a linear number of pairs. We observe that in all four options above the cost of resulting cover S is $c_1 + c_2$. Therefore, we only need to consider pairs $f_{c_1,i-1}$ and $b_{c_2,n-i-2}$ such that $c_1 + c_2 \le z_c^U$. Therefore, for each $f_{c_1,i-1}$ it is sufficient to consider only one element $b_{c_2,n-i-2}$ such that $b_{c_2,n-i-2}$ is non-dummy and c_2 is the maximum value that satisfies inequality $c_1 + c_2 \le z_c^U$.

We prove by contradiction. Suppose, there exists a pair $f_{c_1,i-1}$ and $b_{c'_2,n-i-2}$ such that $c_1 + c'_2 \leq z_c^U$ and $S_{c_1,i-1}$ and $S_{c'_2,n-i-2}$ can be extended to a support. However, $S_{c_1,i-1}$ and $S_{c_2,n-i-2}$ can not be extended to a support for $x_i = v$, $c_1 + c_2 \leq z_c^U$ and $c'_2 < c_2$. By Lemma 9, we know $b_{c'_2,n-i-2} \leq b_{c_2,n-i-2}$. However, in this case, $|S_{c_1,i-1}| + |S_{c_2,n-i-2}| \leq |S_{c_1,i-1}| + |S_{c'_2,n-i-2}| \leq \max(y_c)$. In the case of equality, we know that $last(S_{c_2,n-i-2}) < last(S_{c'_2,n-i-2})$. Hence, if $S_{c_1,i-1}$ and $S_{c'_2,n-i-2}$ can be extended to a support. This leads to a contradiction.

Complexity We compute the tables f and b. Then we check for a support for two values v_1 and v_2 , $v_1 \le k$ and $v_2 > k$, in $D(x_i)$ in $O(\max(z_c))$ time for each variable x_i , i = 0, ..., n - 1. Hence, the time complexity to enforce domain consistency is $O(n \max(z_c))$.

In particular, to check a support for a variable-value pair $x_i = v$, v > k, for each $f_{c_1,i-1}$ it is sufficient to consider only one element $b_{c_2,n-i-2}$ such that $b_{c_2,n-i-2}$ is non-dummy and c_2 is the maximum value that satisfies inequality $c_1 + c_2 + 1 \le z_c^U$. To check a support for a variable-value pair $x_i = v$, $v \le k$, for each $f_{c_1,i-1}$ it is sufficient to consider only one element $b_{c_2,n-i-2}$ such that $b_{c_2,n-i-2}$ is non-dummy and c_2 is the maximum value that satisfies inequality $c_1 + c_2 \le z_c^U$.

Example 9 Table 2 shows an execution of Algorithm 3 on the reversed sequence of variables *x* of FOCUS from Example 6.

Consider, for example, the variable x_4 . To check if $x_4 = 1$ has as a support we need to consider two pairs: $f_{0,3}$, $b_{1,5}$ and $f_{1,3}$, $b_{0,5}$.

Consider the first pair: $f_{0,3} = \{2, 2\}$ and $b_{1,5} = \{1, 3\}$. As $|S_{0,3}| + |S_{1,5}| = 2 + 1 = \max(y_c) + 1 = 3$, we check whether we can merge $last(S_{0,3})$, $x_4 = 1$, and $last(S_{1,5})$. Hence, $|last(S_{0,3})| + |last(S_{1,5})| = 2 + 3 = len = 5$. Therefore, we cannot merge $last(S_{0,3})$, $x_i = 1$ and $last(S_{1,5})$ into a single sequence s' of length 5.

Consider the second pair: $f_{1,3} = \{1, 4\}$ and $b_{0,5} = \{2, 1\}$. As $|S_{1,3}| + |S_{0,5}| = 1 + 2 = \max(y_c) + 1 = 3$, $x_4 = 1$, we check whether we can merge $last(S_{1,3})$ and $last(S_{0,5})$. As $|last(S_{1,3})| + |last(S_{0,5})| = 4 + 1$ is equal to len = 5, we cannot merge $last(S_{1,3})$, $x_i = 1$ and $last(S_{0,5})$ into a single sequence s' of length at most 5. The second pair cannot be used to build a support for $x_4 = 1$. Hence, $x_4 = 1$ does not have a support.

To check if $x_4 = 0$ has as support we need to consider pairs: $f_{0,3}$, $b_{2,5}$ and $f_{1,3}$, $b_{1,5}$. Consider the first pair: $f_{0,3} = \{2, 2\}$ and $b_{2,5} = \{2, 1\}$. We have $|S_{0,3}| + |S_{2,5}| = 2 + 2 = \max(y_c) = 4$. Hence, $x_4 = 0$ has a support.

We observe a useful property of the constraint. If there exists $f_{c,n-1}$ such that $c < \max(z_c)$ and $q_{c,n-1} < \max(y_c)$ then the constraint is BC. This follows from the observation that given a solution of the constraint S_X , changing a variable value can increase $cst(S_X)$ and $|S_X|$ by at most one.

Decomposition with O(n) variables and constraints Alternatively we can decompose WEIGHTEDFOCUS using O(n) additional variables and constraints.

Table 2 An execution of Algorithm 3 on the reverse sequence of variables in WEIGHTEDFOCUS from Example 6. Dummy values $f_{c,j}$ are removed

с	$D(x_0)$ [1, 1]	$D(x_1)$ [0, 1]	$D(x_2)$ [1, 1]	$D(x_3)$ [1, 1]	$D(x_4)$ [0, 1]	$D(x_5)$ [1, 1]	$D(x_6)$ [0, 1]	$D(x_7)$ [1, 1]
0	{4, 1}	$\{3,\infty\}$	{3, 2}	{3, 1}	$\{2,\infty\}$	{2, 1}	$\{1,\infty\}$	{1, 1}
1	{3, 1}	$\{2,\infty\}$	{2, 2}	{2, 1}	$\{1,\infty\}$	{1, 3}	{1, 2}	
$z_c^U = 2$	$\{2, 4\}$	{2, 3}	{2, 1}	{1, 5}	{1, 4}			

Given FOCUS(X, y_c , len, k), let z_c be a variable and $B = [b_0, b_1, \dots, b_{n-1}]$ be a set of variables such that $\forall b_l \in B$, $D(b_l) = \{0, 1\}$. We can decompose WEIGHTEDFOCUS as follows:

WEIGHTEDFOCUS(*X*, *y_c*, *len*, *k*, *z_c*) \Leftrightarrow FOCUS(*X*, *y_c*, *len*, *k*) \land [$\forall l, 0 \le l < n$, [(*x_l* $\le k$) \land (*b_l* = 0)] \lor [(*x_l* > *k*) \land (*b_l* = 1)]] $\land \sum_{l \in \{0, 1, ..., n-1\}} b_l \le z_c$.

Enforcing BC on each constraint of the decomposition is weaker than BC on WEIGHT-EDFOCUS. Given $x_l \in X$, a value may have a unique support for FOCUS which violates $\sum_{l \in \{0,1,\dots,n-1\}} b_l \leq z_c$, and conversely. Consider n = 5, $D(x_0) = D(x_2) = \{1\}$, $D(x_3) = \{0\}$, and $D(x_1) = D(x_4) = \{0, 1\}$, $D(y_c) = \{2\}$, $D(z_c) = \{3\}$, k = 0 and len = 3. Value 1 for x_4 corresponds to this case.

Another interesting approach for solving WEIGHTEDFOCUS is to reformulate it as an integer linear program. If the constructed ILP is tractable as was the case for SPRINGYFOCUS, then we can obtain an alternative filtering algorithm for WEIGHT-EDFOCUS. However, the approach that we used in Section 3.3 does not work for WEIGHTEDFOCUS. Recall that in Section 3.3 it was sufficient to consider O(n)possible sequences with distinct starting points. It is essential that sequences have distinct starting points as this ensures that the resulting ILP has the consecutive ones property. By relaxing the disjointness requirement, we used these sequences to find a solution of SPRINGYFOCUSOVERLAP and transform it into a solution of SPRINGY-FOCUS. The following example shows that the same approach does not work for WEIGHTEDFOCUS.

Example 10 Consider variables $X = [x_0, x_1, ..., x_5]$ with domains $[1,\{0,1\},1,1,\{0,1\},1]$ and WEIGHTEDFOCUS (X, [2, 3], 3, 0, [0, 4]). Following approach in Section 3.3, we consider six sequences $S_X^o = \{s_{0,2}, s_{1,3}, s_{2,4}, s_{3,5}, s_{4,6}, s_{5,6}, s_{6,6}\}$. The cost of any solution that uses sequences from S_X^o is 6. However, there exists a solution of WEIGHTEDFOCUS with cost 4: $S_X = \{s_{0,1}, s_{2,3}, s_{5,5}\}$, $y_c = 3$ and $z_c = 4$.

5 Weighted springy FOCUS

We consider a further generalization of the FOCUS constraint that combines FOCUS and WEIGHTEDFOCUS. We prove that we can propagate this constraint in $O(n \max(z_c))$ time, which is same as enforcing BC on WEIGHTEDFOCUS.

5.1 Definition and filtering algorithm

Definition 10 Let y_c and z_c be two variables and k, *len*, h be three integers, such that $1 \le len \le |X|$ and 0 < h < len - 1. An instantiation of $X \cup \{y_c\} \cup z_c$ satisfies WEIGHT-EDSPRINGYFOCUS (X, y_c, len, h, k, z_c) iff there exists a set S_X of *disjoint* sequences of indices $s_{i,j}$ such that five conditions are all satisfied:

1. $|S_X| \leq y_c$

2.
$$\forall x_l \in X, x_l > k \Rightarrow \exists s_{i,j} \in S_X \text{ such that } l \in s_{i,j}$$

- 3. $\forall s_{i,j} \in S_X, |\{l \in s_{i,j}, x_l \le k\}| \le h$
- 4. $\forall s_{i,j} \in S_X, j-i+1 \leq len, x_i > k \text{ and } x_j > k.$
- 5. $\sum_{s_{i,i} \in S_X} |s_{i,j}| \le z_c.$

We can again partition cost of *S* into two terms. $\sum_{s_{i,j} \in S} |s_{i,j}| = \sum_{s_{i,j} \in S} cst(s_{i,j}) + |P_k|$. However, $cst(s_{i,j})$ is the number of *undetermined* and *neutral* variables covered $s_{i,j}$, $cst(s_{i,j}) = |\{p|x_p \in U_k \cup N_k, x_p \in s_{i,j}\}|$ as we allow to cover up to *h neutral* variables.

The propagator is again based on a dynamic program that for each prefix of variables $[x_0, x_1, \ldots, x_j]$ and given cost *c* computes a cover $S_{c,j}$ of minimum cardinality that covers all penalized variables in the prefix $[x_0, x_1, \ldots, x_j]$ and has cost *exactly c*. We face the same problem of how to compare two sets $S_{c,j}^1$ and $S_{c,j}^2$ of minimum cardinality. The issue here is how to compare $last(S_{c,j}^1)$ and $last(S_{c,j}^2)$ if they cover a different number of neutral variables. Luckily, we can avoid this problem due to the following monotonicity property. If $last(S_{c,j}^1)$ and $last(S_{c,j}^2)$ are not equal to infinity then they both end at the same position *j*. Hence, if $last(S_{c,j}^1) \leq last(S_{c,j}^2)$ then the number of neutral variables covered by $last(S_{c,j}^1)$ is no larger than the number of neutral variables covered by $last(S_{c,j}^2)$. Therefore, we can define order on sets $S_{c,j}$ as we did in Section 4 for WEIGHTEDFOCUS.

Our bounds disentailment detection algorithm for WEIGHTEDSPRINGYFOCUS mimics Algorithm 3. We show a pseudocode for it in Algorithm 4.

A	lgorithm 4: WeightedSpringyFocus (x_0, \ldots, x_{n-1})	
1	for $c \in -1z_c^U$ do	
2	for $j \in -1n - 1$ do	
3	$f_{c,j} \leftarrow \{\infty, \infty, \infty\};$	
4	$f_{0,-1} \leftarrow \{0,0,0\};$	
5	for $j \in 0n-1$ do	
6	for $c \in 0j$ do	
7	if $x_j \in P_k$ then /* penalizing	*/
8	if $(l_{c,j-1} \in [1, len)) \lor (q_{c,j-1} = \infty);$	
9	then	
10	$f_{c,j} \leftarrow \{q_{c,j-1}, l_{c,j-1}+1, h_{c,j-1}\};$	
11	else	
12	$f_{c,j} \leftarrow \{q_{c,j-1} + 1, 1, 0\};$	
13	if $x_j \in U_k$ then /* undetermined	*/
14	if $(l_{c-1,j-1} \in [1, len) \land q_{c-1,j-1} = q_{c,j-1}) \lor (q_{c,j-1} = \infty);$	
15	then	
16	$f_{c,j} \leftarrow \{q_{c-1,j-1}, l_{c-1,j-1} + 1, h_{c-1,j-1}\};$	
17	else	
18	$f_{c,j} \leftarrow \{q_{c,j-1}, \infty, \infty\};$	
19	if $x_i \in N_k$ then $/*$ neutral	*/
20	$\mathbf{if} (l_{c-1,i-1} \in [1, len) \land h_{c-1,i-1} \in [1,h) \land q_{c-1,i-1} = $	
	$q_{c,i-1} \lor (q_{c,i-1} = \infty);$	
21	then	
22	$f_{c,i} \leftarrow \{q_{c-1,i-1}, l_{c-1,i-1} + 1, h_{c-1,i-1} + 1\};$	
23	else	
24	$f_{c,i} \leftarrow \{q_{c,i-1}, \infty, \infty\};$	
25	return f ;	

We highlight two non-trivial differences between Algorithm 4 and Algorithm 3. The first difference is that each cell in the dynamic programming table $f_{c,j}$, $c \in [0, z_c^U]$, $j \in \{0, 1, ..., n - 1\}$, where $z_c^U = \max(z_c) - |P_k|$, is a triple of values $q_{c,j}$, $l_{c,j}$ and $h_{c,j}$, $f_{c,j} = \{q_{c,j}, l_{c,j}, h_{c,j}\}$. The new parameter $h_{c,j}$ stores the number of neutral variables covered by $last(S_{c,j})$. The second difference is in the way we deal with neutral variables. If $x_j \in N_k$ then we have two options now. We can obtain $S_{c,j}$ from $S_{c-1,j-1}$ by increasing $cst(S_{c-1,j-1})$ by one and increasing the number of covered neutral variables by

 $last(S_{c,j-1})$ (Fig. 4c, the gray arc). Alternatively, we can obtain $S_{c,j}$ from $S_{c,j-1}$ by interrupting $last(S_{c,j-1})$ (Fig. 4c, the black arc). BC can be enforced using two modifications of the corresponding algorithm for WEIGHTEDFOCUS.

Lemma 12 Consider WEIGHTEDSPRINGYFOCUS(X, y_c, len, h, k, z_c). BC can be enforced in $O(n \max(z_c))$ time.

Proof The main idea is identical to the proof of the WEIGHTEDFOCUS constraint. We only highlight the differences between the WEIGHTEDFOCUS constraint and the WEIGHTEDSPRINGYFOCUS constraint.

Consider a variable-value pair $x_i = v, v > k$. The only difference is in the fourth option. We denote $h(s_{i,j})$ the number of neutral variables covered by $s_{i,j}$. Similarly, $h(S) = \sum_{s_{i,j\in S}} h(s_{i,j})$.

- The fourth and the cheapest option is to glue $last(S_{c_1,i-1}), x_v$ and $last(S_{c_2,n-i-2})$ to a single sequence if $|last(S_{c_1,i-1})| + |last(S_{c_2,n-i-2})| < len and <math>h(last(S_{c_1,i-1})) + h(last(S_{c_2,n-i-2})) \le h$. Hence, $S'_{c_1,i-1} = S_{c_1,i-1} \setminus last(S_{c_1,i-1}), S'_{c_2,n-i-2} = S_{c_2,n-i-2} \setminus last(S_{c_2,n-i-2})$ and s' is a concatenation of $last(S_{c_1,i-1}), x = v$ and $last(S_{c_2,n-i-2})]$. Then the union $S = S'_{c_1,i-1} \cup S'_{c_2,n-i-2} \cup \{s'\}$ forms a cover: $cst(S) = c_1 + c_2 + 1, |S| = |S_{c_1,i-1}| + |S_{c_2,n-i-2}| - 1$ and $h(S) = h(last(S_{c_1,i-1})) + h(last(S_{c_2,n-i-2}))$.

The rest of the proof is analogous to WEIGHTEDFOCUS.

Consider a variable-value pair $x_i = v, v \le k$. The main difference is that we have the second option to build a support. Namely, we glue $S_{c_1,i-1}$, x_i and $S_{c_2,n-i-2}$. Hence, if $c_1 + c_2 + 1 \le z_c^U$, $|last(S_{c_1,i-1})| + |last(S_{c_2,n-i-2})| < len and <math>h(last(S_{c_1,i-1})) + h(last(S_{c_2,n-i-2})) < h$ then we can build a support for $x_i = v$. The rest of the proof is analogous to WEIGHTEDFOCUS.

5.2 Decomposition

WEIGHTEDSPRINGYFOCUS can be encoded using the cost-REGULAR constraint [5]. Indeed, one can use two states T_0 and T_1 (in addition to the initial state) as follows. The state T_0 captures all values $v \leq k$ not included in any subsequence in S_X . The set of states T_1 captures the values belonging to a subsequence in S_X . The transition between T_0 and T_1 is quite straightforward following the semantic of WEIGHTEDSPRINGYFO-CUS, however, the automaton is non-deterministic as on seeing $v \leq k$ in T_1 , it either covers the variable or interrupts the last sequence. The automaton needs 3 counters to compute *len*, y_c and *h*. Hence, the time complexity of this encoding is $O(n^4)$. Unfortunately the non-deterministic cost-REGULAR is not implemented in any constraint solver to our knowledge. In fact REGULAR [7] and cost-REGULAR [5] are defined only with deterministic automatons. A possible way to deal with our non-deterministic situation is to transform it into a deterministic automaton. However this transformation is known to be exponential in the worst case. The worst case time complexity $O(n^4)$ is likely to get worse, however, domain consistency is guaranteed. In contrast, our algorithm takes just $O(n^2)$ time.

WEIGHTEDSPRINGYFOCUS can also be decomposed using the GCC constraint [14]. We define the following variables for all $i \in [0, \max(y_c) - 1]$ and $j \in [0, n - 1]$: S_i the start of the *i*th sub-sequence. $D(S_i) = \{0, ..., n + \max(y_c)\}; E_i$ the end of the *i*th sub-sequence. $D(E_i) = \{0, ..., n + \max(y_c)\}; T_j$ the index of the subsequence in S_X containing x_j . $D(T_j) = \{0, ..., \max(y_c)\}; Z_j$ the index of the subsequence in S_X containing x_j s.t. the value of x_j is less than or equal to k. $D(Z_j) = \{0, ..., \max(y_c)\}; last_c$ the cardinality of S_X . $D(last_c) = \{0, ..., \max(y_c)\}; Card$, a vector of $\max(y_c)$ variables having $\{0, ..., h\}$ as domains.

WeightedSpringyFocus(X, y_c, len, h, k, z_c) \Leftrightarrow

$$\begin{aligned} &(x_j \leq k) \lor Z_j = 0; & (x_j \leq k) \lor T_j > 0; \\ &(x_j > k) \lor (T_j = Z_j); & (T_j \leq last_c); \\ &(T_j \neq i) \lor (j \geq S_{i-1}); & (T_j \neq i) \lor (j \leq E_{i-1}); \\ &(i > last_c) \lor (T_j = i) \lor (j < S_{i-1}) \lor (j > E_{i-1}); \\ &\forall q \in [1, \max(y_c) - 1]: & q \geq last_c \lor S_q > E_{q-1}; \\ &\forall q \in [0, \max(y_c) - 1]: & q \geq last_c \lor E_q \geq S_q; \\ &\forall q \in [0, \max(y_c) - 1]: & q \geq last_c \lor len > (E_q - S_q); \\ &last_c \leq y_c; & Gcc([T_0, ..., T_{n-1}], \{0\}, [n - z_c]); \\ & Gcc([Z_0, ..., Z_{n-1}], \{1, ..., \max(y_c)\}, Card); \end{aligned}$$

The main advantage of this decomposition is that it uses constraints that are available in most existing solvers. However, it hinders propagation, that is, *Bound Consistency* is no longer guaranteed. Consider the same example showing that WEIGHTEDFOCUS is stronger than the first decomposition using FOCUS. Let n = 5, h = 0, k = 0, len = 3, $D(x_0) = D(x_2) = \{1\}$, $D(x_3) = \{0\}$, $D(x_1) = D(x_4) = \{0, 1\}$, $D(y_c) = \{2\}$, and $D(z_c) = \{3\}$. Enforcing *Bound Consistency* using the above decomposition will keep the domain of x_4 equal to $\{0, 1\}$ whereas the value 1 has no support.

6 Experiments

6.1 Protocol

We use the Choco-2.1.5 solver on Intel Xeon E5-2640 processors (2.50GHz) under Linux. The source code as well as the reproduction steps are available at http://siala.github.io/focus/ focus-details.pdf. We compare the propagators of our global constraints (denoted by F) of WEIGHTEDFOCUS and WEIGHTEDSPRINGYFOCUS against two decompositions with generic constraints (denoted by D_1 and D_2). For each benchmark, the comparison is performed using the same search strategies for the different constraint models. The first decomposition (D_1) is restricted to WEIGHTEDFOCUS and uses FOCUS as we explained in Section 4. Te second decomposition (D_2) is shown in Section 5.2 and uses constraints available in most CP solvers (such as GCC). We do not present experiments for the propagator of SPRINGYFOCUS because this propagator is linear in the number of variables and does not involve complex data structures, which leads to a behaviour similar to the case of FOCUS (see [12]). Although it makes an interesting connection between ILP and our framework, the ILP formulation of SPRINGYFOCUS cannot outperform this propagator.

We use the following presentation protocol for all tables. First, we give the number of solved instances (#sol). Then, we report the CPU time (*Time*), the number of nodes (*Nodes*), and the speed of exploration in terms of nodes explored per second (*Nodes*/s). In particular, we report the average (avg.) and the standard deviation (dev.) for these statistics

across all successful runs. The best results are shown with bold face fonts w.r.t. the number of solutions (*#sol*).

6.2 Sports League Scheduling (SLS)

We extend a single round-robin problem with n = 2p teams. Each week each team plays a game either at home or away. Each team plays exactly once all the other teams during a half-season (in practice, the second half of the season is symmetric). We minimize the number of breaks (a break for one team is two consecutive home or two consecutive away games), while fixed weights in {0, 1} are assigned to all games: games with weight 1 are important for TV channels. The goal is to group consecutive weeks where at least one game is important (sum of weights > 0), to increase the price of TV broadcast packages. Packages are limited to 5 weeks and should be as short as possible. These requirements are expressed either using WEIGHTEDFOCUS or using its decomposition. The concentration of important matches into packages is obtained by minimizing y_c , while for each such value of y_c we obtain the global minimum length for packages by minimizing the sum of lengths.

Model In our model, inverse-channelling and ALLDIFFERENT constraints with the strongest propagation level express that each team plays once against each other team. With respect to the sport scheduling part (independently from the weights and WEIGHTEDFO-CUS constraint or its decomposition), our model is inspired from Régin's paper on sport league scheduling [15], although some differences exist, in order to best fit with the available propagators of Choco-2.1.5. A pseudo-code of the model of the whole problem is provided in Fig. 5. We use the procedure GETCOLUMN(Integer[][] m, k) for extracting the k^{th} column of the matrix given as argument.

```
INPUT:
Int n; // number of teams, indexed from 0 to n - 1
Int[][] wl; // size: n \times n list of weights per possible couple of team
Int max(y_c), max(z_c) // WEIGHTEDFOCUS
MODEL:
IntVar[][] opponents; // size: n \times (n - 1), domain for each team: all other team numbers
IntVar[][] place; // size: n \times (n - 1), domain: {0,1} (away or home)
IntVar[][] breaks; // size: n \times (n - 2), domain: {0, 1} (no break, or break)
IntVar[] sum_breaks_by_team;
                                     // size: n
IntVar obj_number_of_breaks;
IntVar [][] match_weights;
                                // size: n \times (n - 1), domain: {0,1}
IntVar [] sum_weights_by_day;
                                      // size: n-1
IntVar y_c, z_c;
                  // WEIGHTEDFOCUS
int len, k; // WEIGHTEDFOCUS
\forall i \in 0..n - 1, ALLDIFFERENT(opponents[i]);
\forall k \in 0..n - 2, ALLDIFFERENT(getColumn(opponents, k));
\forall i \in 0..n - 1, \forall k \in 0..n - 2, opponents[i][k] = j \Leftrightarrow opponents[j][k] = i;
\forall i \in 0..n - 1, \forall k \in 0..n - 2, \text{places}[i][k] = 0 \land \text{opponents}[i][k] = j \Leftrightarrow \text{place}[j][k] = 1;
\forall i \in 0..n - 1, \forall k \in 0..n - 2, \text{places}[i][k] = 1 \land \text{opponents}[i][k] = j \Leftrightarrow \text{place}[j][k] = 0;
\forall i \in 0..n - 1, \forall j \in 0..n - 3, breaks[i][j] = (place[i][j]=place[i][j + 1]); // reification
\forall i \in 0..n - 1, sum_breaks_by_team[i] = sum of breaks of each team;
obj_number_of_breaks = \sum_{i \in 0..n-1} sum_breaks_by_team[i];
\forall i \in 0..n - 2 \text{ sum_weights_by_day}[i] = \text{ sum of weights of each day};
\forall i \in 0..n - 1, \forall k \in 0..n - 2, opponents[i][k] = j \Leftrightarrow \text{match_weights}[i][k] = wl[i][j];
WEIGHTEDFOCUS(sum_weights_by_day, y<sub>c</sub>, len, k, z<sub>c</sub>);
```

Fig. 5 Model of the SLS benchmark

Search strategy We use the following search strategy: assign first the sum of breaks by team, then the breaks and then the places, using for each group the *DomOverWDeg* variable selection strategy with the lowest values assigned first [2]. We fix the matches of the first team and then minimize z_c while the number of breaks is at its theoretical minimum (n - 2) and we arbitrary fix the maximum value of y_c .

In our context, using *DomOverWDeg* does not affect the comparison between the decomposition and the global constraint approach. Using a static search strategy leads to poor results concerning the sport league scheduling part of the problem, but this part is common to the decomposition and the global constraint models. Regarding TV broadcast packages, the results with WEIGHTEDFOCUS are almost the same with *DomOverWDeg* and if we use a static search strategy for the variables expressing weights and sum of weights. Using the decomposition approach, the results are better with *DomOverWDeg*. We present the results obtained for each model using *DomOverWDeg* in Table 3 and using a static branching (lexicographic exploration with minimum value) in Table 4.

We consider the results with 16, 18, and 20 teams, on sets of 50 instances with 10 random important games and a limit of 400K backtracks. $\max(y_c) = 3$ and we search for one solution with $h \le 7$ (instances *n*-1), $h \le 6$ (*n*-2) and $h \le 5$ (*n*-3). Note that the models with 18 and 20 teams are not shown in Table 4 because no solution was found with the static branching.

Table 3 shows clearly that the model using the global propagator dominates the decomposition on this problem. The difference of resolved instances between the two models increases with the instance size. For example with instances 20_3 the filtering algorithm solves 39 instances out of 50 whereas the decomposition solves only 29 of the instances. The new filtering does not require additional amount of time, and in fact it is faster than the average CPU time of the decomposition in general.¹

There are many cases where the shape of the search tree differs between the two methods in terms of nodes. For instance, with 18_1, enforcing domain consistency deplores 1876 nodes whereas the decomposition explores at least three times this number (i.e. 6040). The extra filtering of the global constraint does help a lot by pruning more unsatisfiable subtrees which guides the heuristic towards solutions. It should be noted, however, that the decomposition explores faster the search tree. This behaviour is expected as decomposition leads to simpler filtering that is likely to be faster in general. It should be noted also that the standard deviation in almost all the cases was smaller with the complete filtering.

Regarding the results with the static branching, one can confirm that the models behave poorly as expected (Table 4). However, the performances trend is the same. More importantly, the results of the complete filtering are more robust than the decomposition. Take for instance the results of 16.2. The standard deviation of the nodes is 37 using the global constraint and 1749 using the decomposition.

6.3 Cumulative scheduling with rentals

Given a horizon of *n* days and a set of time intervals $[s_i, e_i], i \in \{1, 2, ..., p\}$, a company needs to rent a machine between l_i and u_i times within each time interval $[s_i, e_i]$. We assume that the cost of the rental period is proportional to its length. On top of this, each time the machine is rented we pay a fixed cost.

¹Recall that the average CPU includes only the runtime of the successful runs.

| e3 SLS with WEIGHTEDFOCUS and its decomposi 16.1 16.1 #sol Time Nodes avg. dev. avg. dev. avg. dev. avg. dev. avg. 50 0.4 1.1 555 1450 1437 187 50 0.9 3.7 2549 12488 1578 434 18.1 555 1450 1437 187 434 18.1 555 12488 1578 434 18.1 avg. dev. avg. dev. 434 18.1 555 12488 1578 434 18.1 11.1 555 1450 1437 187 49 2 7 1876 6460 1050 157 49 3.6 9.5 6040 16230 1290 432 20.1 49 7.5 15.2 6565 1577 860 174 49 7.5 15.2 6565 12337 806 174 < | e3 SLS with WEIGHTEDFOCUS and its decomposition usi. 16.1 16.2 #sol Time Nodes/s #sol avg. dev. avg. dev. #sol 50 0.4 1.1 555 1450 1437 187 50 50 0.9 3.7 2549 12488 1578 43 49 18.1 555 1450 1437 187 50 50 50 0.9 3.7 2549 12488 1578 49 49 18.1 mag. dev. avg. dev. avg. dev. 49 18.1 18.1 18.6 6460 1050 157 49 49 2 7 1876 dev. avg. dev. 49 20.1 3.6 9.5 6040 1050 157 49 49 49 3.6 9.5 6040 16230 1290 49 40 40 40 40 40 40 40 40 40
 | e3 SLS with WEIGHTEDFOCUS and its decomposition using <i>Dom</i> 16.1 16.2 #sol Time 16.2 #sol Time Nodes #sol Time 50 0.4 1.1 555 1450 1437 187 50 0.03 50 0.4 1.1 555 1450 1437 187 50 0.03 50 0.9 3.7 2549 12488 1578 434 49 2.8 18.1 #sol Time Nodes/s #sol 18.2 #sol 7.8 18.1 avg. dev. avg. dev. avg. avg. avg. 49 2. 7 1876 6460 1050 157 49 7.8 20.1 18.1 1876 6460 1050 157 49 7.8 49 2. 7 1876 dev. avg. avg. avg. 49 3.6 9.5 6040 16230 1290 432 49 7.8 <t< th=""><th>e3 SLS with WEIGHTEDFOCUS and its decomposition using DomOverWD 16.1 16.2 #sol Time avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. 50 0.4 1.1 555 1450 1437 187 50 0.03 3.1 50 0.4 1.1 555 1450 1437 187 50 0.03 3.1 50 0.9 3.7 2549 12488 1578 434 49 2.8 6.9 18.1 #sol Time Nodes/s #sol Time 18.2 #sol Time Nodes/s #sol 18.2 49 2.8 6.9 #sol Time Nodes/s #sol Time 18.2 49 2.8 6.9 #sol Time Nodes/s #sol Time 18.2 49 2.8 6.9 49 2 640 1050 157 49 7.8 16.3 16.3</th><th>e3 SLS with WEIGHTEDFOCUS and its decomposition using DomOverWDeg 16.1 16.2 #sol< Time 16.2 #sol Time 16.2 #sol Time Nodes/s #sol Time old 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 50 0.9 3.7 2549 12488 1578 434 49 2.8 6.9 4965 18.1 255 1450 1437 187 50 0.03 3.1 2271 18.1 3.7 2549 12488 1578 439 2.8 6.9 4965 18.1 18.2 #sol Time Nodes #sol Time Nodes #sol Time Nodes #sol Time Nodes #sol Time Nodes #sol Time Nodes #sol Time Nodes 49 2 7.8 6.9 7.8</th><th>e3 SLS with WEIGHTEDFOCUS and its decomposition using DomOverWDeg 16.1 16.2 16.2 #sol< Time Nodes 16.2 #sol Time Nodes avg. dev. avg. dev. avg. dev. 50 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 4163 50 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 4163 50 0.9 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 18.1 #sol Time Nodes #sol Time Nodes 49 18.1 #sol Time Nodes #sol
 Time Nodes 49 2.8 49 2.8 49 2.8 49 2.8 49 2.8 49 2.8 49 2.8 49 2.8 49 2.8 49 2.8 49 2.8 49 2.8 49 2.8 49</th><th>8.3 SLS with WEIGHTEDFOCUS and its decomposition using $DomOverWDeg$ 16.1 16.2 16.2 16.2 #sol Time Nodes #sol Time Nodes #sol Time Nodes #sol Time Nodes Nodes 50 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 50 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 50 0.9 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 18.1 #sol Time Nodes #sol Time Nodes Nodes 49 2.7 18.0 7.8 49 2.8 6.9 490 2.6 490 2.6 10.6 18.1 #sol Time Nodes #sol Time Nodes Nodes 145.3 15063 31795 1026</th><th>8.3 SLS with WEIGHTEDFOCUS and its decomposition using DomOverWDeg 16.2 16.1 16.2 16.2 Nodes/s $8.0i$ Time Nodes/s $8.0i$ 16.2 $8.0i$ Time Nodes $8.0i$ 16.2 Nodes/s $8.0i$ 16.2 Nodes/s $8.0i$ 16.2 Nodes/s $8.0i$ 11 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 159 50 0.9 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 18.1 110 555 1450 12488 1578 432 69 696 1495 13118 1455 347 18.1 110 555 1248 157 4965 13118 1455 347 18.0 1106 1106 1230 157 496 1316 1256 1266 1266 1</th><th>e3 SLS with WEIGHTEDFOCUS and its decomposition using DomOverWDeg 16.1 16.2 16.2 16.2 16.2 16.3 16.2 16.3 18.3 14.4 18.3 14.4 18.3 14.4 18.3 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4</th><th>e3 SLS with WEIGHTEDFOCUS and its decomposition using $DomOverWDeg$ 16.1 16.1 16.2 16.3 #sol< Time Nodes #sol Time 16.3 #sol Time Nodes #sol Time 16.3 15.3 50 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 416.3 1339 159 47 7.4 50 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 416.3 1339 159 47 7.4 50 0.9 3.7 2549 12488 1578 43 49 28 6.9 4965 13118 1455 347 44 8.5 18.1 11.8.1 11.8.5 347 49 28 6.9 4965 13118 1455 347 44 8.5 18.1 11.1 555 47 49 7.4 7.4 7.4 18.1 11.1 876 1268</th><th>e3 SLS with WEIGHTEDFOCUS and its decomposition using <i>DomOverWDeg</i> 16.1 16.2 16.2 16.3 16.3 16.3 $\# od$ Time 16.2 16.2 16.2 16.2 16.2 $\# od$ Time $Nodes$ $w g$ dev, avg dev, avg dev, avg dev, avg dev, avg dev, avg dev avg dev, avg dev, avg dev avg dev, avg dev, avg dev avg dev, avg dev avg dev</th></t<> <th>S SLS with WEIGHTEDFOCUS and its decomposition using $DomOverWDeg$ 16.1 16.2 #sol Time 16.3 16.3 #sol Time Nodes/s #sol Time Nodes/s #sol Time Nodes/s #sol Time Nodes/s #sol Time Nodes/s 50 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 159 47 7.4 16 9679 50 0.9 3.7 2549 12488 1578 49 2.8 6.9 4965 13118 1455 347 44 8.5 16.5 12702 18.1 Time Nodes/s #sol Time Nodes/s #sol Time Nodes/s #sol Time Nodes/s #sol Time Nodes/s #sol 16.2 12702 18.1 Time Nodes/s #sol Time Nodes/s #sol Time Nodes/s #sol Time<th>6.3 SLS with WEIGHTEDFOCUS and its decomposition using DomOverWDeg 16.1 16.3 16.3 16.1 16.2 16.2 16.3 16.3 16.3 #sol<time< td=""> Nodes #sol<time< td=""> Nodes #sol<time< td=""> Nodes avg. dev. <t< th=""><th>Table</th><th></th><th></th><th>r</th><th>ſL.</th><th>Ō</th><th></th><th></th><th></th><th>ſŦ.</th><th>$\overline{0}$</th><th></th><th></th><th></th><th>ſŢ.</th><th></th></t<></time<></time<></time<></th></th> | e3 SLS with WEIGHTEDFOCUS and its decomposition using DomOverWD 16.1 16.2 #sol Time avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. 50 0.4 1.1 555 1450 1437 187 50 0.03 3.1 50 0.4 1.1 555 1450 1437 187 50 0.03 3.1 50 0.9 3.7 2549 12488 1578 434 49 2.8 6.9 18.1 #sol Time Nodes/s #sol Time 18.2 #sol Time Nodes/s #sol 18.2 49 2.8 6.9 #sol Time Nodes/s #sol Time 18.2 49 2.8 6.9 #sol Time Nodes/s #sol Time 18.2 49 2.8 6.9 49 2 640 1050 157 49 7.8 16.3 16.3
 | e3 SLS with WEIGHTEDFOCUS and its decomposition using DomOverWDeg 16.1 16.2 #sol< Time 16.2 #sol Time 16.2 #sol Time Nodes/s #sol Time old 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 50 0.9 3.7 2549 12488 1578 434 49 2.8 6.9 4965 18.1 255 1450 1437 187 50 0.03 3.1 2271 18.1 3.7 2549 12488 1578 439 2.8 6.9 4965 18.1 18.2 #sol Time Nodes #sol Time Nodes #sol Time Nodes #sol Time Nodes #sol Time Nodes #sol Time Nodes #sol Time Nodes 49 2 7.8 6.9 7.8
 | e3 SLS with WEIGHTEDFOCUS and its decomposition using DomOverWDeg 16.1 16.2 16.2 #sol< Time Nodes 16.2 #sol Time Nodes avg. dev. avg. dev. avg. dev. 50 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 4163 50 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 4163 50 0.9 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 18.1 #sol Time Nodes #sol Time Nodes 49 18.1 #sol Time Nodes #sol Time Nodes 49 2.8 49 2.8 49 2.8 49 2.8 49 2.8 49 2.8 49 2.8 49 2.8 49 2.8 49 2.8 49 2.8 49 2.8 49 2.8 49 | 8.3 SLS with WEIGHTEDFOCUS and its decomposition using $DomOverWDeg$ 16.1 16.2 16.2 16.2 #sol Time Nodes #sol Time Nodes #sol Time Nodes #sol Time Nodes Nodes 50 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 50 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 50 0.9 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 18.1 #sol Time Nodes #sol Time Nodes Nodes 49 2.7 18.0 7.8 49 2.8 6.9 490 2.6 490 2.6 10.6 18.1 #sol Time Nodes #sol Time Nodes Nodes 145.3 15063 31795 1026 | 8.3 SLS with WEIGHTEDFOCUS and its
decomposition using DomOverWDeg 16.2 16.1 16.2 16.2 Nodes/s $8.0i$ Time Nodes/s $8.0i$ 16.2 $8.0i$ Time Nodes $8.0i$ 16.2 Nodes/s $8.0i$ 16.2 Nodes/s $8.0i$ 16.2 Nodes/s $8.0i$ 11 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 159 50 0.9 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 18.1 110 555 1450 12488 1578 432 69 696 1495 13118 1455 347 18.1 110 555 1248 157 4965 13118 1455 347 18.0 1106 1106 1230 157 496 1316 1256 1266 1266 1 | e3 SLS with WEIGHTEDFOCUS and its decomposition using DomOverWDeg 16.1 16.2 16.2 16.2 16.2 16.3 16.2 16.3 18.3 14.4 18.3 14.4 18.3 14.4 18.3 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 | e3 SLS with WEIGHTEDFOCUS and its decomposition using $DomOverWDeg$ 16.1 16.1 16.2 16.3 #sol< Time Nodes #sol Time 16.3 #sol Time Nodes #sol Time 16.3 15.3 50 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 416.3 1339 159 47 7.4 50 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 416.3 1339 159 47 7.4 50 0.9 3.7 2549 12488 1578 43 49 28 6.9 4965 13118 1455 347 44 8.5 18.1 11.8.1 11.8.5 347 49 28 6.9 4965 13118 1455 347 44 8.5 18.1 11.1 555 47 49 7.4 7.4 7.4 18.1 11.1 876 1268
 | e3 SLS with WEIGHTEDFOCUS and its decomposition using <i>DomOverWDeg</i> 16.1 16.2 16.2 16.3 16.3 16.3 $\# od$ Time 16.2 16.2 16.2 16.2 16.2 $\# od$ Time $Nodes$ $w g$ dev , avg dev avg dev , avg dev , avg dev avg dev , avg dev , avg dev avg dev , avg dev | S SLS with WEIGHTEDFOCUS and its decomposition using $DomOverWDeg$ 16.1 16.2 #sol Time 16.3 16.3 #sol Time Nodes/s #sol Time Nodes/s #sol Time Nodes/s #sol Time Nodes/s #sol Time Nodes/s 50 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 159 47 7.4 16 9679 50 0.9 3.7 2549 12488 1578 49 2.8 6.9 4965 13118 1455 347 44 8.5 16.5 12702 18.1 Time Nodes/s #sol Time Nodes/s #sol Time Nodes/s #sol Time Nodes/s #sol Time Nodes/s #sol 16.2 12702 18.1 Time Nodes/s #sol Time Nodes/s #sol Time Nodes/s #sol Time <th>6.3 SLS with WEIGHTEDFOCUS and its decomposition using DomOverWDeg 16.1 16.3 16.3 16.1 16.2 16.2 16.3 16.3 16.3 #sol<time< td=""> Nodes #sol<time< td=""> Nodes #sol<time< td=""> Nodes avg. dev. <t< th=""><th>Table</th><th></th><th></th><th>r</th><th>ſL.</th><th>Ō</th><th></th><th></th><th></th><th>ſŦ.</th><th>$\overline{0}$</th><th></th><th></th><th></th><th>ſŢ.</th><th></th></t<></time<></time<></time<></th> | 6.3 SLS with WEIGHTEDFOCUS and its decomposition using DomOverWDeg 16.1 16.3 16.3 16.1 16.2 16.2 16.3 16.3 16.3 #sol <time< td=""> Nodes #sol<time< td=""> Nodes #sol<time< td=""> Nodes avg. dev. <t< th=""><th>Table</th><th></th><th></th><th>r</th><th>ſL.</th><th>Ō</th><th></th><th></th><th></th><th>ſŦ.</th><th>$\overline{0}$</th><th></th><th></th><th></th><th>ſŢ.</th><th></th></t<></time<></time<></time<> | Table | | | r | ſL. | Ō | | | | ſŦ. | $\overline{0}$ | | | | ſŢ. | | |
--

--
--
--
--

--|---|--|--
--|---
---|---|--|-----------|-------|-------|------|-------|------|-------|-------|------|----------------|------|-------|-------|-------|-------|------|
| S with WEIGHTEDFOCUS and its decomposi- Time Nodes Nodes/s avg. dev. avg. dev. avg. dev. 0.4 1.1 555 1450 1437 187 0.4 1.1 555 1450 1437 187 0.9 3.7 2549 12488 1578 434 1.1 555 1450 1437 187 0.9 3.7 2549 12488 1578 434 Time Nodes Nodes/s 434 2 7 1876 6460 1050 157 3.6 9.5 6040 16230 1290 432 Time Nodes/s avg. dev. avg. dev. 432 3.6 9.5 6040 16230 1290 432 Time Nodes/s 15237 866 174 7.5 15.2 6265 12237 866 174 | S with WEIGHTEDFOCUS and its decomposition usi. 16.2 Time Nodes 16.2 avg. dev. avg. dev. avg. dev. 14.37 187 0.9 3.7 2549 12488 1578 43 0.9 3.7 2549 12488 1578 49 18.2 1.1 555 1450 1437 80 19.9 3.7 2549 12488 1578 49 18.2 187 60 12488 157 49 18.2 1876 dev. avg. dev. avg. dev. 40 18.2 18.2 3.6 9.5 6040 1050 157 49 3.6 9.5 6040 16230 1290 432 46 3.6 9.5 6040 16230 1290 432 46 11.1 3.6 9.5 6040 1290 45 20.2 3.6 9.5 6040 16230 1290 46 46 10.1 10.2 1020 132 46 46 <tr< td=""><td>S with WEIGHTEDFOCUS and its decomposition using <i>Dom</i> 16.2 Time Nodes #sol Time avg. dev. avg. dev. avg. dev. avg. avg. 0.4 1.1 555 1450 1437 187 50 0.03 0.9 3.7 2549 12488 1578 434 49 2.8 Time Nodes Nodes/s #sol 49 2.8 Time Nodes avg. dev. avg. dev. avg. avg. 2 7 1876 6460 1050 1577 49 7.8 3.6 9.5 6040 16230 1290 432 49 7.8 3.6 9.5 6040 16230 1290 432 46 9.7 Time Nodes/s Nodes/s #sol 7.8 30.2 20.2 20.2 Time Nodes/s Nodes/s #sol 21.2 20.2 21.2 21.2 Time Nodes/s Nodes/s Nodes/s #sol</td><td>S with WEIGHTEDFOCUS and its decomposition using DomOverWD I6.2 Time Nodes % of Time avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. 0.4 1.1 555 1450 1437 187 50 0.03 3.1 0.9 3.7 2549 12488 1578 434 49 2.8 6.9 Time Nodes Nodes/s #sol Time avg. dev. avg. dev. 3.7 2549 12488 1578 434 49 2.8 6.9 Time Nodes/s #sol Time avg. dev. avg. dev. 3.6 9.5 6040 1050 157 49 7.8 16.3 3.6 9.5 6040 16230 1290 432 46 9.7 16.3 3.6 9.5 6040 16230 1290 43 9.7 16.3</td><td>Swith WEIGHTEDFOCUS and its decomposition using DomOverWDeg I6-2 Time I6-2 avg. dev. avg. dev.</td><td>S with WEIGHTEDFOCUS and its decomposition using $DomOverWDeg$ I6-2 Time Nodes Nodes/s #sol Time Nodes avg. dev. avg. dev. avg. dev. avg. dev. 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 4163 0.9 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 Time Nodes 437 187 50 0.03 3.1 2271 4163 Time Nodes 434 49 2.8 6.9 4965 13118 Time Nodes #sol Time avg. dev. avg. dev. 3.7 2549 12488 1578 439 2.8 6.9 4965 13118 Time Nodes #sol Time Nodes 499 2.8 499 2.842 23642 3.6 9.5 6040 1653 129</td><td>Swith WEIGHTEDFOCUS and its decomposition using DomOverWDeg If .2 Time Nodes #sol Time Nodes avg. dev. avg. dev. avg. dev. avg. dev. avg. 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 0.9 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 Time Nodes 11.1 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 0.9 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 Time Nodes #sol Time Nodes wore avg. dev. avg. 3.6 9.5 6040 1050 157 49 7.8 16.3 13063 11026 3.6 9.5 6040 16530 1290 157 49 7.8 1026 <</td><td>Swith WEIGHTEDFOCUS and its decomposition using DomOverWDeg 16-2 16-2 Time Nodes # sol Time Nodes Modes avg. dev. avg. dev</td><td>Swith WEIGHTEDFOCUS and its decomposition using DomOverWDeg 16.2 16.2 Time Nodes $\pm sol$ Time Nodes/s $\pm sol$ 16.3 avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. <math>avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. 0.9 3.7 2549 12438 1578 434 49 2.8 6.9 4965 13118 1455 347 44 0.9 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 0.9 3.7 499 2.8 6.9 4965 13118 1455 347 44 110 $8vol$ 18.0 1106 7.8 16.9 4065 1108 16.9</math></td><td>Swith WEIGHTEDFOCUS and its decomposition using DomOverWDeg 16.2 Time Nodes #sol Time 16.3 avg. dev. avg. dev. avg. dev. avg. dev. avg. 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 159 47 74 0.9 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 8.5 0.9 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 8.5 17me Nodes #sol Time Nodes #sol Time 37 143 8.5 18me Nodes #sol Time Nodes #sol Time 37 dev. avg. dev.</td><td>Swith WEIGHTEDFOCUS and its decomposition using DomOverWDeg I6.2 I6.2 Time Nodes #sol Time I6.3 I6.3 Time Nodes #sol Time Nodes/s #sol Time avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. 0.3 3.1 2271 4163
1339 139 139 139 47 74 16 0.9 3.7 2549 12488 1578 434 49 28 16.5 16.5 16.5 11 S55 1430 Time Nodes/s #sol Time 37 44 8.5 16.5 11 Nodes mag. dev. avg. dev. avg. dev. 37 14 1</td><td>Swith WEIGHTEDFOCUS and its decomposition using DomOverWDeg II-2 Time Nodes #sol Time I6.3 avg. dev. avg. dev. avg. dev. avg. dev. avg. 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 159 47 7.4 16.9 3vg. 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 159 47 74 16.9 3vg. 0.9 3.7 2549 1248 1578 49 2.8 696 749 15.7 49 66 6709 0.9 dev. avg. dev. avg. dev. avg. 6ev. avg. 16.1 17.02 16.0 17.02 17.02 16.0 17.02 17.02 16.0 16.0 16.0 16.0</td><td>Swith WEIGHTEDFOCUS and is decomposition using DomOverWDeg In 16.2 Time 16.3</td><td>e3 SI</td><td>16_1</td><td>#sol</td><td>ć</td><td>50</td><td>50</td><td>18_1</td><td>#sol</td><td></td><td>49</td><td>49</td><td>20_1</td><td>#sol</td><td></td><td>49</td><td>72</td></tr<> | S with WEIGHTEDFOCUS and its decomposition using <i>Dom</i> 16.2 Time Nodes #sol Time avg. dev. avg. dev. avg. dev. avg. avg. 0.4 1.1 555 1450 1437 187 50 0.03 0.9 3.7 2549 12488 1578 434 49 2.8 Time Nodes Nodes/s #sol 49 2.8 Time Nodes avg. dev. avg. dev. avg. avg. 2 7 1876 6460 1050 1577 49 7.8 3.6 9.5 6040 16230 1290 432 49 7.8 3.6 9.5 6040 16230 1290 432 46 9.7 Time Nodes/s Nodes/s #sol 7.8 30.2 20.2 20.2 Time Nodes/s Nodes/s #sol 21.2 20.2 21.2 21.2 Time Nodes/s Nodes/s Nodes/s #sol
 | S with WEIGHTEDFOCUS and its decomposition using DomOverWD I6.2 Time Nodes % of Time avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. 0.4 1.1 555 1450 1437 187 50 0.03 3.1 0.9 3.7 2549 12488 1578 434 49 2.8 6.9 Time Nodes Nodes/s #sol Time avg. dev. avg. dev. 3.7 2549 12488 1578 434 49 2.8 6.9 Time Nodes/s #sol Time avg. dev. avg. dev. 3.6 9.5 6040 1050 157 49 7.8 16.3 3.6 9.5 6040 16230 1290 432 46 9.7 16.3 3.6 9.5 6040 16230 1290 43 9.7 16.3
 | Swith WEIGHTEDFOCUS and its decomposition using DomOverWDeg I6-2 Time I6-2 avg. dev.
 | S with WEIGHTEDFOCUS and its decomposition using $DomOverWDeg$ I6-2 Time Nodes Nodes/s #sol Time Nodes avg. dev. avg. dev. avg. dev. avg. dev. 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 4163 0.9 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 Time Nodes 437 187 50 0.03 3.1 2271 4163 Time Nodes 434 49 2.8 6.9 4965 13118 Time Nodes #sol Time avg. dev. avg. dev. 3.7 2549 12488 1578 439 2.8 6.9 4965 13118 Time Nodes #sol Time Nodes 499 2.8 499 2.842 23642 3.6 9.5 6040 1653 129 | Swith WEIGHTEDFOCUS and its decomposition using DomOverWDeg If .2 Time Nodes #sol Time Nodes avg. dev. avg. dev. avg. dev. avg. dev. avg. 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 0.9 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 Time Nodes 11.1 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 0.9 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 Time Nodes #sol Time Nodes wore avg. dev. avg. 3.6 9.5 6040 1050 157 49 7.8 16.3 13063 11026 3.6 9.5 6040 16530 1290 157 49 7.8 1026 < | Swith WEIGHTEDFOCUS and its decomposition using DomOverWDeg 16-2 16-2 Time Nodes # sol Time Nodes Modes avg. dev. avg. dev | Swith WEIGHTEDFOCUS and its decomposition using DomOverWDeg 16.2 16.2 Time Nodes $\pm sol$ Time Nodes/s $\pm sol$ 16.3 avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. $avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. 0.9 3.7 2549 12438 1578 434 49 2.8 6.9 4965 13118 1455 347 44 0.9 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 0.9 3.7 499 2.8 6.9 4965 13118 1455 347 44 110 8vol 18.0 1106 7.8 16.9 4065 1108 16.9$
 | Swith WEIGHTEDFOCUS and its decomposition using DomOverWDeg 16.2 Time Nodes #sol Time 16.3 avg. dev. avg. dev. avg. dev. avg. dev. avg. 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 159 47 74 0.9 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 8.5 0.9 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 8.5 17me Nodes #sol Time Nodes #sol Time 37 143 8.5 18me Nodes #sol Time Nodes #sol Time 37 dev. avg. dev. | Swith WEIGHTEDFOCUS and its decomposition using DomOverWDeg I6.2 I6.2 Time Nodes #sol Time I6.3 I6.3 Time Nodes #sol Time Nodes/s #sol Time avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. 0.3 3.1 2271 4163 1339 139 139 139 47 74 16 0.9 3.7 2549 12488 1578 434 49 28 16.5 16.5 16.5 11 S55 1430 Time Nodes/s #sol Time 37 44 8.5 16.5 11 Nodes mag. dev. avg. dev. avg. dev. 37 14 1
 | Swith WEIGHTEDFOCUS and its decomposition using DomOverWDeg II-2 Time Nodes #sol Time I6.3 avg. dev. avg. dev. avg. dev. avg. dev. avg. 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 159 47 7.4 16.9 3vg. 0.4 1.1 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 159 47 74 16.9 3vg. 0.9 3.7 2549 1248 1578 49 2.8 696 749 15.7 49 66 6709 0.9 dev. avg. dev. avg. dev. avg. 6ev. avg. 16.1 17.02 16.0 17.02 17.02 16.0 17.02 17.02 16.0 16.0 16.0 16.0 | Swith WEIGHTEDFOCUS and is decomposition using DomOverWDeg In 16.2 Time 16.3 | e3 SI | 16_1 | #sol | ć | 50 | 50 | 18_1 | #sol | | 49 | 49 | 20_1 | #sol | | 49 | 72 | |
| WEIGHTEDFOCUS and its decomposi Nodes Nodes/s dev. avg. dev. avg. dev. 1.1 3.7 2549 12488 1.1 555 1450 3.7 2549 12488 1.1 555 1437 3.7 2549 12488 1.1 555 1450 3.7 2549 12488 1.1 555 14437 3.7 2549 12488 1.1 555 4ev. 1.1 1876 6460 1050 157 9.5 6040 16230 152.0 1290 432 ew. avg. dev. 1290 15.2 6265 12237 6w. avg. dev. 15.2 6265 12237 35 10870 5103 35 10870 5103 | WEIGHTEDFOCUS and its decomposition usi. Nodes 16.2 Nodes Nodes/s #sol dev. avg. dev. avg. dev. 1437 187 50 3.7 2549 12488 1578 43 49 3.7 2549 12488 1578 43 49 3.7 2549 12488 1578 43 49 Advises Nodes Nodes/s #sol 49 Vodes Nodes/s Nodes/s #sol 49 9.5 6040 16230 1290 432 46 9.5 6040 16230 1290 432 46 9.5 6040 16230 1290 432 46 9.5 6040 16230 1290 45 46 15.2 6265 12237 866 174 45 3.5 10870 54077 1013 318 35
 | WEIGHTEDFOCUS and its decomposition using <i>Dom</i> I6-2 Nodes Nodes/s #sol Time dev. avg. dev. avg. avg. i.1 555 1450 1437 870 0.03 3.7 2549 12488 1578 434 49 2.8 3.7 2549 12488 1578 434 49 2.8 1.1 555 1450 1437 80 0.03 3.7 2549 1248 157 49 2.8 1.8 avg. dev. avg. avg. 1.1 555 12230 1290 432 49 7.8 9.5 6040 16230 1290 432 46 9.7 15.2 6565 12237 866 174 45 15.5 15.2 6265 12237 866 174 45 15.5 15.2 1013 318 35 13 13 13
 | WEIGHTEDFOCUS and its decomposition using DomOverWD 16.2 Nodes Nodes/s #sol Time dev. avg. dev. avg. dev. 3.7 2549 12488 1578 434 49 2.8 6.9 3.7 2549 12488 1578 434 49 2.8 6.9 3.7 2549 12488 1578 434 49 2.8 6.9 dev. avg. dev. avg. dev. avg. dev. 18.2 Nodes Nodes/s #sol Time 18.2 16.3 9.5 6040 1050 157 49 7.8 16.3 9.5 6040 16230 1290 432 46 9.7 16.3 dev. avg.
 dev. avg. dev. 16.3 16.3 15.2 65040 16230 1290 432 46 9.7 16.3 dev. avg. dev. avg. dev. 16.3 16.3 | WEIGHTEDFOCUS and its decomposition using DomOverWDeg
 16-2 Nodes Nodes/s #sol Time Nodes dev. avg. dev. avg. dev. avg. 3.7 2549 1437 187 50 0.03 3.1 2271 3.7 2549 12488 1578 434 49 2.8 6.9 4965 3.7 2549 12488 1578 434 49 2.8 6.9 4965 3.7 2549 12488 1578 434 49 2.8 6.9 4965 3.7 2549 12488 1577 439 2.8 6.9 4965 18.2 Modes Nodes/s #sol Time Nodes avg. dev. avg. 7 1876 6400 1050 157 49 7.8 15.063 15.063 9.5 6040 16230 1290 432 49 7.8 15.063 15.063 18.04 Modes 1603 1290 <td>WEIGHTEDFOCUS and its decomposition using DomOverWDeg I6.2 Nodes #sol Time Nodes dev. avg. dev. avg. dev. avg. dev. 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 Nodes 12488 1578 434 49 2.8 6.9 4965 13118 Nodes avg. dev. avg. dev. avg. dev. 7 1876 6460 1050 157 49 7.8 16.3 31795 9.5 6040 16230 1290 432 46 9.7 16.3 31795 15.6 6040 16230 1290 432 46 9.7 16.3 31795 7 1876 490 7.8 16.3 15063 31795 8.4 avg. dev. avg.</td> <td>WEIGHTEDFOCUS and its decomposition using DomOverWDeg 16_2 Nodes #sol Time Nodes Nodes Nodes Nodes 16_1 555 1450 1437 18_7 50 0.03 3.1 2271 4163 1339 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 1.1 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 Nodes Nodes modes/s #sol Time Nodes Nodes Nodes 7 1876 6400 1050 157 49 7.8 16.3 31795 1207 9.5 6040 16230 1290 432 46 9.7 16.3 15063 31795 1207 9.5 6040 16230 1290 132 46 9.7</td> <td>WEIGHTEDFOCUS and its decomposition using DomOverWDeg 16.2 Nodes #sol Time Nodes #sol Time Nodes dev. avg. dev. avg. dev. avg. dev. avg. dev. 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 3.7 2549 12488 1578 434 49 2.8 6.9 4965 159 347 dev. avg. dev. avg. dev. avg. dev. avg. dev. 379 1506 176 126 dev. avg. dev. avg. dev. avg. dev. 31795 1207 412 7 <</td> <td>WEIGHTEDFOCUS and its decomposition using DomOverWDeg 16.2 16.2 Nodes #sol Time Nodes/s #sol 16.3 dev. avg. dev. avg. dev. avg. dev. 3.7 2549 1247 187 50 0.03 3.1 2271 4163 1339 159 47 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 dev. avg. dev. avg. dev. avg. dev. 18.3 dev. avg. dev. avg. dev. avg. dev. 18.3 7 1876 6400 157 49</td> <td>WEIGHTEDFOCUS and its decomposition using DomOverWDeg 16.2 16.2 16.2 16.3 dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. 3.1 2271 416.3 116.3 11 555 1450 1437 187 50 0.03 3.1 2271 416.3 1339 159 47 74 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 8.5 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 8.5 3.7 2549 12488 1578 49 2.8 6.9 4965 13118 1455 347 44 8.5 dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. 3vg. 115 11.5 18.4 18.6 9.7 16.3 8921 23642 1026 176 42 12 18.6 6040 1050 157 <t< td=""><td>WelfGHTEDFOCUS and its decomposition using DomOverWDeg 16.2 16.2 Nodes/s #sol Time 16.3 dev. avg. dev. avg. dev. avg. dev. dev. avg. dev. avg. dev. avg. dev. avg. dev. 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 8.5 16.5 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 8.5 16.5 3.7 2549 12488 1577 49 2.8 16.5</td><td>WEIGHTEDFOCUS and its decomposition using DomOverWDeg I6.2 I6.2 I6.2 I6.3 dev. avg. dev.<!--</td--><td>WelGHTEDFOCUS and is decomposition using DomOverWDeg I62 I62 Nodes #sol Time I6.3 <thi6.3< th=""> I6.3 I6.3</thi6.3<></td><td>S with</td><td></td><td>Time</td><td>avg.</td><td>0.4</td><td>0.9</td><td></td><td>Time</td><td>avg.</td><td>7</td><td>3.6</td><td></td><td>Time</td><td>avg.</td><td>7.5</td><td>141</td></td></t<></td> | WEIGHTEDFOCUS and its decomposition using DomOverWDeg I6.2 Nodes #sol Time Nodes dev. avg. dev. avg. dev. avg. dev. 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 Nodes 12488 1578 434 49 2.8 6.9 4965 13118 Nodes avg. dev. avg. dev. avg. dev. 7 1876 6460 1050 157 49 7.8 16.3 31795 9.5 6040 16230 1290 432 46 9.7 16.3 31795 15.6 6040 16230 1290 432 46 9.7 16.3 31795 7 1876 490 7.8 16.3 15063 31795 8.4 avg. dev. avg. | WEIGHTEDFOCUS and its decomposition using DomOverWDeg 16_2 Nodes #sol Time Nodes Nodes Nodes Nodes 16_1 555 1450 1437 18_7 50 0.03 3.1 2271 4163 1339 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 1.1 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 Nodes Nodes modes/s #sol Time Nodes Nodes Nodes 7 1876 6400 1050 157 49 7.8 16.3 31795 1207 9.5 6040 16230 1290 432 46 9.7 16.3 15063 31795 1207 9.5 6040 16230 1290 132 46 9.7
 | WEIGHTEDFOCUS and its decomposition using DomOverWDeg 16.2 Nodes #sol Time Nodes #sol Time Nodes dev. avg. dev. avg. dev. avg. dev. avg. dev. 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 3.7 2549 12488 1578 434 49 2.8 6.9 4965 159 347 dev. avg. dev. avg. dev. avg. dev. avg. dev. 379 1506 176 126 dev. avg. dev. avg. dev. avg. dev. 31795 1207 412 7 < | WEIGHTEDFOCUS and its decomposition using DomOverWDeg 16.2 16.2 Nodes #sol Time Nodes/s #sol 16.3 dev. avg. dev. avg. dev. avg. dev. 3.7 2549 1247 187 50 0.03 3.1 2271 4163 1339 159 47 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 dev. avg. dev. avg. dev. avg. dev. 18.3 dev. avg. dev. avg. dev. avg. dev. 18.3 7 1876 6400 157 49 | WEIGHTEDFOCUS and its decomposition using DomOverWDeg 16.2 16.2 16.2 16.3 dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. 3.1 2271 416.3 116.3 11 555 1450 1437 187 50 0.03 3.1 2271 416.3 1339 159 47 74 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 8.5 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 8.5 3.7 2549 12488 1578 49 2.8 6.9 4965 13118 1455 347 44 8.5 dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. 3vg. 115 11.5 18.4 18.6 9.7 16.3 8921 23642 1026 176 42 12 18.6 6040 1050 157 <t< td=""><td>WelfGHTEDFOCUS and its decomposition using DomOverWDeg 16.2 16.2 Nodes/s #sol Time 16.3 dev. avg. dev. avg. dev. avg. dev. dev. avg. dev. avg. dev. avg. dev. avg. dev. 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 8.5 16.5 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 8.5 16.5 3.7 2549 12488 1577 49 2.8 16.5</td><td>WEIGHTEDFOCUS and its decomposition using DomOverWDeg I6.2 I6.2 I6.2 I6.3
 dev. avg. dev.<!--</td--><td>WelGHTEDFOCUS and is decomposition using DomOverWDeg I62 I62 Nodes #sol Time I6.3 <thi6.3< th=""> I6.3 I6.3</thi6.3<></td><td>S with</td><td></td><td>Time</td><td>avg.</td><td>0.4</td><td>0.9</td><td></td><td>Time</td><td>avg.</td><td>7</td><td>3.6</td><td></td><td>Time</td><td>avg.</td><td>7.5</td><td>141</td></td></t<> | WelfGHTEDFOCUS and its decomposition using DomOverWDeg 16.2 16.2 Nodes/s #sol Time 16.3 dev. avg. dev. avg. dev. avg. dev. dev. avg. dev. avg. dev. avg. dev. avg. dev. 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 8.5 16.5 3.7 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 8.5 16.5 3.7 2549 12488 1577 49 2.8 16.5 | WEIGHTEDFOCUS and its decomposition using DomOverWDeg I6.2 I6.2 I6.2 I6.3 dev. avg. dev. </td <td>WelGHTEDFOCUS and is decomposition using DomOverWDeg I62 I62 Nodes #sol Time I6.3 <thi6.3< th=""> I6.3 I6.3</thi6.3<></td> <td>S with</td> <td></td> <td>Time</td> <td>avg.</td> <td>0.4</td> <td>0.9</td> <td></td> <td>Time</td> <td>avg.</td> <td>7</td> <td>3.6</td> <td></td> <td>Time</td> <td>avg.</td> <td>7.5</td> <td>141</td> | WelGHTEDFOCUS and is decomposition using DomOverWDeg I62 I62 Nodes #sol Time I6.3 I6.3 <thi6.3< th=""> I6.3 I6.3</thi6.3<> | S with | | Time | avg. | 0.4 | 0.9 | | Time | avg. | 7 | 3.6 | | Time | avg. | 7.5 | 141 | |
| HTEDFOCUS and its decomposi Nodes Nodes/s avg. dev. 555 1450 1437 2549 12488 1578 2549 12488 1578 Adors Nodes/s 434 Nodes Nodes/s 434 Nodes Nodes/s 434 Nodes Nodes/s 434 Nodes Nodes/s 432 avg. dev. avg. dev. 1876 6460 1050 157 6040 16230 1290 432 Nodes Nodes/s avg. dev. avg. dev. avg. dev. 10870 12237 866 174 10870 54077 1013 318 | HTEDFOCUS and its decomposition usi. 16-2 Nodes 16-2 avg. dev. #sol 555 1450 1437 187 555 1450 1437 187 50 2549 12488 1578 434 49 2549 12488 1578 49 2549 12488 1578 49 26040 16230 1290 432 46 6040 16230 1290 432 46 avg. dev. avg. dev. 20.2 Nodes Nodes/s 1876 46 46 6040 16230 1290 432 46 avg. dev. avg. dev. 20.2 Nodes Nodes/s 12237 866 174 45 10870 5013 1013 318 35
 | HTEDFOCUS and its decomposition using <i>Dom</i> 16-2 Nodes #sol Time avg. dev. avg. avg. 555 1450 1437 187 avg. 555 1450 1437 187 avg. avg. 555 1450 1437 187 50 0.03 2549 12488 1578 434 49 2.8 Nodes Nodes/s #sol Time avg. avg. dev. avg. dev. avg. 1876 6460 1050 157 49 7.8 6040 16230 1290 432 46 9.7 8040 1650 157 49 7.8 8040 16230 1290 432 46 9.7 8065 174 45 15.5 48 15.5 10870 5103 1043 318 35 13.7
 | If -2 If -2 Nodes If -2 Nodes Nodes #sol Time avg. dev. avg. dev. 555 1450 1437 187 50 0.03 3.1 2549 12488 1578 434 49 2.8 6.9 2549 12488 1578 434 49 2.8 6.9 Nodes Nodes/s #sol 18.2 18.2 49 2.8 6.9 avg. dev. avg. dev. avg. dev. 16.3 6.9 0040 16230 1290 432 49 7.8 16.3 6040 16230 1290 432 46 9.7 16.3 Nodes Nodes/s #sol 3.1 20.2 20.2 20.3 16.3
avg. dev. avg. dev. avg. dev. 20.2 20.3 16.3 avg. dev. avg. dev. 3.2 3.2 <td>HTEDFOCUS and its decomposition using DomOverWDeg 16_2 Nodes #sol Time Nodes 555 1450 1437 187 50 0.03 3.1 2271 555 1450 1437 187 50 0.03 3.1 2271 2549 12488 1578 434 49 2.8 6.9 4965 Nodes 18.2 #sol 18.2 8.9 4965 2.8 6.9 4965 Nodes Nodes/s #sol Time Nodes avg. dev. avg. avg. 1876 6460 1050 157 49 7.8 16.3 8921 6040 16230 1290 432 46 9.7 16.3 15063 Nodes * * 20.2 16.3 15063 316.3 15063 Nodes * avg. dev. avg. dev. avg. 495 15063 Nodes * 1050 157 49 7.8 160</td> <td>HTEDFOCUS and its decomposition using DomOverWDeg 16.2 Nodes #sol Time Nodes 555 1450 1437 187 30 0.03 3.1 2271 4163 555 1450 1437 187 50 0.03 3.1 2271 4163 2549 12488 1578 434 49 2.8 6.9 4965 13118 Nodes 18.2 803 13.1 273 2371 4163 vodes avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. 31795 outod 16230 157 49 7.8 16.3 31795 6040 16230 157 49 7.8 16.3 31795 Nodes 16030 157 49 7.8 16.3 31795 Nodes 16040 16530 1329 460 16.3 15063 31795 Nodes 1030 157</td> <td>HTEDFOCUS and its decomposition using DomOverWDeg 16.2 16.2 Nodes Nodes/s #sol Time Nodes Nodes 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 Nodes Nodes avg dev. avg dev. avg avg. avg dev. avg dev. avg dev. avg. dev. avg. avg dev. avg dev. avg dev. avg. dev. avg. avg dev. avg dev. avg. dev. avg. dev. avg. 1876 6460 1050 157 49 7.8 16.3 15063 31795 12076 1876 6440 1050 157 46</td> <td>HTEDFOCUS and its decomposition using DomOverWDeg 16.2 Nodes 16.2 Nodes/ #sol Time Nodes/ #sol Time Nodes/ sol Sol</td> <td>HTEDFOCUS and its decomposition using DomOverWDeg 16.2 16.3 16.3 Nodes Nodes/s #sol Time Nodes/s #sol sys dev. avg. dev. avg. dev. #sol sys dev. avg. dev. avg. dev. avg. dev. 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 159 47 2549 12488 1578 434 49 2.8 6.9 4965 347 44 Vodes Nodes/s #sol Time Nodes 13118 1455 347 44 Vodes Nodes/s #sol Time Nodes/s #sol 18.3 Nodes dev. avg. dev. avg dev. avg 47 1876 6460 1050 157 49 7.8 10.56 176 42 1876 6440 1653 157 46 27 10.56 176 176 37 <td>HTEDFOCUS and its decomposition using DomOverWDeg 16.2 16.2 16.2 Nodes Nodes/s #sol Time 16.2 16.3 Nodes Nodes/s #sol Time Nodes/s #sol Time 3vg dev. avg dev. avg dev. avg dev. 379 159 74 2555 1450 1437 187 50 0.03 3.1 2271 4163 1399 159 47 74 2554 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 85 2549 12488 1578 434 49 2.8 6.9 4965 13118 145 85 174 Nodes mag dev. avg dev. avg wg 18.5 Nodes 6400 1050 157 49 2.8 10.5 10.7<</td><td>HTEDFOCUS and its decomposition using DomOverWDeg 16.2 Nodes #sol Time Nodes/s #sol Time 16.3 Nodes avg. dev. avg. dev.</td><td>HTEDFOCUS and its decomposition using DomOverWDeg 16_2 16_2 16_3 Nodes 16_2 16_2 16_3 16_</td><td>HTEDFOCUS and its decomposition using DomOverWDeg 16.2 16.3 Nodes #sol Time Nodes/ #sol Time Nodes S55 1450 1437 187 50 0.03 3.1 2271 416.3 1339 159 47 7.4 16 9679 21555 2555 1450 1437 187 50 0.03 3.1 2271 416.3 1339 159 47 7.4 16 9679 21555 2559 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 8.5 157 25702 25738 Nodes #sol Time Nodes/s #sol Time Nodes/s #sol Time Nodes/s #sol 15702 25738 Nodes dev. avg. dev. avg. dev. avg. dev. 2732 27732 Nodes dev. avg. dev. avg. dev. avg. avg. 1673<!--</td--><td>WEIG</td><td></td><td></td><td>dev.</td><td>1.1</td><td>3.7</td><td></td><td></td><td>dev.</td><td>٢</td><td>9.5</td><td></td><td></td><td>dev.</td><td>15.2</td><td>35</td></td></td> | HTEDFOCUS and its decomposition using DomOverWDeg 16_2 Nodes #sol Time Nodes 555 1450 1437 187 50 0.03 3.1 2271 555 1450 1437 187 50 0.03 3.1 2271 2549 12488 1578 434 49 2.8 6.9 4965 Nodes 18.2 #sol 18.2 8.9 4965 2.8 6.9 4965 Nodes Nodes/s #sol Time Nodes avg. dev. avg. avg. 1876 6460 1050 157 49 7.8 16.3 8921 6040 16230 1290 432 46 9.7 16.3 15063 Nodes * * 20.2 16.3 15063 316.3 15063 Nodes * avg. dev. avg. dev. avg. 495 15063 Nodes * 1050 157 49 7.8 160
 | HTEDFOCUS and its decomposition using DomOverWDeg 16.2 Nodes #sol Time Nodes 555 1450 1437 187 30 0.03 3.1 2271 4163 555 1450 1437 187 50 0.03 3.1 2271 4163 2549 12488 1578 434 49 2.8 6.9 4965 13118 Nodes 18.2 803 13.1 273 2371 4163 vodes avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. 31795 outod 16230 157 49 7.8 16.3 31795 6040 16230 157 49 7.8 16.3 31795 Nodes 16030 157 49 7.8 16.3 31795 Nodes 16040 16530 1329 460 16.3 15063 31795 Nodes 1030 157 | HTEDFOCUS and its decomposition using DomOverWDeg 16.2 16.2 Nodes Nodes/s #sol Time Nodes Nodes 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 2549 12488 1578 434 49 2.8 6.9 4965 13118 1455 Nodes Nodes avg dev. avg dev. avg avg. avg dev. avg dev. avg dev. avg. dev. avg. avg dev. avg dev. avg dev. avg. dev. avg. avg dev. avg dev. avg. dev. avg. dev. avg. 1876 6460 1050 157 49
 7.8 16.3 15063 31795 12076 1876 6440 1050 157 46 | HTEDFOCUS and its decomposition using DomOverWDeg 16.2 Nodes 16.2 Nodes/ #sol Time Nodes/ #sol Time Nodes/ sol | HTEDFOCUS and its decomposition using DomOverWDeg 16.2 16.3 16.3 Nodes Nodes/s #sol Time Nodes/s #sol sys dev. avg. dev. avg. dev. #sol sys dev. avg. dev. avg. dev. avg. dev. 555 1450 1437 187 50 0.03 3.1 2271 4163 1339 159 47 2549 12488 1578 434 49 2.8 6.9 4965 347 44 Vodes Nodes/s #sol Time Nodes 13118 1455 347 44 Vodes Nodes/s #sol Time Nodes/s #sol 18.3 Nodes dev. avg. dev. avg dev. avg 47 1876 6460 1050 157 49 7.8 10.56 176 42 1876 6440 1653 157 46 27 10.56 176 176 37 <td>HTEDFOCUS and its decomposition using DomOverWDeg 16.2 16.2 16.2 Nodes Nodes/s #sol Time 16.2 16.3 Nodes Nodes/s #sol Time Nodes/s #sol Time 3vg dev. avg dev. avg dev. avg dev. 379 159 74 2555 1450 1437 187 50 0.03 3.1 2271 4163 1399 159 47 74 2554 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 85 2549 12488 1578 434 49 2.8 6.9 4965 13118 145 85 174 Nodes mag dev. avg dev. avg wg 18.5 Nodes 6400 1050 157 49 2.8 10.5 10.7<</td> <td>HTEDFOCUS and its decomposition using DomOverWDeg 16.2 Nodes #sol Time Nodes/s #sol Time 16.3 Nodes avg. dev. avg. dev.</td> <td>HTEDFOCUS and its decomposition using DomOverWDeg 16_2 16_2 16_3 Nodes 16_2 16_2 16_3 16_</td> <td>HTEDFOCUS and its decomposition using DomOverWDeg 16.2 16.3 Nodes #sol Time Nodes/ #sol Time Nodes S55 1450 1437 187 50 0.03 3.1 2271 416.3 1339 159 47 7.4 16 9679 21555 2555 1450 1437 187 50 0.03 3.1 2271 416.3 1339 159 47 7.4 16 9679 21555 2559 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 8.5 157 25702 25738 Nodes #sol Time Nodes/s #sol Time Nodes/s #sol Time Nodes/s #sol 15702 25738 Nodes dev. avg. dev. avg. dev. avg. dev. 2732 27732 Nodes dev. avg. dev. avg. dev. avg. avg. 1673<!--</td--><td>WEIG</td><td></td><td></td><td>dev.</td><td>1.1</td><td>3.7</td><td></td><td></td><td>dev.</td><td>٢</td><td>9.5</td><td></td><td></td><td>dev.</td><td>15.2</td><td>35</td></td> | HTEDFOCUS and its decomposition using DomOverWDeg 16.2 16.2 16.2 Nodes Nodes/s #sol Time 16.2 16.3 Nodes Nodes/s #sol Time Nodes/s #sol Time 3vg dev. avg dev. avg dev. avg dev. 379 159 74 2555 1450 1437 187 50 0.03 3.1 2271 4163 1399 159 47 74 2554 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 85 2549 12488 1578 434 49 2.8 6.9 4965 13118 145 85 174 Nodes mag dev. avg dev. avg wg 18.5 Nodes 6400 1050 157 49 2.8 10.5 10.7<
 | HTEDFOCUS and its decomposition using DomOverWDeg 16.2 Nodes #sol Time Nodes/s #sol Time 16.3 Nodes avg. dev. | HTEDFOCUS and its decomposition using DomOverWDeg 16_2 16_2 16_3 Nodes 16_2 16_2 16_3 16_ | HTEDFOCUS and its decomposition using DomOverWDeg 16.2 16.3 Nodes #sol Time Nodes/ #sol Time Nodes S55 1450 1437 187 50 0.03 3.1 2271 416.3 1339 159 47 7.4 16 9679 21555 2555 1450 1437 187 50 0.03 3.1 2271 416.3 1339 159 47 7.4 16 9679 21555 2559 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 8.5 157 25702 25738 Nodes #sol Time Nodes/s #sol Time Nodes/s #sol Time Nodes/s #sol 15702 25738 Nodes dev. avg. dev. avg. dev. avg. dev. 2732 27732 Nodes dev. avg. dev. avg. dev. avg. avg. 1673 </td <td>WEIG</td> <td></td> <td></td> <td>dev.</td> <td>1.1</td> <td>3.7</td> <td></td> <td></td> <td>dev.</td> <td>٢</td> <td>9.5</td> <td></td> <td></td> <td>dev.</td> <td>15.2</td> <td>35</td> | WEIG | | | dev. | 1.1 | 3.7 | | | dev. | ٢ | 9.5 | | | dev. | 15.2 | 35 | |
| DCUS and its decomposi Nodes/s dev. avg. dev. avg. 12488 1578 12488 1578 hodes/s dev. nodes/s dev. 12488 1578 dev. avg. | DCUS and its decomposition usi 16-2 Nodes/s #sol dev. avg. dev. 1450 1437 187 12488 1578 434 12488 1578 434 12488 1578 434 12488 1578 434 12488 1578 49 12488 1578 49 dev. avg. dev. 49 dev. avg. dev. 49 dev. 1290 432 46 16230 1290 432 46 dev. avg. dev. 20-2 20-2 dev. avg. dev. 45 45 15237 866 174 45 54977 1013 318 35
 | DCUS and its decomposition using Dom 16-2 16-2 Nodes/s #sol 1450 1437 16-2 1450 1437 187 20 12488 1578 434 49 2.8 12488 1578 434 49 2.8 12480 1050 157 49 7.8 12480 1050 157 49 7.8 16230 1290 432 46 9.7 16230 1290 432 46 9.7 16230 1290 432 46 9.7 16230 1290 432 46 9.7 16230 1290 432 46 9.7 16231 1290 432 46 9.7 15237 866 174 45 15.5 54977 1013 318 35 13.7
 | I6-2 I6-2 Nodes/s #sol Time dev. avg. dev. avg. dev. avg. dev. 1450 1437 187 50 0.03 3.1 12488 1578 434 49 2.8 6.9 12488 1578 434 49 2.8 6.9 Nodes/s #sol Time avg. dev. dev. avg. dev. avg. dev. 16230 1290 432 40 7.8 16.3 16230 1290 432 46 9.7 16.3 16230 1290 432 46 9.7 16.3 dev. avg. dev. 20.2 avg. dev. dev. avg. dev. 318 35 15.3 16.3
 | DCUS and its decomposition using DomOverWDeg 16.2 Nodes/s #sol Time Nodes dev. avg. dev. avg. dev. avg. 1450 1437 187 50 0.03 3.1 2271 12488 1578 434 49 2.8 6.9 4965 12488 1578 434 49 2.8 6.9 4965 Nodes/s #sol Time Nodes avg. dev. avg. dev. avg. dev. avg.
dev. avg. dev. 16230 1290 432 40 7.8 16.3 15063 16230 1290 432 46 9.7 16.3 15063 16230 1290 432 46 9.7 16.3 15063 Nodes/s #sol Time Nodes avg. 15063 fev. avg. dev. avg. dev. avg. 15237 866 174 45 15.5 21.1 13576 64077 1013 318 35 133 13318 | DCUS and its decomposition using DomOverWDeg 16.2 Nodes/s #sol Time Nodes dev. avg. dev. avg. dev. 1450 1437 187 50 0.03 3.1 2271 4163 12488 1578 434 49 2.8 6.9 4965 13118 12488 1578 434 49 2.8 6.9 4965 13118 Nodes/s #sol Time Nodes dev. avg. dev. dev. avg. dev. avg. dev. 31795 l6230 1290 432 46 9.7 16.3
 31795 l6230 1290 432 46 9.7 16.3 31795 l6230 1290 432 46 9.7 16.3 31795 l6231 1290 432 46 9.7 16.3 31795 l6233 1290 432 46 9.7 16.3 31795 l6233 1290 432 46 9.7 16.3 1795 l6233 avg. dev. avg. dev. avg. dev. | DCUS and its decomposition using DomOverWDeg 16_2 16_2 Nodes/s #sol Time Nodes 16_20 1437 18_7 50 0.03 3.1 2271 4163 1339 12488 1578 434 49 2.8 6.9 4965 13118 1455 12488 1578 434 49 2.8 6.9 4965 13118 1455 12488 1578 434 49 2.8 6.9 4965 13118 1455 Nodes/s #sol Time Nodes avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. 16230 1290 432 46 9.7 16.3 15063 31795 1207 16230 1290 432 46 9.7 16.3 15063 31795 1207 16231 1290 432 46 9.7 16.3 15063 31795 1207 162337 866 | DornOverWDeg 16.2 16.2 Nodes/s #sol Time Nodes/s 16.2 Nodes/s #sol Time Nodes/s 16.2 Nodes/s #sol Time Nodes/s #sol 1450 1437 187 50 0.03 3.1 2271 4163 1339 159 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 12488 1577 419 7.8 6.9 4965 176 412 dev. avg. dev. avg. dev. avg. dev. 492 16230 1290 432 46 7.8 16.3 15063 31795 1207 412 16230 1290 < | DCUS and its decomposition using $DomOverWDeg$ 16-2 16-2 16-2 Nodes/s #sol Time Nodes/s #sol 16-3 Nodes/s #sol Time Nodes Modes/s #sol 16-3 Nodes/s #sol Time Nodes avg. dev. avg. dev. #sol 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 12488 1578 49 2.8 6.9 4965 13118 1455 347 44 12488 1578 49 2.8 6.9 4965 13118 1455 347 44 12488 1578 49 2.8 6.9 4965 176 176 42 dev. avg. dev. avg. dev. avg. dev. 3795 1207 412 37 dev. 190 15063 31795 1207 412 37 16230 1290< | DomOverWDeg 16.2 16.2 16.2 Nodes/s #sol Time 16.3 16.2 16.2 16.2 16.3 Nodes/s #sol Time Nodes/s #sol Time 1450 1437 187 50 0.03 3.1 2271 4163 1339 159 47 74 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 8.5 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 8.5 12488 1578 434 49 2.8 6.9 4965 13118 1455
347 44 8.5 12488 1578 49 7.8 695 13118 1455 347 14 8.5 12490 150 150 31795 160 31795 1507 412 12 16230 1290 435 16.3 15063< | Ordes/s misol tiol 16.2 16.2 I 16.2 Nodes/s misol Time Nodes/s misol Time Nodes/s misol Time Nodes/s misol Time dev. avg. dev. avg. dev. avg. dev. 1450 1437 187 50 0.03 3.1 2271 4163 1339 159 47 7.4 16 1450 1437 187 50 0.03 3.1 2271 4163 1339 159 47 7.4 16 12488 1578 434 49 2.8 69 4965 13118 1455 347 44 8.5 16.5 12488 1578 436 7.4 16 18.3 18.3 165 16.5 16.5 dev. avg. dev. avg. dev. avg. dev. 18.3 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 | DCUS and its decomposition using DomOverWDeg 16-2 16-3 16-2 16-3 16-3 16-3 Nodes/s #sol Time Nodes/s #sol Time Nodes/s 1450 1437 187 50 0.03 3.1 2271 4163 1339 159 47 7.4 16 9679 1450 1437 187 50 0.03 3.1 2271 4163 1339 159 47 7.4 16 9679 12488 1578 434 49 2.8 6.9 4965 13118 1455 347 44 8.5 16.5 12702 12488 1578 49 2.8 6.9 4965 13118 1455 347 44 8.5 16.5 12702 12480 168. #sol Time Nodes/s #sol Time Nodes/s dev. avg. dev. avg. dev. | DomOverWDeg 16.2 16.2 Nodes/s #sol Time Nodes/s #sol Time Nodes/s dev. avg. dev | HTEDF(| | Nodes |
avg. | 555 | 2549 | | Nodes | avg. | 1876 | 6040 | | Nodes | avg. | 6265 | 19879 | |
| Id its decomposi
Nodes/s
avg. dev.
1578 434
1578 434
1578 434
Nodes/s
avg. dev.
1050 157
1290 432
Nodes/s
avg. dev.
Nodes/s
318 | Id its decomposition usi. 16_2 Nodes/s #sol avg. dev. 1437 187 50 1578 434 49 1578 434 49 1578 434 49 avg. dev. #sol avg. dev. 18_2 Nodes/s #sol avg. dev. 20_2 Nodes/s #sol avg. dev. 20_2 Nodes/s #sol avg. dev. 318 avg. dev. 318
 | Id its decomposition using Dom 16.2 Nodes/s #sol 116.2 Nodes/s #sol 11437 116.2 11437 116.2 11578 434 49 2.8 118.2 avg. 118.2 Nodes/s 118.2 avg. 118.2 avg. 118.2 avg. 118.2 avg. 11050 157 49 7.8 11290 432 46 9.7 11290 432 46 9.7 1050 157 46 9.7 1046/s #sol 11290 432 46 9.7 1056 174 45 15.5 1013 318 318 35
 | I6.2 Nodes/s #sol Time avg. dev. avg. dev. avg. dev. avg. dev. 1578 434 49 2.8 6.9 1578 434 49 2.8 6.9 Nodes/s #sol 0.03 3.1 1578 434 49 2.8 6.9 nodes/s #sol Time avg. dev. 18.2 avg. dev. avg. dev. 18.2 18.2 2.8 6.9 16.3 Nodes/s #sol Time avg. dev. 1050 157 49 7.8 16.3 1290 432 46 9.7 16.3 Nodes/s #sol Time avg. dev. 20.2 Nodes/s #sol Time avg. avg. dev. avg. dev. avg. dev. 1013 318 35 13.7 13303
 | I 6.2 I 6.2 Nodes/s #sol Time
Nodes avg. dev. avg. dev. avg. 1578 434 49 2.8 6.9 4965 1578 434 49 2.8 6.9 4965 1578 434 49 2.8 6.9 4965 1578 434 49 2.8 6.9 4965 Nodes/s #sol Time Nodes avg. avg. 1050 157 49 7.8 16.3 8921 1290 432 46 9.7 16.3 8921 1050 157 49 7.8 15063 avg. dev. avg. dev. avg. 1050 157 49 7.8 15063 866 174 45 15.5 21.1 13576 1013 318 35 13.2 1318 | Id its decomposition using DomOverWDeg I6.2 Nodes/s #sol Time Nodes avg. dev. avg. dev. avg. dev.
dev. 1578< | Id its decomposition using DomOverWDeg I6_2 Nodes/s #sol Time Nodes avg. dev. avg. dev. avg. dev. avg. avg. dev. avg. dev. avg. avg. 1578< | Id is decomposition using $DomOverWDeg$ I I | Id is decomposition using $DomOverWDeg$ 16.2 16.2 16.3 Nodes/s #sol Time Nodes/s #sol 16.2 avg. dev. avg. dev. #sol avg. dev. avg. dev. avg. dev. #sol avg. dev. avg. dev. avg. dev. #sol 1578 434 49 2.8 6.9 4965 13118 1455 347 44 1578 434 49 2.8 6.9 4965 13118 1455 347 44 1578 49 2.8 6.9 4965 13118 1455 347 44 18.2 Nodes/s #sol avg. dev. avg. dev. 373 18.2 49 7.8 16.3 8921 23642 1026 176 42 1050 157 49 7.8 1503 31795 1207 412 37 1050 153 1603 3170 153 | Id is decomposition using $DomOverWDeg$ 16.2 16.2 16.3 Nodes/s #sol Time 16.3 avg. dev. #sol Time avg. dev. avg. dev. #sol 1578 434 49 2.8 6.9 4965 13118 1455
 347 74 1578 434 49 2.8 6.9 4965 13118 1455 347 44 8.5 Nodes/s #sol Time Nodes/s #sol 18.2 18.2 18.2 Nodes/s #sol Time Nodes/s #sol 13118 1455 347 44 8.5 18.2 Nodes/s #sol Time Nodes/s #sol Time avg. dev. avg. dev. avg. 19.3 150.3 31795 10.2 11.5 1050 157 49 7.8 150.3 31795 1207 412 12 1050 157 46v avg. dev. a | Id is decomposition using DomOverWDeg 16.2 16.2 16.3 Nodes/s $\#sol$ Time 16.3 avg. dev. $avg.$ dev. $avg.$ 1578 $\#sol$ Time Nodes/s $\#sol$ Time $avg.$ dev. $avg.$ dev. $avg.$ dev. $avg.$ dev. 1578 434 49 2.8 6.9 4965 13118 1455 347 44 8.5 16.5 1578 434 49 2.8 6.9 4965 13118 1455 347 44 8.5 16.5 Nodes/s $\#sol$ Time Nodes/s $\#sol$ Time $avg.$ $dev.$ $avg.$ $dev.$ $avg.$ dev. $avg.$ dev. $avg.$ $dev.$ $avg.$ $dev.$ 16.5 11.5 16.5 16.5 16.5 1050 157 49 7.8 16.5 31795 1207 120 16.5 16.5 <td>Id is decomposition using DomOverWDeg I</td> <td>Id is decomposition using DomOverWDeg I6.2 I6.3 Nodes/s #sol Time Nodes Nodes/s #sol Time Nodes #sol Time Nodes 1578 49 28 6.9 4965 13118 1455 347 44 8.5 16.5 12702 25728 1578 43 49 2.8 6.9 4965 13118 1455 347 44 8.5 16.5 12702 25728 Nodes/s #sol Time Nodes/s #sol Time Nodes avg. dev. avg. dev. 373 1555 25728 Nodes/s #sol Time Nodes/s #sol Time Nodes 353 1556 1577 25728 Nodes/s #sol Time Nodes/s #sol Time Nodes 353 153 1576 25728 Nodes/s #sol Time Nodes/s #sol Time Nodes Nodes 16</td> <td>OCUS an</td> <td></td> <td></td> <td>dev.</td> <td>1450</td> <td>12488</td> <td></td> <td></td> <td>dev.</td> <td>6460</td> <td>16230</td> <td></td> <td></td> <td>dev.</td> <td>12237</td> <td>54977</td> | Id is decomposition using DomOverWDeg I | Id is decomposition using DomOverWDeg I6.2 I6.3 Nodes/s #sol Time Nodes Nodes/s #sol Time Nodes #sol Time Nodes 1578 49 28 6.9 4965
13118 1455 347 44 8.5 16.5 12702 25728 1578 43 49 2.8 6.9 4965 13118 1455 347 44 8.5 16.5 12702 25728 Nodes/s #sol Time Nodes/s #sol Time Nodes avg. dev. avg. dev. 373 1555 25728 Nodes/s #sol Time Nodes/s #sol Time Nodes 353 1556 1577 25728 Nodes/s #sol Time Nodes/s #sol Time Nodes 353 153 1576 25728 Nodes/s #sol Time Nodes/s #sol Time Nodes Nodes 16 | OCUS an | | | dev. | 1450 | 12488 | | | dev. | 6460 | 16230 | | | dev. | 12237 | 54977 | |
| s/s
s/s
dev.
187
434
434
432
432
432
432
432
818
318 | Somposition usi 16-2 s/s #sol dev. 16-2 dev. 187 50 434 49 18-2 s/s #sol dev. 49 dev. 18-2 49 49 s/s #sol 49 49 dev. 432 46 43 157 49 46 46 s/s #sol dev. 20-2 dev. 174 45 318 35
 | Simposition using Dom 16.2 s/s #sol 16.2 dev. avg. 187 50 0.03 434 49 2.8 s/s #sol Time dev. avg. 18.2 s/s #sol 7.8 dev. 9.7 3vg. 157 49 7.8 432 46 9.7 s/s #sol Time dev. 20.2 4.6 2157 49 7.8 432 46 9.7 s/s #sol Time dev. 37.3 313.5 318 35 13.7
 | Somposition using DomOverWD 16_2 s/s #sol 16_2 dev. avg. dev. avg. dev. avg. dev. avg. 187 50 434 49 2.8 435 #sol Time 434 49 2.8 6.9 s/s #sol Time ecv. dev. avg. dev. 16.3 432 46 9.7 16.3 432 46 9.7 16.3 432 45 9.7 16.3 43 45 9.7 16.3 48 #sol Time avg. dev. avg. avg. dev. 174
 45 15.5 21.1 318 35 13.2 18303 | composition using DomOverWDeg 16_2 Nodes
 s/s #sol Time Nodes dev. avg. dev. avg. avg. 187 50 0.03 3.1 2271 434 49 2.8 6.9 4965 s/s #sol Time Nodes dev. avg. dev. avg. dev. avg. dev. avg. 18_2 dev. avg. dev. avg. dev. avg. dev. avg. 15063 s/s #sol Time Nodes 4vg. dev. avg. dev. avg. 15063 s/s #sol Time Nodes 4vg. 15063 s/s #sol Time Nodes 4vg. 15063 dev. avg. 16.3 15063 15063 15063 s/s #sol Time Nodes 4vg. | composition using DomOverWDeg 16_2 Nodes s/s #sol Time l6_2 avg. dev. avg. dev. avg. dev.
 avg. dev. 187 50 0.03 3.1 2271 4163 434 49 2.8 6.9 4965 13118 s/s #sol Time Nodes dev. i18_2 avg. dev. avg. dev. s/s #sol Time Nodes dev. dev. avg. dev. avg. dev. 432 46 9.7 16.3 8921 23642 432 46 9.7 16.3 15063 31795 s/s #sol Time Nodes dev. 20_2 dev. avg. dev. avg. dev. 174 45 15.5 21.1 13576 20727 318 35 13.7 18303 17318 28017 | composition using DomOverWDeg I6_2 I6_2 s/s #sol Time Nodes dev. avg. dev. avg. dev. avg. 187 50 0.03 3.1 2271 4163 1339 434 49 2.8 6.9 4965 13118 1455 434 49 2.8 6.9 4965 13118 1455 s/s #sol Time Nodes avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. avg. 432 49 7.8 16.3 15063 31795 1207 432 46 9.7 16.3 15063 31795 1207 43 #sol Time Nodes wores dev. avg. 48 6.9 9.7 16.3 15063 31795 1207 49 7.8 16.3 15063 31795 1207 49 * * 16.3 15063 31795 1207 49 * 8.2 113576 20727 827 318 35 13318 3 | intering DomOverWDeg 16_2 16_2 s/s #sol Time Nodes dev. avg. dev. avg. dev. 187 50 0.03 3.1 2271 4163 1339 159 434 49 2.8 6.9 4965 13118 1455 347 434 49 2.8 6.9 4965 13118 1455 347 s/s #sol Time Nodes avg. dev. avg. dev. dev. avg. dev. avg. dev. avg. dev. 415 432 49 7.8 16.3 8921 23642 1026 176 432 49 7.8 16.3 8921 23642 1026 176 432 49 9.7 16.3 8921 23642 1026 176 432 49 9.7 16.3 8921 23642 1026 176 432 49 9.7 16.3 3795 | composition using DomOverWDeg 16.2 16.2 s/s #sol Time Nodes/s #sol dev. avg. dev. avg. dev. #sol dev. avg. dev. avg. dev. #sol 187 50 0.03 3.1 2271 4163 1339 159 47 434 49 2.8 6.9 4965 13118 1455 347 44 18.2 18.2 13118 1455 347 44 | composition using DomOverWDeg 16_2 16_2 16_3 16_2 16_2 16_3 s's #sol Time Nodes #sol Time dev. avg. dev. avg. dev. #sol Time 187 50 0.03 3.1 2271 4163
 1339 159 47 7.4 434 49 2.8 6.9 4965 13118 1455 347 44 8.5 s's #sol Time Nodes 1339 159 47 7.4 43 49 2.8 6.9 4965 13118 1455 347 44 8.5 s's #sol Time Nodes #sol Time avg. avg. dev. avg. dev. avg. dev. avg. 11.5 37 11.5 s's 157 49 7.8 15063 31795 1207 412 12 37 11.5 dev. avg. 160.3 31795 </td <td>inform the control of the control of</td> <td>info_2 info_3 info_2 info_3 info_2 info_3 info_2 avg dev. avg</td> <td>info.2 info.3 info.3 info.3 info.2 info.3 info.3 info.3 info.3 <th colspa<="" td=""><td>d its dec</td><td></td><td>Nodes</td><td>avg.</td><td>1437</td><td>1578</td><td></td><td>Nodes</td><td>avg.</td><td>1050</td><td>1290</td><td></td><td>Nodes</td><td>avg.</td><td>866</td><td>1013</td></th></td> | inform the control of | info_2 info_3 info_2 info_3 info_2 info_3 info_2 avg dev. avg | info.2 info.3 info.3 info.3 info.2 info.3 info.3 info.3 info.3 <th colspa<="" td=""><td>d its dec</td><td></td><td>Nodes</td><td>avg.</td><td>1437</td><td>1578</td><td></td><td>Nodes</td><td>avg.</td><td>1050</td><td>1290</td><td></td><td>Nodes</td><td>avg.</td><td>866</td><td>1013</td></th> | <td>d its dec</td> <td></td> <td>Nodes</td> <td>avg.</td> <td>1437</td> <td>1578</td> <td></td> <td>Nodes</td> <td>avg.</td> <td>1050</td> <td>1290</td> <td></td> <td>Nodes</td> <td>avg.</td> <td>866</td> <td>1013</td> | d its dec | | Nodes | avg. | 1437 | 1578 | | Nodes | avg. | 1050 | 1290 | | Nodes | avg. | 866 | 1013 |
| | tion usi:
16.2 #sol
50 50 49
49 49 49 49 49 49 45 45 35 35 40 45 45 35 35 35 35 35 35 35 35 35 35 35 35 35
 | tion using <i>Donn</i>
16.2
#sol Time
avg.
50 0.03
49 2.8
#sol Time
avg.
49 7.8
40 7.8
46 9.7
20.2
#sol Time
#sol Time
#sol Time
 | tion using <i>DomOverWD</i> 16-2 #sol Time #sol Time #sol 0.03 3.1 49 2.8 6.9 18.2 #sol Time #sol 7.8 6.9 18.2 #sol Time #sol Time 20.2 avg. dev. 20.2 #sol Time 20.2 avg. dev. #sol Time 37 15.3 21.1 35 13.2 18.303
 | tion using <i>DomOverWDeg</i>
16_2 #sol Time Nodes #sol
Time 4956 18_2 #sol Time 4965 18_2 #sol Time 8031 18_2 #sol Time 8031 40 7.8 16.3 8021 40 7.8 16.3 8021 40 82 40 7.8 15.3 15063 #sol Time 803 15063 45 13.3 13.5 13.5 13.5 13.5 13.5 13.5 13. | tion using <i>DomOverWDeg</i>
16.2
#sol Time Nodes
avg dev. avg. dev.
50 0.03 3.1 2271 4163
49 2.8 6.9 4965 13118
18.2
#sol
Time Nodes
avg dev. avg. dev.
40 7.8 16.3 8921 23642
46 9.7 16.3 15063 31795
20.2
#sol Time Nodes
45 15.5 21.1 13576 20727
35 13.2 18303 17318 28017 | tion using <i>DomOverWDeg</i>
16.2 #sol Time Nodes Nodes #sol Time Sol 2.8 dev. avg. dev. avg. 20.0 3.3.1 2271 4163 1339 49 2.8 6.9 4965 13118 1455 18.2 #sol Time Nodes avg. dev. avg. 49 7.8 16.3 8921 23642 1026 46 9.7 16.3 15063 31795 1207 20.2 #sol Time Nodes #sol Time Sol 20727 827 35 13.2 18303 17318 2817 1017 35 13 2811 1355 35 13 2817 1017 35 13 2811 1355 35 13 2817 1017 35 13 2811 1355 35 13 1505 35 13 1505 35 13 1505 35 13 1505 35 13 1505 35 13 1505 35 13 1505 35 13 1505 35 150 35 15 | tion using DomOverWDeg 16.2 #sol Time Nodes/s #sol Time Nodes/s seve. 50 0.03 3.1 2271 4163 1339 159 49 2.8 6.9 4965 13118 1455 347 18.2 4965 13118 1455 347 18.2 8021 23642 150 49 7.8 16.3 8921 23642 176 40 7.8 16.3 8921 23642 176 40 7.8 16.3 8921 23642 1026 176 40 9.7 16.3 15063 31795 1207 412 20.2 31795 1207 412 40 31795 207 412 40 31795 402 40 | tion using <i>DomOverWDeg</i>
16.2 | tion using DomOverWDeg 16.2 16.3 16.3 16.2 16.3 16.3 16.3 $\#sol$ Time $Nodes/s$ $\#sol$ Time $avg.$ dev. avg. dev. $avg.$ $avg.$ $avg.$ dev. avg. dev. $avg.$ $avg.$ $avg.$ $avg.$ 6.9 4965 13118 1455 347 44 8.5 49 2.8 6.9 4965 13118
1455 347 44 8.5 49 7.8 6.9 4965 13118 1455 347 44 8.5 49 7.8 16.3 8921 23642 1026 176 $avg.$ 40 7.8 16.3 15063 31795 1207 412 12.5 40 7.8 1026 176 412 12.5 402 12.5 40 7.8 1926 23762 1207 412 20.3 402 | tion using <i>DomOverWDeg</i>
16.2 16.2 16.3 #sol Time Nodes Nodes/s #sol Time 16.3 #sol Time 3.1 2271 4163 1339 159 47 7.4 16
avg. dev. avg. dev. avg. dev. avg. dev. 3.1 2.271 4163 1339 159 47 7.4 16
49 2.8 6.9 4965 13118 1455 347 44 8.5 16.5
18.2 #sol Time Nodes 1316 1455 347 44 8.5 16.5
18.3 #sol Time 1455 347 44 8.5 $16.518.3$ #sol Time 16.3 1306 1006 176 42 12 1649 7.8 16.3 8921 23642 1026 176 42 12 1646 9.7 16.3 15063 31795 1207 412 37 11.5 $14.720.3$ #sol Time 15663 31795 1207 412 37 11.5 $14.720.3$ #sol Time 15663 1766 2037 2103 1026 Time 11.5 $14.720.3$ #sol Time 13576 20727 827 121 39 23.7 28.2 | tion using $DomOverWDeg$ 16.2 16.3 16.3 16.3 #sol< | tion using <i>DomOverWDeg</i>
16.2
 | omposi | | s/s | dev. | 187 | 434 | | s/s | dev. | 157 | 432 | | s/s | dev. | 174 | 318 | |
| In the second of the second s | <i>OverWDeg</i> 16.3 Nodes 16.3 16.3 Nodes Nodes/s $\#sol$ Time Nodes Nodes avg. dev. avg. dev. avg. dev. avg.
 | vgg i 16.3 Nodes 16.3 16.3 16.3 16.3 16.3 $Nodes$ $Nodes$ $Nodes$ avg. dev. avg. dev. avg. dev. avg. avg. 22711 4163 1339 159 47 7.4 16 9679 21555 1270 4965 13118 1455 347 44 8.5 16.5 12702 25728 1300 4965 13118 1455 347 44 8.5 16.5 12702 25728 1300 4965 13118 1455 347 44 8.5 16.5 12702 25728 1300 $vodes$ $voge$ <td></td> <td>16.3 16.3 16.3 Nodes/s #sol Time Nodes avg. dev. avg. dev. avg. 1339 159 47 7.4 16 9679 21555 1270 1455 347 44 8.5 16.5 12702 25728 1300 1455 347 44 8.5 16.5 12702 25728 1300 1455 347 44 8.5 16.5 12702 25728 1300 1455 347 44 8.5 16.5 12702 25728 1300 Nodes/s #sol Time Nodes wag. dev. avg. 1026 176 42 12 16 12062 17158 946 1207 412 37 11.5 14.7 12648 16097 1022 1207 412 37 11.5 14.7 12648 16097 1022 1207 46v. avg. dev. avg. avg. 3046</td> <td>I6.3 Nodes 16.3 16.3 dev. #sol Time Nodes dev. avg. dev. avg. avg. 159 47 7.4 16 9679 21555 1270 347 44 8.5 16.5 12702 25728 1300 347 44 8.5 16.5 12702 25728 1300 sva #sol Time Nodes avg. dev. avg. dev. avg. dev. avg. dev. avg. 176 42 12 16 12062 1718 946 412 37 11.5 14.7 12648 16097 1022 vs #sol Time Nodes avg. dev. avg. dev. avg. dev. avg. dev. avg. 20.3 11.5 14.7 12648 16097 1022 vs avg. dev. avg. dev. avg. 20.3 avg. 19068 1023 1023 vs avg. 19078 1022 1216 1022 vs avg. avg.</td> <td>16.3 #sol Time Nodes Nodes #sol Time Nodes Nodes avg. dev. avg. dev. avg. 47 7.4 16 9679 21555 1270 48.5 16.5 12702 25728 1300 18.3 nodes Nodes Nodes Nodes #sol Time Nodes 946 37 11.5 14.7 12648 16097 1022 20.3 avg. dev. avg. 4e. avg. #sol 11.5 14.7 12648 16097 1022 20.3 avg. dev. avg. avg. #sol 11.5 14.7 12648 16097 1022 20.3 11.5 14.7 12648 16097 1022 #sol 11.5 14.7 12648 16097 1022 20.3 23.7 28.2 19274 22659 828 29 23.7 28.2 19274 22659 861</td> <td>Time Nodes avg. dev. avg. avg. dev. avg. 7.4 16 9679 21555 7.4 16 9679 21555 8.5 16.5 12702 25728 8.5 16.5 12702 25728 1300 8.5 16.5 12702 25728 1300 8.5 16.5 12062 17158 946 11.5 14.7 12648 16097 1022 11.5 14.7 12648 16097 1022 Time Nodes avg. avg. avg. avg. dev. avg. dev. avg. 11.5 14.7 12648 16097 1022 11.5 14.7 12648 16097 1022 11.5 14.7 12648 16097 1022 11.5 28.2 19274 22659 828 18.2 23.7 16373 20769 861</td> <td>Nodes Nodes dev. avg. dev. 16 9679 21555 1270 16.5 12702 25728 1300 16.5 12702 25728 1300 16.5 12702 25728 1300 16.5 12062 17158 946 14.7 12648 16097 1022 14.7 12648 16097 1022 dev. avg. dev. avg. 14.7 12648 16097 1022 14.7 12648 16097 1022 22.1 16574 22659 828 22.7 16573 20769 861</td> <td>Nodes Nodes avg. dev. avg. 9679 21555 1270 12702 25728 1300 12702 25728 1300 nodes avg. avg. nodes 12702 25728 nodes avg. avg. avg. dev. avg. 12062 17158 946 12648 16097 1022 nodes avg. avg. 12648 16097 1022 noge. dev. avg. 12703 20769 828 16373 20769 861</td> <td>dev. Nodes
dev. avg.
21555 1270
25728 1300
25728 1300
dev. avg.
17158 946
16097 1022
16097 1022
dev. avg.
22659 828
dev. avg.</td> <td>Nodes
avg.
1270
1300
1300
1300
1300
1300
1022
1022
102</td> <td></td> <td></td> <td></td> <td>/s</td> <td>dev.</td> <td>124</td> <td>186</td> <td></td> <td>/s</td> <td>dev.</td> <td>108</td> <td>153</td> <td></td> <td>/s</td> <td>dev.</td> <td>98</td> <td>126</td>
 |
 | 16.3 16.3 16.3 Nodes/s #sol Time Nodes avg. dev. avg. dev. avg. 1339 159 47 7.4 16 9679 21555 1270 1455 347 44 8.5 16.5 12702 25728 1300 1455 347 44 8.5 16.5 12702 25728 1300 1455 347 44 8.5 16.5 12702 25728 1300 1455 347 44 8.5 16.5 12702 25728 1300 Nodes/s #sol Time Nodes wag. dev. avg. 1026 176 42 12 16 12062 17158 946 1207 412 37 11.5 14.7 12648 16097 1022 1207 412 37 11.5 14.7 12648 16097 1022 1207 46v. avg. dev. avg. avg. 3046
 | I6.3 Nodes 16.3 16.3 dev. #sol Time Nodes dev. avg. dev. avg. avg. 159 47 7.4 16 9679 21555 1270 347 44 8.5 16.5 12702 25728 1300 347 44 8.5 16.5 12702 25728 1300 sva #sol Time Nodes avg. dev. avg. dev. avg. dev. avg. dev. avg. 176 42 12 16 12062 1718 946 412 37 11.5 14.7 12648 16097 1022 vs #sol Time Nodes avg. dev. avg. dev. avg. dev. avg. dev. avg. 20.3 11.5 14.7 12648 16097 1022 vs avg. dev. avg. dev. avg. 20.3 avg. 19068 1023 1023 vs avg. 19078 1022 1216 1022 vs avg. avg. | 16.3 #sol Time Nodes Nodes #sol Time Nodes Nodes avg. dev. avg. dev. avg. 47 7.4 16 9679 21555 1270 48.5 16.5 12702 25728 1300 18.3 nodes Nodes Nodes Nodes #sol Time Nodes 946 37 11.5 14.7 12648 16097 1022 20.3 avg. dev. avg. 4e. avg. #sol 11.5 14.7 12648 16097 1022 20.3 avg. dev. avg. avg. #sol 11.5 14.7 12648 16097 1022 20.3 11.5 14.7 12648 16097 1022 #sol 11.5 14.7 12648 16097 1022 20.3 23.7 28.2 19274 22659 828 29 23.7 28.2 19274 22659 861 | Time Nodes avg. dev. avg.
avg. dev. avg. 7.4 16 9679 21555 7.4 16 9679 21555 8.5 16.5 12702 25728 8.5 16.5 12702 25728 1300 8.5 16.5 12702 25728 1300 8.5 16.5 12062 17158 946 11.5 14.7 12648 16097 1022 11.5 14.7 12648 16097 1022 Time Nodes avg. avg. avg. avg. dev. avg. dev. avg. 11.5 14.7 12648 16097 1022 11.5 14.7 12648 16097 1022 11.5 14.7 12648 16097 1022 11.5 28.2 19274 22659 828 18.2 23.7 16373 20769 861 | Nodes Nodes dev. avg. dev. 16 9679 21555 1270 16.5 12702 25728 1300 16.5 12702 25728 1300 16.5 12702 25728 1300 16.5 12062 17158 946 14.7 12648 16097 1022 14.7 12648 16097 1022 dev. avg. dev. avg. 14.7 12648 16097 1022 14.7 12648 16097 1022 22.1 16574 22659 828 22.7 16573 20769 861 | Nodes Nodes avg. dev. avg. 9679 21555 1270 12702 25728 1300 12702 25728 1300 nodes avg. avg. nodes 12702 25728 nodes avg. avg. avg. dev. avg. 12062 17158 946 12648 16097 1022 nodes avg. avg. 12648 16097 1022 noge. dev. avg. 12703 20769 828 16373 20769 861
 | dev. Nodes
dev. avg.
21555 1270
25728 1300
25728 1300
dev. avg.
17158 946
16097 1022
16097 1022
dev. avg.
22659 828
dev. avg. | Nodes
avg.
1270
1300
1300
1300
1300
1300
1022
1022
102 | | | | /s | dev. | 124 | 186 | | /s | dev. | 108 | 153 | | /s | dev. | 98 | 126 | |

	es/s	dev.	1 983	3 1660
	Nod	avg.	574	5043
		dev.	31	1917
	Nodes	avg.	1673	7168
		dev.	0	1.1
	Time	avg.	0	0.5
16_3	#sol		7	٢
	s	dev.	750	2191
	Nodes/	avg.	6346	6423
		dev.	37	1749
	Nodes	avg.	3911	10538
		dev.	0	1
	Time	avg.	0	0.3
16_2	#sol		15	13
	s	dev.	1353	1885
	Nodes/	avg.	7144	7115
		dev.	39	51
	Nodes	avg.	6553	6505
		dev.	0	0
	Time	avg.	0	0
16_1	#sol		23	21
			ц	D_1

WEIGHTEDFOCUS and its decomposition using a static branching	
SLS with V	
Table 4	

```
INPUT:
Int n; // size of the sequence
Int m; // number of among constraints
Int[] s, e, l, u; // four vectors of m integers used for the among constraints.
Int len, h; // used for WEIGHTEDSPRINGYFOCUS
MODEL:
IntVar[]X; // size: n, domain {0, 1}
IntVar y<sub>c</sub>, z<sub>c</sub>; // used for WEIGHTEDSPRINGYFOCUS
\forall d \in 1..m, l[d] \leq \sum_{i=s}^{i=e[d]} X[i] \leq u[d]; // the set of AMONG constraints
WEIGHTEDSPRINGYFOCUS(X, y<sub>c</sub>, len, h, 0, z<sub>c</sub>);
```

Fig. 6 Model of the cumulative scheduling with rentals problem

Model The problem is stated in a very simple way by bucketing time with {0,1} variables indicating whether a machine is rented or not for covering this time point. We define a conjunction of one WEIGHTEDSPRINGYFOCUS($X, y_c, len, h, 0, z_c$) with a set of AMONG constraints. The decision version of the problem is presented in Fig. 6. The goal is to build a schedule for rentals that satisfies all demand constraints and minimizes simultaneously the number of rental periods and their total length. Therefore, we build a Pareto frontier over two cost variables, as Fig. 7 shows for one of the instances of this problem. More specifically, we start by minimizing y_c , then immediately try to minimize z_c while fixing y_c to its minimum. Afterwards, we repeatedly increment y_c by 1 then try to find the correspondent minimal value of z_c . The process stops when either a maximum number of iterations is reached or no improvement on z_c is obtained.

Search strategy We use again two different search strategies: *DomOverWDeg* and static lexicographical exploration; both with the lowest values assigned first.

Figure 7 confirms the gain of flexibility illustrated by Fig. 1 in Section 3: allowing h = 1 variable with a low cost value into each sequence leads to new solutions, with significantly lower values for the target variable y_c .

We generated instances having a fixed length of sub-sequences of size 20 (i.e., len = 20), 50 % as a probability of posting an *Among* constraint for each (i, j) s.t. $j \ge i + 5$ in the

Fig. 7 Pareto frontier for scheduling with rentals

Table 5	Schedulii	ng with rent	tals using D	omOverWDeg										
	40							43						
	#sol	Time		Nodes		Nodes/s		#sol	Time		Nodes		Nodes/s	
		avg.	dev.	avg.	dev.	avg.	dev.		avg.	dev.	avg.	dev.	avg.	dev.
h=0 Е	00	Q	177	135018	173570	1041	660	00	00	760	750205	800815	670	VLS
D1	6 7 7	59.09	210	212629	769672	1041	847	50	119	203 391	372541	1271169	937 937	505 665
h=1														
щ	20	95	176	341394	640856	2844	2300	20	252	689	801909	2235387	2556	1769
н_г Н	20	96	179	341134	631228	2792	2354	20	257	665	815084	2191171	2560	1791
	45							47						
	#sol	Time		Nodes		Nodes/s		#sol	Time		Nodes		Nodes/s	
4		avg.	dev.	avg.	dev.	avg.	dev.		avg.	dev.	avg.	dev.	avg.	dev.
	ġ,	610	020	001272		050	101	ġ,	200		0000000	200001		
^r D ₁	5 P	212	960 1405	6/1coc 840967	4006454	900	723 723	5 P	320 419	740 740	1038147	1876769	710 748	309 309
П Г Г Г	20	568	1455	1642111	3989712	2613	2598	19	1070	1744	2862135	4794331	2568	2180
н-г Н	20	594	1380	1696763	3797544	2588	2467	19	1119	1767	2978121	4621013	2561	2125
	50 #201	, mit		Madac		Modoofo								
	#2.01	avg.	dev.	avg.	dev.	avg.	dev.							
h=0 F	17	645	1444	1383185	3029220	676	329							
D ¹	14	649	947	1425712	2075470	691	295							
П Ц Ц Ц Ц Ц Ц Ц Ц	11	1534	1362	3774669	3020671	2448	1401							
- Н	11	1618	1964	3953820	4409741	2431	1382							

Table 6	Scheduli	ng with rent	tals using a	t static branchin	οo									
	40							43						
	#sol	Time		Nodes		Nodes/s		#sol	Time		Nodes		Nodes/s	
		avg.	dev.	avg.	dev.	avg.	dev.		avg.	dev.	avg.	dev.	avg.	dev.
h=0														
ц	20	13	27	60378	139508	1239	1147	20	25	60	98351	262913	1089	871
D_1	20	16	31	80002	169747	1393	1210	20	30	75	133450	344122	1223	902
h=1														
ц	20	83	118	349495	522644	3096	2595	20	284	1021	1102987	4530456	2787	1803
h=2														
ц	20	83	118	349488	522638	3103	2575	20	285	1038	1102980	4530356	2791	1849
	45							47						
	#sol	Time		Nodes		Nodes/s		#sol	Time		Nodes		Nodes/s	
		avg.	dev.	avg.	dev.	avg.	dev.		avg.	dev.	avg.	dev.	avg.	dev.
h=0														
ц	20	68	220	260331	882753	1094	930	20	91	213	309481	783447	932	396
D_	20	85	276	352155	1149913	1235	965	20	110	264	428014	1110529	1078	501
h=1														
щ	18	1037	631	3723494	2163719	2976	749	7	1205	202	3935339	865505	2560	743
п= <i>2</i> F	18	1041	638	3723480	2163748	2977	772	7	1207	203	3935354	865522	2584	760
	50													
	#sol	Time		Nodes		Nodes/s								
		avg.	dev.	avg.	dev.	avg.	dev.							
h=0														
ц	20	216	563	650832	1775355	893	728							
D_1	20	260	688	895516	2461464	1035	811							

sequence. Each set of instances corresponds to a unique sequence size ({40, 43, 45, 47, 50}) with 20 different seeds.

We summarize these tests in Tables 5 and 6. Results with decomposition are very poor. We therefore do not show them in these tables.

The performances in this problem with *DomOverWDeg* are very similar to the sports league scheduling problem. The global filtering completely outperforms the decomposition with GCC as we said. Regarding the first decomposition (D_1) , it behaves relatively well on the first four sets 40, 43, 45, 47 and slightly worse than the global constraint in the set 50 (i.e. only 14 solved instances compared to 17 instances with F).

Using the static branching on this particular problem was very beneficial. There is no significant performance differences betweens the two models F and D₁. Indeed, they find the same number of solution in all instances with h = 0. The average runtime is slightly but constantly better with the global filtering. The number of nodes is also smaller. However, overall, there was no significant difference between the two models.

It should be noted that in both branching strategies, the standard deviation is better with the global constraint than the decomposition.

6.4 Sorting chords

We need to sort n distinct chords. Each chord is a set of at most p notes played simultaneously. The goal is to find an ordering that minimizes the number of notes changing between two consecutive chords (Fig. 8).

Model The full description and a CP model is in [12]. Figure 6 provides a pseudo-code for this problem. The main difference here is that instead of minimizing either z_c or y_c , we build a Pareto frontier over these two cost variables (the same way performed with the previous benchmark), using WEIGHTEDSPRINGYFOCUS and its decompositions. We generated 4 sets of instances distinguished by the numbers of chords ({14, 16, 18, 20}). We fixed the length of the subsequences and the maximum notes for all the sets then changed the seed for each instance.

Search strategy As in the Sports League Scheduling benchmark, we present the results obtained for each model, i.e., the model that uses WEIGHTEDSPRINGYFOCUS and the models with its decompositions. The search strategy is *DomOverWDeg* with the lowest values assigned first (Table 7). The static branching performs very poorly on these instances and is therefore not shown here.

```
INPUT:

Int n; // number chords, indexed from 0 to n - 1

Int[]] costMatrix; // size: n \times n, matrix of costs between pairs of chords

Int len, h, k; // WEIGHTEDSPRINGYFOCUS

MODEL:

IntVar[] Chords; // size: n, domain {0, 1, ..., n - 1}

IntVar[] Costs; // size: n - 1, domain: all possible costs

Int nChange; // threshold from which a cost is considered as high

IntVar y_c, z_c; // WEIGHTEDSPRINGYFOCUS

\forall i \in 0.n - 2, TABLE(Chords[i], Chords[i + 1], Costs[i]); // cost of each pair

ALLDIFFERENT(Chords);

WEIGHTEDSPRINGYFOCUS(Costs, y_c, len, h, k, z_c);
```

	14							16						
	#sol	Time		Nodes		Nodes/s		#sol	Time		Nodes		Nodes/s	
		avg.	dev.	avg.	dev.	avg.	dev.		avg.	dev.	avg.	dev.	avg.	dev.
h=0														
ц	30	7	7	17577	73168	2923	5350	29	4	13	29963	109164	2737	3655
D_1	30	2	9	15072	55030	2920	4841	30	5	14	35702	117407	2968	3604
\mathbf{D}_2	30	27	127	154422	739803	2437	3681	20	24	97	125863	522175	2380	2222
h=1														
Ц	30	2	12	16224	112110	3707	12269	30	75	980	698888	10086454	4430	13202
D_2	30	29	135	144228	682095	2252	3268	20	28	112	125375	526964	2107	2029
h=2														
ц	30	2	12	17237	112323	3649	12000	29	31	243	249125	2121349	3883	10085
\mathbf{D}_2	30	31	146	157560	752363	2223	3230	20	29	112	134773	549205	2163	1964
	18							20						
	#sol	Time		Nodes		Nodes/s		#sol	Time		Nodes		Nodes/s	
		avg.	dev.	avg.	dev.	avg.	dev.		avg.	dev.	avg.	dev.	avg.	dev.
h=0														
Ц	24	23	80	117113	417085	2022	1864	10	639	2233	3415012	12383754	2849	2442
D_1	25	59	206	337787	1213605	2283	2406	6	666	1727	3534231	9344656	3023	3214
D_2	6	235	837	926145	3357408	1660	1594	б	252	572	844450	1877702	2202	982
h=1														
ц	24	397	2345	2500105	15264782	4123	9485	6	444	1109	2257348	6036524	3023	3215
D_2	6	263	931	947522	3425814	1527	1199	б	284	674	859046	2017445	1932	855
h=2														
ц	25	336	1709	2122557	11238548	4468	11413	11	607	1719	3187854	9777345	2937	3120
\mathbf{D}_2	6	223	703	804368	2637317	1482	1248	4	384	728	1091963	2074681	1805	1097

530

Table 7 Sorting chords

The main observation from Table 7 is that when h = 0, the first decomposition D_1 performs as good as the complete filtering in general. With 16 and 18 chords, D_1 finds an additional solution compared to the complete filtering F. The average nodes, and the average nodes explored per second are very similar in both models. The standard deviation is also very similar with all statics in general.

The decomposition using GCC performs much better than the previous problem but it is outperformed by WEIGHTEDSPRINGYFOCUS. For example, on instances with h = 2 using 18 chords, it finds 9 solutions whereas the complete filtering finds 25.

7 Conclusion

We have presented flexible tools for capturing the concept of concentrating costs. Our contribution highlights the expressive power of constraint programming, in comparison with other paradigms where such a concept would be very difficult to represent. We have shown a connection between our constraint and ILP. Our experiments have demonstrated the effectiveness of the proposed new filtering algorithms.

References

- 1. Ahuja, R.K., Magnanti, T. L., & Orlin, J.B. (1993). Network flows: Theory, algorithms, and applications.
- Boussemart, F., Hemery, F., Lecoutre, C., & Sais, L. (2004). Boosting systematic search by weighting constraints. In *Proceedings of the 16th European Conference on Artificial Intelligence (ECAI'04)* (pp. 482–486).
- 3. Dasgupta, S., Papadimitriou, C.H., & Vazirani, U.V. (2006). Algorithms. McGraw-Hill.
- De Clercq, A., Petit, T., Beldiceanu, N., & Jussien, N. (2011). Filtering algorithms for discrete cumulative problems with overloads of resource. In *Proceedings of the 17th International Conference on Principles* and Practice of Constraint Programming (CP'11) (pp. 240–255).
- Demassey, S., Pesant, G., & Rousseau, L.-M. (2006). A cost-regular based hybrid column generation approach. *Constraints*, 11(4), 315–333.
- Maher, M., Narodytska, N., Quimper, C.-G., & Walsh, T. (2008). Flow-based propagators for the sequence and related global constraints. In *Proceedings of the 14th International Conference on Principles and Practice of Constraint Programming (CP'08)* (pp. 159–174).
- Pesant, G. (2004). A regular language membership constraint for finite sequences of variables. In Proceedings of the 10th International Conference on Principles and Practice of Constraint Programming (CP'04) (pp. 482–495).
- Pesant, G. (2001). A filtering algorithm for the stretch constraint. In Proceedings of the 10th International Conference on Principles and Practice of Constraint Programming (CP'01) (pp. 183–195).
- Pesant, G., & Spread, J.-C.Régin. (2005). A balancing constraint based on statistics. In Proceedings of the 11th International Conference on Principles and Practice of Constraint Programming (CP'05) (pp. 460–474).
- Petit, T., & Poder, E. (2008). Global propagation of practicability constraints. In *Proc. CPAIOR, volume* 5015 (pp. 361–366).
- Petit, T., & Régin, J.-C. (2011). The ordered distribute constraint. *International Journal on Artificial Intelligence Tools*, 20(4), 617–637.
- 12. Petit, T. (2012). Focus: A constraint for concentrating high costs. In *Proceedings of the 18th International Conference on Principles and Practice of Constraint Programming (CP'12)*.
- Régin, J.-C. (1994). A filtering algorithm for constraints of difference in CSPs. In *Proceedings of the 12th* National Conference on Artificial intelligence (AAAI'94) (Vol. 1, pp. 362–367). American Association for Artificial Intelligence.
- 14. Régin, J.-C. (1996). Generalized arc consistency for global cardinality constraint. In *Proceedings of the* 14th National Conference on Artificial intelligence (AAAI'98) (pp. 209–215).

- Régin, J.-C. (2001). Minimization of the number of breaks in sports scheduling problems using constraint programming. *DIMACS Series in Discrete Mathematics and Theoretical Computer Science*, 57, 115–130.
- 16. Rossi, F., van Beek, P., & Walsh, T. (2006). Handbook of constraint programming (Foundations of Artificial Intelligence). New York: Elsevier Science Inc.
- Schaus, P., Deville, Y., Dupont, P., & Régin, J.-C. (2007). The deviation constraint. In *Proc. CPAIOR* (Vol. 4510, pp. 260–274).
- Schaus, P., Van Hentenryck, P., & Régin, J.-C. (2009). Scalable load balancing in nurse to patient assignment problems. In *Proc. CPAIOR, volume 5547 of Lecture Notes in Computer Science* (pp. 248–262). Springer.
- 19. Wagner, A., & Harvey, M. (1962). Optimal capacity scheduling I. Operations Research, 10(4), 518–532.