
Constraint and Variable Ordering Heuristics for Compiling Configuration
Problems

Nina Narodytska

National ICT Australia

ninan@cse.unsw.edu.au

Toby Walsh

NICTA and UNSW

Sydney, Australia

tw@cse.unsw.edu.au

Abstract

To facilitate interactive design, the solutions to con-
figuration problems can be compiled into a de-
cision diagram. We develop three heuristics for
reducing the time and space required to do this.
These heuristics are based on the distinctive clus-
tered and hierarchical structure of the constraint
graphs of configuration problems. The first heuris-
tic attempts to limit the growth in the size of the de-
cision diagram by providing an order in which con-
straints are added to the decision diagram. The sec-
ond heuristic provides an initial order for the vari-
ables within the decision diagram. Finally, the third
heuristic groups variables together so that they can
be reordered by a dynamic variable reordering pro-
cedure used during the construction of the decision
diagram. These heuristics provide one to two or-
ders magnitude improvement in the time to compile
a wide range of configuration.

1 Introduction

Product configuration is often an interactive procedure. The
customer chooses a value for a decision variable. They then
receive feedback from the configurator about valid values
for the remaining decision variables. This continues until a
complete and valid configuration is found.Such a scenario
requires an efficient mechanism to ensure the current deci-
sions can be consistently extended. Hadzic et al. have pro-
posed a two-phase approach for such interactive configura-
tion [Hadzic et al., 2004]. In the first offline phase, a compact
representation is constructed of all product configurations us-
ing a decision diagram. This representation is then used by
the interactive configurator during the second stage.

In this paper, we focus on optimising the first phase of
this configuration process: the compilation of the set of valid
product configurations into a decision diagram. This is a
computationally hard task that can use a significant amount
of CPU time and require large amounts of memory. Although
the first phase is performed offline and is not real-time like
the second phase, performance is still important. For many

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

large configuration problems, compilation may require more
space and time resources than are available. We propose
three heuristic techniques for improving the time and space
required to construct a decision diagram representing the set
of valid solutions to a configuration problems. These heuris-
tics exploit the distinctive clustered and hierarchical structure
observed in the constraint graphs of configuration problems.
The first heuristic provides an order in which constraints are
added to the decision diagram. This limits the growth in the
amount of memory used during construction of the diagram.
The second heuristic provides an initial order for the vari-
ables within the decsion diagram. Finally, the third heuris-
tic groups variables together based on the clustering. These
groups are used by a dynamic variable sifting [Rudell, 1993]

procedure that reorders variables during the construction of
the decision diagram. The combined use of these techniques
reduces by one or two orders of magnitude the time to con-
struct decision diagrams for problems from the configuration
benchmarks suites [Subbarayan, 2004; Sinz et al., 2003]. In-
terestingly, the same heuristics perform poorly on satisfiabil-
ity benchmarks from SATLib suggesting that they are highly
tuned to the clustered and hierarchical structure of configura-
tion problems.

2 Compiling configuration problems

A binary decision diagram (BDD) [Bryant, 1986] can be
viewed as an acyclic directed graph where edges are labeled
by assignments, and a path from the root to the node marked
true corresponds to a model. The set of all such paths thus
gives the set of all possible models. Efficient procedures exist
for constructing and manipulating BDDs. To compile the so-
lutions of a configuration problem into a BDD, we can repre-
sent every constraint as a separate BDD and conjoin together
these BDDs. As BDDs are added, the size of the result-
ing BDD grows. For example, Figure 1 shows the relation-
ship between the number of constraints added and the num-
ber of nodes in the resulting BDD for the Renault Megane
configuration benchmark [Subbarayan, 2004]. The decision
diagram grows almost monotonically in size, except at the
end where the addition of some critical constraints causes a
dramatic drop in size. We observe similar behavior with other
configuration benchmarks.

Such growth is surprsing as quite different behavior is typ-
ically observed with combinatorial problems. For example,



0 20 40 60 80 100 120
0

1

2

3

4

5
x 10

5

Number of added constraints

N
u

m
b

er
 o

f 
B

D
D

 n
o

d
es

(a)

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

Number of added constraints

N
u
m

b
er

 o
f 

B
D

D
 n

o
d
es

(b)

Figure 1: Dynamics of BDD growth for (a) the Renault Megane
configuration benchmark and (b) Langford(11,2) problem

Figure 1b shows the growth in the size of the BDD for Lang-
ford’s number problem [Gent and Walsh, 1999]. The decision
diagram can be orders of magnitude bigger at an intermedi-
ate point than at the end. The amount of memory required
to represent the intermediate BDD may therefore be more
than is available, even though the final BDD representing all
problem solutions may be comparatively small. In addition,
even if there is adequate memory to represent the interme-
diate BDD, the time to construct the final BDD is adversely
affected since the time to add a new constraint to a BDD de-
pends linearly on the size of the BDD.

Monotonic growth in the size of a decision diagram is
highly desirable from the perspective of memory consump-
tion and speed. We therefore tried to identify the structure
of configuration problems monotonic behavior. Our goal
is to use these properties in a more directed manner when
constructing a BDD. We begin our investigations with the
weighted primal constraint graphs. A primal constraint graph
of a problem is an undirected graph where nodes correspond
to problem variables and edges describe constraints. Two
variables are connected by an edge iff they participate in at
least one common constraint. The weight of the edge is equal
to the number of common constraints involving these two
variables. Figure 2 shows the constraint graph of a typical
configuration benchmark.1 The constraint graph has a dis-
tinct tree-like skeleton. It contains a tree of clusters, most of
which have a star-like structure with a few central nodes con-
nected to a large number of peripheral nodes. In contrast, the
constraint graph of a combinatorial problem like Langford’s
numbers problem is more clique-like.

The tree-like structure of constraint graphs can help ex-

1Most configuration benchmarks contain a large number of
unary constraints. In order to obtain more meaningful results, we
eliminated these constraints by performing pure literal deletion and
unit propagation for all problems in our experiments.

Figure 2: Constraint graph of a Mercedes configuration benchmark
(C211 FS).The circles indicate major clusters identified by Markov
CLuster Algorithm(MCL)

plain the monotonic behavior of BDD. Consider an idealised
binary constraint problem whose constraint graph is a tree.
By ordering the constraints from the root to the leaves of
the tree, we can achieve a monotonic growth in the size of
the BDD. However, adding constraints in a random order can
lead to non-monotonic growth.

Configuration problems also often have strong custered
structures. For example, the circles on Figure 2 indi-
cate major clusters identified by the Markov CLuster Algo-
rithm(MCL) [van Dongen, 2000a] for the C211 FS bench-
mark. A cluster typically corresponds to a group of vari-
ables which are very tightly connected. For example, they
might describe a single component of the product, e.g., the
engine of the car. Adding to the decision diagram all the con-
straints within a cluster typically reduces the number of valid
combinations of the clustered variables and thus the size of
the BDD. Our hypothesis thus is that configuration problems
have a distinctive hierarchical and clustered structured which
often permits monotonic growth in the size of the BDD.

3 Constraint ordering heuristics

Based on these observations, we propose a heuristic for
adding constraints that attempts to ensure monotonic growth
in the size of the BDD by keeping its size as small as possible
on every step. The heuristic attempts:

To respect the tree-like structure of many configuration
problems.In particular, we want the heuristic to guar-
antee monotonic growth in the extreme case when the
constraint graph is a tree.

To respect the clustered structure of many configuration
problems. In particular, we want the heuristic to add
constraints from one cluster at a time.

To keep the number of variables small. Typically, a
BDD grows in size with the number of variables added.



Start


1. Select the


first central


variable


2.Select and


add the first


constraint


4. Find next


constraint


5. Next constraint found


7. Select a


new central


variable


3. All


constraints


added


End


6. Add the


constraint to


the BDD


Yes


No


No
Yes


Figure 3: Flowchart of Algorithm 1

Therefore, we want the heuristic to add as few new vari-
ables as possible at each step.

Among the many heuristic algorithms that we imple-
mented and evaluated, the following algorithm, referred to
as Algorithm 1, produced the best results for the majority
of the benchmarks. Figure 3 shows a flowchart of the algo-
rithm. The internal state of the algorithm consists of a list
of constraints already added to the BDD, a list of remaining
constraints, a list of variables already added to the BDD, a
list of remaining variables and a stack of variables that have
been used as central variables (the current central variable is
located at the top of the stack). A central variable is one of the
most constrained variables of the problem, usually the center
of one of the clusters.

Step 1. Selection of the first central variable. Among all
problem variables, a variable whose adjacent edges have
the largest total weight is selected to be the first central
variable. This variable is stored at the top of the stack.

Step 2. Selection of the first constraint. Among all con-
straints that include the central variable, a constraint
with the biggest number of variables in its scope is se-
lected.

Step 4. Selection of the next constraint. The next con-
straint to add to the BDD is selected from the set of
remaining constraints.

4.1 All constraints that contain the current central vari-
able are selected from among the remaining con-
straints. If no such constraints exist, then Step 4
terminates without selecting a candidate constraint.

4.2 From the obtained set of constraints, all constraints
that contain the smallest number of variables not
yet added to the BDD are selected.

4.3 From the obtained set of constraints, constraints
with the smallest number of variables are selected.

4.4 For each selected constraint, the sum of weights of
adjacent edges of all its variables is computed and
those constraints with the largest sum are selected.

The first such constraint becomes the next candi-
date for being added to the BDD.

Step 7. Selection of the next central variable.

7.1 The set of all neighbours of the current central vari-
able is computed (the current central variable is the
variable located at the top of the stack of central
variables).

7.2 From the obtained set of variables, all variables that
do not participate in scopes of any of the remaining
constraints are eliminated.

7.3 If the obtained set of variables is empty, the current
central variable is popped from the stack of central
variables and the algorithm returns to step 7.1.

7.4 From the obtained set of variables, a variable
whose adjacent edges have the largest total weight
is selected to be the next central variable. This vari-
able is stored at the top of the stack of central vari-
ables. If there are several such variables, the first
in the used variable ordering is selected.

This algorithm selects a central variable and adds all con-
straints involving this variable, trying to add as few new vari-
ables as possible on every step. Among all constraints that
pass 4.1 to 4.3, a constraint containing the most influential
variables is selected, since such constraint is more likely to
reduce BDD size. Then the next central variable is selected
from the neighbours of the current central variable. We select
the heaviest variable hoping that it will be the center of the
next cluster (which is usually the case).

Figure 4 shows the results of applying this algorithm to
two configuration benchmarks. The graphs compare adding
constraints in a random order, in the original order specified
in the benchmark description, and in the order produced by
Algorithm 1. In both cases, the order produced by Algo-
rithm 1 results in almost monotonic growth of the BDD and
kept the BDD size smaller than the other two orderings on
all steps. As a result, this algorithm significantly reduced
the time to construct the BDD. We obtained similar results
for other problems from the configuration benchmarks suite,
which we were able to solve without the dynamic variable
reordering optimisation presented in the following section.

Another interesting feature of the graphs is that the original
constraint ordering was much more efficient than the random
ordering. We conjecture that the original ordering usually
reflects the natural structure of the problem. For example, it
typically groups together constraints describing a single com-
ponent of the product. Our constraint ordering heuristic was,
however, able to make further improvements to this order.

4 Variable ordering

In the previous section, we showed that in configuration prob-
lems it is often possible to achieve monotonic growth in the
size of the BDD using constraint ordering heuristics. For
large configuration problems, this may still not be enough.
In order to reduce the space and time requirements of these
problems, we would like to find ways to reduce further the
size of the BDD. By reordering variables, it is often possi-
ble to reduce dramatically the size of a BDD [Bryant, 1986].



0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5

x 10
6

N
u
m

b
er

 o
f 

B
D

D
 n

o
d
es

Number of added constraints

A random ordering
The original ordering
The ordering produced by Algorithm 1

(a)

0 100 200 300 400 500 600 700 800 900
0

2

4

6

8

x 10
6

N
u
m

b
er

 o
f 

B
D

D
 n

o
d
es

Number of added constraints

A random ordering
The original ordering
The ordering produced by Algorithm 1

(b)

Figure 4: Dynamics of BDD growth when adding constraints in a
random order, the original order, and in the ordering produced by
Algorithm 1 for (a) the C211 FS configuration benchmark and (b)
the C638 FVK configuration benchmark

Unfortunately, determining the optimal variable ordering is
NP-hard [Bollig and Wegener, 1996]. Heuristics are there-
fore used in practice. Variable ordering techniques can be di-
vided into two groups: static and dynamic variable ordering
algorithms. Static algorithms compute an ordering of vari-
ables before BDD construction. Dynamic algorithms attempt
to minimise BDD size by improving variable ordering after
the BDD has been partially or completely constructed.

The next sections describe static and dynamic variable or-
dering heuristics that we developed for configuration prob-
lems. These heuristics are based on the following simple ob-
servations. First, we observe that locating strongly dependent
variables close to each other typically reduces the BDD size.
Second, if in a group of variables, one or several variables
strongly influence the assignments of all other variables, then
these variables should be placed higher in variable ordering.

4.1 Static variable ordering heuristics

The proposed static variable ordering algorithm, referred to
as Algorithm 2, consists of three steps. Step 1 finds and
groups strongly dependent variables. Step 2 orders variable
within groups. Step 3 orders groups relative to each other.

Step 1. First, we identify and group together strongly
dependent variables. We employ the fact that
configuration problems have clustered structure and as-
sume that variables within a cluster are strongly related
to each other, while variables in different clusters are
weakly related. We use the MCL algorithm to decom-
pose problem constraint graphs into clusters and group
variables belonging to a cluster together in the static
variable ordering.

Step 2. Second, we try to order variables inside clusters
so that variables that influence the assignments of other

variables are placed higher in the ordering. Most clus-
ters found in configuration problems have a small num-
ber of central variables connected to a large number of
peripheral nodes (see for example Figure 2). Typically,
the central variables determine the values of the periph-
eral variables. Therefore, we put them first in the vari-
able ordering and sort the rest of the variables by their
proximity to the center. The specific algorithm for or-
dering variables within clusters is as follows:

2.1. For each variable in the cluster, compute the total
weight of all its adjacent edges. We will refer to
this value as the weight of the variable.

2.2. Among all variables in the cluster, select a variable
with the biggest weight. This variable is consid-
ered the center of the cluster and is placed in the
beginning of the cluster in the variable ordering.

2.3. Variables in the cluster are sorted by the weight of
edges connecting them to the central variable (vari-
ables that are not directly connected to the center
are pushed to the back of the cluster).

2.4. Variables that are not sorted by the previous step
are sorted by their weights (the heaviest variables
are put first). Variables with equal weights are
sorted by the total weight of their neighbours.

Step 3. We establish an ordering among clusters: we place
clusters that are weakly connected to the rest of the con-
straint graph in front of other clusters. The assumption
is that relatively independent clusters do not increase the
size of the BDD greatly. In the extreme case, a com-
pletely isolated cluster can be placed in the variable or-
dering without increasing the size of the rest of the BDD.
The degree of isolation of a cluster is determined based
on its projection. According to [van Dongen, 2000a],
the projection of a node in a cluster is “the total amount
of edge weights for that node in that cluster (correspond-
ing to neighbours of the node in the cluster) relative to
the overall amount of edge weights for that node (cor-
responding to all its neighbours)”. The projection of a
cluster is “the average of all projection values taken over
all nodes in the cluster”. Clusters are sorted in descend-
ing order of their projections.

4.2 Dynamic variable grouping heuristics

Dynamic variable ordering algorithms try to minimise
the size of an existing BDD by reordering its variables.
Rudell [Rudell, 1993] has proposed a sifting algorithm
for dynamic variable reordering and demonstrated that it
achieves significant reduction of BDD size for some types
of constraint satisfaction problems. The idea of the sifting
algorithm is to move each variable up and down in the order
to find a position that provides a local minimum in the BDD
size. This procedure is applied to every problem variable se-
quentially. We applied the sifting algorithm provided by the
CUDD package [GLU, 2002] to configuration benchmarks.
We used an adaptive threshold to trigger variable reordering.
Whenever the BDD size reached the threshold, we performed
variable reordering and, if the reduced BDD was bigger than
60% of the current threshold, the threshold was increased by



50%. The initial threshold was equal to 100000 BDD nodes.
These parameter values were selected empirically.

Panda and Somenzi [Panda and Somenzi, 1995] noticed
that dependent variables tend to attract each other during vari-
able sifting, which results in groups of dependent variables
being placed in suboptimal positions. To avoid this effect,
dependent variables should be kept in contiguous groups that
are moved as one during variable sifting. They developed
the group sifting algorithm, which automatically finds and
groups dependent variables. In our experiments (not cited
here) this algorithm slightly improved performance of vari-
able sifting; however much better performance gain can be
obtained by taking into account problem structure. As de-
scribed in Section 4.1, in configuration problems, groups of
dependent variables can be identified based on the cluster de-
composition of the constraint graph. We modified the vari-
able sifting algorithm to partition problem variables into con-
tiguous groups corresponding to clusters identified by MCL.
Grouped variables are kept contiguous by the reordering pro-
cedure. In addition, we allow variables within the group to
be reordered before performing the group sifting.

When performing variable grouping, it is important to
put only strongly connected variables in the same group
and avoid grouping weakly connected variables. Therefore,
among the clusters found by the MCL algorithm, we only
group clusters that have projections bigger than 0.35.

5 Experimental results

We evaluated the three heuristics on problems from the
configuration benchmarks suites [Subbarayan, 2004] and
[Sinz et al., 2003]. The algorithms were implemented in C++
using the CUDD 2.3.2 BDD package from the GLU 2.0 li-
brary [GLU, 2002] and the implementation of the MCL al-
gorithm obtained from [van Dongen, 2000b]. In all experi-
ments, MCL was used with the inflation parameter set to 5.
This parameter affects cluster granularity; we select it to be
equal to 5 to get fine-grained clusterings. Experiments were
run on a 3.2GHz Pentium 4 machine with 1GB of RAM.

In most cases, MCL produced a satisfactory clustering of
the constraint graph. However, it failed on several large prob-
lems: C209 FA, C210 FVF, and C211 FW. In these problems,
the majority of variables are grouped into a single cluster as
there are several variables connected to virtually every prob-
lem variable. Therefore whenever MCL encounters a clus-
ter that contains more than half of problem variables, we re-
moved its central variables, which are the heaviest variables
in the cluster, and repeated the the clustering algorithm. The
removed central variables are placed at the top of the initial
variable ordering as they are likely to be influential.

Table 1 gives results of our experiments. As can be seen
from these results, the constraint ordering heuristics in Algo-
rithm 1 (column 3) reduce the time to construct BDDs com-
pared to random (column 1) and, in most cases, the origi-
nal (column 2) constraint ordering. We note that the original
constraint ordering typically produces quite good results too.
As observed before, we conjecture that the original ordering
follows the problem structure very closely. For example, all
constraints describing a single component of the product are

typically placed contiguously in the original ordering. On the
other hand, Algorithm 1 is able to find a good constraint or-
dering even if the constraints are randomly shuffled.

Column 6 shows the effect of the static variable ordering
algorithm (Algorithm 2) on BDD construction speed. It pro-
duced comparable results to the original variable ordering
(column 3) and performed an order of magnitude better than
the random variable ordering (not given here), which means
that we correctly identified the structure of the problem.

Comparing columns 4 and 5, 7 and 8 we can see that vari-
able ordering heuristic based on grouping clustered variables
reduces BDD construction time compared to pure variable
sifting [Rudell, 1993] for the majority of benchmarks.

Interestingly, we also tried these three heuristics on a wide
range of satisfiability benchmarks from SATLib. We ob-
served uniformly poor performance. We conjecture therefore
that configuration problems have an unusual hierarchical and
clustered structure which we can exploit when compiling so-
lutions into a decision diagram.

6 Related work

Hadzic et. al. proposed using BDDs to represent the solu-
tions of configuration problems [Hadzic et al., 2004]. How-
ever, they were mainly concerned with reducing the size of
the final BDD in order to improve the responsiveness of the
configurator and not with the efficiency of the BDD construc-
tion. In contrast we focus on reducing time and memory
requirements for BDD construction. For example, our first
heuristic attempts to optimize the order in which constraints
are added to the BDD. This does not affect the size of the
final BDD, just the size of intermediate BDDs.

Sinz [Sinz, 2002] has proposed an alternative approach to
the precompilation of the solutions of configuration problems
based on construction of the optimal set of prime implicates.

Static variable ordering techniques have been extensively
studied for verification problems. Such problems can be de-
scribed by a model connectivity graph, an analogue of the
constraint graph. A number of variable ordering heuristics
have been developed based on the topology of model con-
nectivity graph. These heuristics follow the same guidelines
as the ones we used in the Algorithm 2. Namely, they keep
strongly connected variables close in variable ordering and
put the most influential variables on top [Chung et al., 1994].
Jain et. al. [Jain et al., 1998] proposed a different approach
based on construction of variable orderings for a series of
BDDs that partially capture the functionality of the circuit.
This approach was further developed in [Lu et al., 2000].
While these methods are specialized to verification, it would
be interesting nevertheless to adapt them to configuration and
compare with the heuristics described here.

7 Conclusions

We have proposed three heuristics for reducing the time and
space required to compile the solutions to a configuration
problem into a decision diagram. We first showed that the
growth in the size of the decision diagram depends strongly
on the order in which constraints are added, and proposed
a constraint ordering heuristic based on the hierarchical and



Constraint ordering Random Original Alg 1 Alg 1 Alg 1 Alg 1 Alg 1 Alg 1

Variable ordering Original Original Original Original +
sifting

Original +
sifting +
grouping

Alg 2 Alg 2 +
sifting

Alg 2 +
sifting +
grouping

Benchmark2 #Vars #Cons 1 2 3 4 5 6 7 8

Renault 99 112 54 30 25 27 27 26 27 27
C169 FV 39 76 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
D1119 M23 47 178 0.14 0.07 0.07 0.07 0.05 0.04 0.04 0.04
C250 FW 123 321 0.3 0.15 0.08 0.08 0.07 0.1 0.1 0.1
C211 FS 238 889 1432 231 48 19 14 30.5 45 4.5
C638 FVK 426 948 – 407 259 52 23 8 8 8
C638 FKB 495 1572 – – – 522 135 – 3377 115
C171 FR 441 1775 – – – — 1602 – 9697 1626
C210 FVF 489 1849 – – – – 1261 – – 1604
C209 FA 492 1939 – – – 3858 1097 – 3189 1228
C211 FW 337 3188 – – – 1380 3813 – 1771 6924
C638 FKA 517 5272 – – – 3761 390 – 4300 459

Table 1: Comparison of different BDD construction algorithms. Columns 1 to 8 show average CPU time spent on BDD construction
in seconds across 5 runs. The run-time of MCL algorithm is included. “–” denotes that the given problem could not be solved by the
corresponding algorithm either because the BDD size exceeded 15,000,000 nodes or because it was interrupted after 10,000 secs.

clustered structure of the primal constraint graph of many
configuration problems. We further exploited these proper-
ties of configuration problems to develop heuristics for static
and dynamic variable ordering. The net effect of the proposed
heuristics is one to two orders of magnitude improvement in
the time to compile the solutions of benchmark configuration
problems. In addition, we were able to solve some problems
that could not be solved on our hardware without the heuris-
tics due to memory limitations.

References

[Bollig and Wegener, 1996] Beate Bollig and Ingo Wegener.
Improving the variable ordering of OBDDs is NP-
complete. IEEE Transactions on Computers, 45(9):993–
1002, 1996.

[Bryant, 1986] Randal E. Bryant. Graph-based algorithms
for Boolean function manipulation. IEEE Transactions on
Computers, 35(8):677–691, 1986.

[Chung et al., 1994] Pi-Yu Chung, Ibrahim Hajj, and Janak
Patel. Efficient Variable Ordering Heuristics for Shared
ROBDD. In Proceedings of the IEEE International Sym-
posium on Circuits and Systems, pages 1690–1693, 1994.

[Gent and Walsh, 1999] Ian P. Gent and Toby Walsh. Lang-
ford’s number problem in CSPLib. http://csplib.

org/prob/prob024/index.html, 1999.

[GLU, 2002] GLU BDD packages. ftp://vlsi.

colorado.edu/pub/vis/, 2002.

[Hadzic et al., 2004] Tarik Hadzic, Sathiamoorthy Sub-
barayan, Rune Møller Jensen, Henrik Reif Andersen, Hen-
rik Hulgaard, and Jesper Møller. Fast backtrack-free prod-
uct configuration using a precompiled solution space rep-
resentation. In Proceedings of the International Confer-
ence on Economic, Technical and Organizational aspects
of Product Configuration Systems, pages 131–138, 2004.

2after performing pure literal deletion and unit propagation

[Jain et al., 1998] Jawahar Jain, William Adams, and
Masahiro Fujita. Sampling schemes for computing
OBDD variable orderings. In Proceedings of the 1998
IEEE/ACM International Conference on Computer-Aided
Design, pages 631–638, 1998.

[Lu et al., 2000] Yuan Lu, Jawahar Jain, Edmund M. Clarke,
and Masahiro Fujita. Efficient variable ordering using
aBDD based sampling. In Proceedings of the 37th Con-
ference on Design Automation, pages 687–692, 2000.

[Panda and Somenzi, 1995] Shipra Panda and Fabio
Somenzi. Who are the variables in your neighborhood.
In Proceedings of the 1995 IEEE/ACM International
Conference on Computer-Aided Design, pages 74–77,
1995.

[Rudell, 1993] Richard Rudell. Dynamic variable order-
ing for ordered binary decision diagrams. In Proceed-
ings of the 1993 IEEE/ACM International Conference on
Computer-Aided Design, pages 42–47, 1993.

[Sinz et al., 2003] Carsten Sinz, Andreas Kaiser, and Wolf-
gang Küchlin. Formal methods for the validation of au-
tomotive product configuration data. Artificial Intelli-
gence for Engineering Design, Analysis and Manufactur-
ing, 17(1):75–97, 2003.

[Sinz, 2002] Carsten Sinz. Knowledge compilation for prod-
uct configuration. In Proceedings of the Configuration
Workshop, 15th European Conference on Artificial Intelli-
gence, pages 23–26, 2002.

[Subbarayan, 2004] Sathiamoorthy Subbarayan. CLib: con-
figuration benchmarks library. http://www.itu.dk/
research/cla/externals/clib, 2004.

[van Dongen, 2000a] Stijn van Dongen. A cluster algorithm
for graphs. Technical Report INS-R001, CWI, Nether-
lands, Amsterdam, 2000.

[van Dongen, 2000b] Stijn van Dongen. MCL implementa-
tion. http://micans.org/mcl/, 2000.


