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ABSTRACT
The stable marriage problem is a well-known problem of
matching men to women so that no man and woman who
are not married to each other both prefer each other. Such
a problem has a wide variety of practical applications rang-
ing from matching resident doctors to hospitals to matching
students to schools. A well-known algorithm to solve this
problem is the Gale-Shapley algorithm, which runs in poly-
nomial time.

It has been proven that stable marriage procedures can
always be manipulated. Whilst the Gale-Shapley algorithm
is computationally easy to manipulate, we prove that there
exist stable marriage procedures which are NP-hard to ma-
nipulate. We also consider the relationship between voting
theory and stable marriage procedures, showing that voting
rules which are NP-hard to manipulate can be used to define
stable marriage procedures which are themselves NP-hard to
manipulate. Finally, we consider the issue that stable mar-
riage procedures like Gale-Shapley favour one gender over
the other, and we show how to use voting rules to make any
stable marriage procedure gender neutral.

1. INTRODUCTION
The stable marriage problem (SMP) [12] is a well-known

problem of matching the elements of two sets. Given n men
and n women, where each person expresses a strict order-
ing over the members of the opposite sex, the problem is to
match the men to the women so that there are no two people
of opposite sex who would both rather be matched with each
other than their current partners. If there are no such peo-
ple, all the marriages are said to be stable. Gale and Shap-
ley [8] proved that it is always possible to solve the SMP and
make all marriages stable, and provided a quadratic time al-
gorithm which can be used to find one of two particular but
extreme stable marriages, the so-called male optimal or fe-
male optimal solution. The Gale-Shapley algorithm has been
used in many real-life applications, such as in systems for
matching hospitals to resident doctors [21] and the assign-
ment of primary school students in Singapore to secondary
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schools [25]. Variants of the stable marriage problem turn
up in many domains. For example, the US Navy has a web-
based multi-agent system for assigning sailors to ships [17].

One important issue is whether agents have an incen-
tive to tell the truth or can manipulate the result by mis-
reporting their preferences. Unfortunately, Roth [20] has
proved that all stable marriage procedures can be manipu-
lated. He demonstrated a stable marriage problem with 3
men and 3 women which can be manipulated whatever sta-
ble marriage procedure we use. This result is in some sense
analogous to the classical Gibbard Satterthwaite [11,24] the-
orem for voting theory, which states that all voting proce-
dures are manipulable under modest assumptions provided
we have 3 or more voters. For voting theory, Bartholdi,
Tovey and Trick [3] proposed that computational complex-
ity might be an escape: whilst manipulation is always pos-
sible, there are voting rules where it is NP-hard to find a
manipulation.

We might hope that computational complexity might also
be a barrier to manipulate stable marriage procedures. Un-
fortunately, the Gale-Shapley algorithm is computationally
easy to manipulate [25]. We identify here stable marriage
procedures that are NP-hard to manipulate. This can be
considered a first step to understanding if computational
complexity might be a barrier to manipulations. Many ques-
tions remain to be answered. For example, the preferences
met in practice may be highly correlated. Men may have
similar preferences for many of the women. Are such profiles
computationally difficult to manipulate? As a second exam-
ple, it has been recently recognised (see, for example, [4,19])
that worst-case results may represent an insufficient barrier
against manipulation since they may only apply to problems
that are rare. Are there stable marriage procedures which
are difficult to manipulate on average?

Another drawback of many stable marriage procedures
such as the one proposed by Gale-Shapley is their bias to-
wards one of the two genders. The stable matching returned
by the Gale-Shapley algorithm is either male optimal (and
the best possible for every man) but female pessimal (that is,
the worst possible for every woman), or female optimal but
male pessimal. It is often desirable to use stable marriage
procedures that are gender neutral [18]. Such procedures
return a stable matching that is not affected by swapping
the men with the women. The goal of this paper is to study
both the complexity of manipulation and gender neutrality
in stable marriage procedures, and to design gender neutral



procedures that are difficult to manipulate.
It is known that the Gale-Shapley algorithm is compu-

tationally easy to manipulate [25]. Our first contribution
is to prove that if the male and female preferences have a
certain form, it is computationally easy to manipulate any
stable marriage procedure. We provide a universal polyno-
mial time manipulation scheme that, under certain condi-
tions on the preferences, guarantees that the manipulator
marries his optimal stable partner irrespective of the stable
marriage procedure used. On the other hand, our second
contribution is to prove that, when the preferences of the
men and women are unrestricted, there exist stable mar-
riage procedures which are NP-hard to manipulate.

Our third contribution is to show that any stable mar-
riage procedure can be made gender neutral by means of a
simple pre-processing step which may swap the men with
the women. This swap can, for instance, be decided by a
voting rule. However, this may give a gender neutral stable
matching procedure which is easy to manipulate.

Our final contribution is a stable matching procedure which
is both gender neutral and NP-hard to manipulate. This
procedure uses a voting rule that, considering the male and
female preferences, helps to choose between stable match-
ings. In fact, it picks the stable matching that is most pre-
ferred by the most popular men and women. We prove that,
if the voting rule used is Single Transferable Vote (STV) [1],
which is NP-hard to manipulate, then the resulting stable
matching procedure is both gender neutral and NP-hard to
manipulate. We conjecture that other voting rules which
are NP-hard to manipulate will give rise to stable matching
procedures which are also gender neutral and NP-hard to
manipulate. Thus, our approach shows how combining vot-
ing rules and stable matching procedures can be beneficial
in two ways: by using preferences to discriminate among
stable matchings and by providing a possible computational
shield against manipulation.

2. BACKGROUND
The stable marriage problem (SMP) is the problem of find-

ing a a matching between the elements of two sets. More
precisely, given n men and n women, where each person
strictly orders all members of the opposite gender, we wish
to marry the men to the women such that there are no two
people of opposite sex who would both rather be married to
each other than their current partners. If there are no such
people, all the marriages are stable.

2.1 The Gale-Shapley algorithm
The Gale-Shapley algorithm [8] is a well-known algorithm

to solve the SMP problem. It involves a number of rounds
where each un-engaged man“proposes”to his most-preferred
woman to whom he has not yet proposed. Each woman
then considers all her suitors and tells the one she most
prefers “maybe” and all the rest of them “No”. She is then
provisionally “engaged”. In each subsequent round, each un-
engaged man proposes to one woman to whom he has not yet
proposed (the woman may or may not already be engaged),
and the women once again reply with one“maybe”and reject
the rest. This may mean that already-engaged women can
“trade up”, and already-engaged men can be “jilted”.

This algorithm needs a number of steps that is quadratic
in n, and it guarantees that:

• If the number of men and women coincide, and all
participants express a linear order over all the mem-
bers of the other group, everyone gets married. Once
a woman becomes engaged, she is always engaged to
someone. So, at the end, there cannot be a man and a
woman both un-engaged, as he must have proposed to
her at some point (since a man will eventually propose
to every woman, if necessary) and, being un-engaged,
she would have to have said yes.

• The marriages are stable. Let Alice be a woman and
Bob be a man. Suppose they are each married, but
not to each other. Upon completion of the algorithm,
it is not possible for both Alice and Bob to prefer each
other over their current partners. If Bob prefers Alice
to his current partner, he must have proposed to Alice
before he proposed to his current partner. If Alice
accepted his proposal, yet is not married to him at the
end, she must have dumped him for someone she likes
more, and therefore doesn’t like Bob more than her
current partner. If Alice rejected his proposal, she was
already with someone she liked more than Bob.

Note that the pairing generated by the Gale-Shapley algo-
rithm is male optimal, i.e., every man is paired with his
highest ranked feasible partner, and female-pessimal, i.e.,
each female is paired with her lowest ranked feasible part-
ner. It would be the reverse, of course, if the roles of male
and female participants in the algorithm were interchanged.

Given n men and n women, a profile is a sequence of 2n
strict total orders, n over the men and n over the women.
In a profile, every woman ranks all the men, and every man
ranks all the women.

Example 1. Assume n = 3. Let W = {w1, w2, w3} and
M = {m1, m2, m3} be respectively the set of women and
men. The following sequence of strict total orders defines a
profile:

• m1 : w1 > w2 > w3 (i.e., the man m1 prefers the
woman w1 to w2 to w3),

• m2 : w2 > w1 > w3,

• m3 : w3 > w2 > w1,

• w1 : m1 > m2 > m3,

• w2 : m3 > m1 > m2,

• w3 : m2 > m1 > m3

For this profile, the Gale-Shapley algorithm returns the male
optimal solution {(m1, w1), (m2, w2), (m3, w3)}. On the other
hand, the female optimal solution is {(w1, m1), (w2, m3), (w3,
m2)}.

2.2 Gender neutrality and non-manipulability
A desirable property of a stable marriage procedure is

gender neutrality. A stable marriage procedure is gender
neutral [18] if and only if when we swap the men with the
women, we get the same result. A related property, called
peer indifference [18], holds if the result is not affected by
the order in which the members of the same sex are consid-
ered. The Gale-Shapley procedure is peer indifferent but it
is not gender neutral. In fact, if we swap men and women



in Example 1, we obtain the female optimal solution rather
than the male optimal one.

Another useful property of a stable marriage procedure is
its resistance to manipulation. In fact, it would be desirable
that lying would not lead to better results for the lier. A
stable marriage procedure is manipulable if there is a way
for one person to mis-report their preferences and obtain a
result which is better than the one they would have obtained
with their true preferences.

Roth [20] has proven that stable marriage procedures can
always be manipulated, i.e, that no stable marriage proce-
dures exist which always yields a stable outcome and give
agents the incentive to reveal their true preferences. He
demonstrated a 3 men, 3 women profile which can be ma-
nipulated whatever stable marriage procedure we use. A
similar result in a different context is the one by Gibbard
and Satterthwaite [11,24], that proves that all voting proce-
dures [1] are manipulable under some modest assumptions.
In this context, Bartholdi, Tovey and Trick [3] proposed
that computational complexity might be an escape: whilst
manipulation is always possible, there are rules like Single
Transferable Vote (STV) where it is NP-hard to find a ma-
nipulation [2]. This resistance to manipulation arises from
the difficulty of inverting the voting rule and does not de-
pend on other assumptions like the difficulty of discovering
the preferences of the other voters. In this paper, we study
whether computational complexity may also be an escape
from the manipulability of stable marriage procedures. Our
results are only initial steps to a more complete understand-
ing of the computational complexity of manipulating stable
matching procedures. As mentioned before, NP-hardness
results only address the worst case and may not apply to
preferences met in practice.

3. MANIPULATING STABLE MARRIAGE
PROCEDURES

A manipulation attempt by a participant p is the mis-
reporting of p’s preferences. A manipulation attempt is un-
successful if the resulting marriage for p is strictly worse than
the marriage obtained telling the truth. Otherwise, it is said
to be successful. A stable marriage procedure is manipulable
if there is a profile with a successful manipulation attempt
from a participant.

The Gale-Shapley procedure, which depending on how it
is defined returns either the male optimal or the female op-
timal solutions, is computationally easy to manipulate [25].
However, besides these two extreme solutions, there may be
many other stable matchings. Several procedures have been
defined to return some of these other stable matchings [13].
Our first contribution is to show that, under certain condi-
tions on the shape of the male and female preferences, any
stable marriage procedure is computationally easy to ma-
nipulate.

Consider a profile p and a woman w in such a profile.
Let m be the male optimal partner for w in p, and n be
the female optimal partner for w in p. Profile p is said to
be universally manipulable by w if the following conditions
hold:

• in the men-proposing Gale-Shapley algorithm, w re-
ceives more than one proposal;

• there exists a woman v such that n is the male optimal
partner for v in p;

• v prefers m to n;

• n’s preferences are . . . > v > w > . . .;

• m’s preferences . . . w > v > . . ..

Theorem 1. Consider any stable marriage procedure and
any woman w. There is a polynomial manipulation scheme
that, for any profile which is universally manipulable by w,
produces the female optimal partner for w. Otherwise, it
produces the same partner.

Proof. Consider the manipulation attempt that moves
the male optimal partner m of w to the lower end of w’s pref-
erence ordering, obtaining the new profile p′. Consider now
the behaviour of the men-proposing Gale-Shapley algorithm
on p and p′. Two cases are possible for p: w is proposed to
only by man m, or it is proposed to also by some other man
o. In this second case, it must be w prefers m to o since m
is the male optimal partner for w.

If w is proposed to by m and also by some o, then, when w
compares the two proposals, in p she will decide for m, while
in p′ she will decide for o. At this point, in p′, m will have
to propose to the next best woman for him, that is, v, and
she will accept because of the assumptions on her preference
ordering. This means that n (who was married to v in p)
now in p′ has to propose to his next best choice, that is, w,
who will accept, since w prefers n to m. So, in p′, the male
optimal partner for w, as well as her female optimal partner,
is n. This means that there is only one stable partner for w
in p′. Therefore, any stable marriage procedure must return
n as the partner for w.

Thus, if woman w wants to manipulate a stable marriage
procedure, she can check if the profile is universally manip-
ulable by her. This involves simulating the Gale-Shapley
algorithm to see whether she is proposed by m only or also
by some other man. In the former case, she will not do the
manipulation. Otherwise, she will move m to the far right it
and she will get her female optimal partner, whatever stable
marriage procedure is used. This procedure is polynomial
since the Gale-Shapley algorithm takes quadratic time to
run. 2

Example 2. In a setting with 3 men and 3 women, con-
sider the profile {m1 : w1 > w2 > w3; m2 : w2 > w1 >
w3; m3 : w1 > w2 > w3; } {w1 : m2 > m1 > m3; w2 : m1 >
m2 > m3; w3 : m1 > m2 > m3; } In this profile, the male
optimal solution is {(m1, w1), (m2, w2), (m3, w3)}. This pro-
file is universally manipulable by w1. In fact, woman w1 can
successfully manipulate by moving m1 after m3, and obtain-
ing the marriage (m2, w1), thus getting her female optimal
partner. Notice that this holds no matter what stable mar-
riage procedure is used. This same profile is not univer-
sally manipulable by w2 or w3, since they receive just one
proposal in the men-proposing Gale-Shapley algorithm. In
fact, woman w2 cannot manipulate: trying to move m2 after
m3 gets a worse result. Also, woman w3 cannot manipulate
since her male optimal partner is her least preferred man.

Restricting to universally manipulable profiles makes ma-
nipulation computationally easy. On the other hand, if we
allow all possible profiles, there are stable marriage proce-
dures that are NP-hard to manipulate. The intuition is
simple. We construct a stable marriage procedure that is
computationally easy to compute but NP-hard to invert.



To manipulate, a man or a woman will essentially need to
be able to invert the procedure to choose between the ex-
ponential number of possible preference orderings. Hence,
the constructed stable marriage procedure will be NP-hard
to manipulate. The stable marriage procedure used in this
proof is somewhat “artificial”. However, we will later pro-
pose a stable marriage procedure which is more natural while
remaining NP-hard to manipulate. This procedure selects
the stable matching that is most preferred by the most pop-
ular men and women. It is an interesting open question to
devise other stable marriage procedures which are “natural”
and computationally difficult to manipulate.

Theorem 2. There exist stable marriage procedures for
which deciding the existence of a successful manipulation is
NP-complete.

Proof. We construct a stable marriage procedure which
chooses between the male and female optimal solution based
on whether the profile encodes a NP-complete problem and
its polynomial witness. The manipulator’s preferences define
the witness. The other people’s preferences define the NP-
complete problem. Hence, the manipulator needs to be able
to solve a NP-complete problem to be able to manipulate
successfully. Deciding if there is a successful manipulation
for this stable marriage procedure is clearly in NP since we
can compute male and female optimal solutions in polyno-
mial time, and we can check a witness to a NP-complete
problem also in polynomial time.

Our stable marriage procedure is defined to work on n+3
men (m1, m2 and p1 to pn+1) and n + 3 women (w1, w2

and v1 to vn+1). It returns the female optimal solution if
the preferences of woman w1 encode a Hamiltonian path in
a directed graph encoded by the other women’s preferences,
otherwise it returns the male optimal solution. The 3rd to
n + 2th preferences of woman w1 encode a possible Hamil-
tonian path in a n node graph. In particular, if the 2 + ith
man in the preference ordering of woman w1 for i > 0 is
man pj , then the path goes from vertex i to vertex j. The
preferences of the women vi for i ≤ n encode the graph in
which we find this Hamiltonian path. In particular, if man
pj for j < n + 1 and j 6= i appears before man pn+1 in the
preference list of woman wi, then there is a directed edge in
the graph from i to j. It should be noticed that any graph
can be produced using this construction.

Given a graph which is not complete in which we wish
to find a Hamiltonian path, we now build a special profile.
Woman w1 will be able to manipulate this profile success-
fully iff the graph contains a Hamiltonian path. In the pro-
file, woman w1 most prefers to marry man m1 and then man
m2. Consider any pair of vertices (i, j) not in the graph.
Woman w1 puts man pj at position 2 + i in her preference
order. She puts all other pj ’s in any arbitrary order. This
construction will guarantee that the preferences of w1 do not
represent a Hamiltonian path. Woman w2 most prefers to
marry man m2. Woman vi most prefers to marry man pi,
and has preferences for the other men pj according to the
edges from vertex i. Man m1 most prefers woman w2. Man
m2 most prefers woman w1. Finally, man pi most prefers
woman vi. All other unspecified preferences can be chosen
in any way. By construction, all first choices are different.
Hence, the male optimal solution has the men married to
their first choice, whilst the female optimal solution has the
women married to their first choice.

The male optimal solution has woman w1 married to man
m2. The female optimal solution has woman w1 married to
man m1. By construction, the preferences of woman w1 do
not represent a Hamiltonian path. Hence our stable match-
ing procedure returns the male optimal solution: woman w1

married to man m2. The only successful manipulation then
for woman w1 is if she can marry her most preferred choice,
man m1. As all first choices are different, woman w1 cannot
successfully manipulate the male or female optimal solution.
Therefore, she must manipulate her preferences so that she
spells out a Hamiltonian path in her preference ordering, and
our stable marriage procedure therefore returns the female
optimal solution. This means she can successful manipulate
iff there is a Hamiltonian path. Hence, deciding if there is a
successful manipulation is NP-complete. 2

Note that we can modify the proof by introducing O(n2)
men so that the graph is encoded in the tail of the prefer-
ences of woman w2. This means that it remains NP-hard to
manipulate a stable marriage procedure even if we collude
with all but one of the women. It also means that it is NP-
hard to manipulate a stable marriage procedure when the
problem is imbalanced and there are just 2 women but an
arbitrary number of men. Notice that this procedure is not
peer indifferent, since it gives special roles to different men
and women. However, it is possible to make it peer indif-
ferent, so that it computes the same result if we rename the
men and women. For instance, we just take the men’s prefer-
ences and compute from them a total ordering of the women
(e.g. by running an election with these preferences). Sim-
ilarly, we take the women’s preferences and compute from
them a total ordering of the men. We can then use these
orderings to assign indices to men and women. Notice also
this procedure is not gender neutral. If we swap men and
women, we may get a different result. We can, however, use
the simple procedure proposed in the next section to make
it gender neutral.

4. GENDER NEUTRALITY
As mentioned before, a weakness of many stable marriage

procedures like the Gale-Shapley procedure and the proce-
dure presented in the previous section, is that they are not
gender neutral. They may greatly favour one sex over the
other. We now present a simple and universal technique for
taking any stable marriage procedure and making it gender
neutral. We will assume that the men and the women are
named from 1 to n. We will also say that the men’s prefer-
ences are isomorphic to the women’s preferences iff there is
a bijection between the men and women that preserves both
the men’s and women’s preferences. In this case, it is easy
to see that there is only one stable matching.

We can convert any stable marriage procedure into one
that is gender neutral by adding a pre-round in which we
choose if we swap the men with the women. The idea of
using pre-rounds for enforcing certain properties is not new
and has been used for example in [5] to make manipula-
tion of voting rules NP-hard. The goal of our pre-round
is, instead, to ensure gender-neutrality. More precisely, for
each gender we compute its signature: a vector of numbers
constructed by concatenating together each of the individ-
ual preference lists. Among all such vectors, the signature
is the lexicographically smallest vector under reordering of
the members of the chosen gender and renumbering of the
members of the other gender.



Example 3. Consider the following profile with 3 men
and 3 women. {m1 : w2 > w1 > w3; m2 : w3 > w2 >
w1; m3 : w2 > w1 > w3} {w1 : m1 > m2 > m3; w2 : m3 >
m1 > m2; w3 : m2 > m1 > m3}. The signature of the men
is 123123312: each group of three digits represents the pref-
erence ordering of a man; men m2 and m3 and women w1

and w2 have been swapped with each other to obtain the lex-
icographically smallest vector. The signature of the women
is instead 123213312.

Note that this vector can be computed in O(n2) time.
For each man, we put his preference list first, then reorder
the women so that this man’s preference list reads 1 to n.
Finally, we concatenate the other men’s preference lists in
lexicographical order. We define the signature as the small-
est such vector.

Before applying any stable marriage procedure, we pro-
pose to pre-process the profile according to the following
rule, that we will call gn-rule (for gender neutral): If the
male signature is smaller than the female signature, then
we swap the men with the women before calling the stable
marriage procedure. On the other hand, if the male signa-
ture is equal or greater than the female signature, we will
not swap the men with the women before calling the stable
marriage procedure. In the example above, the male sig-
nature is smaller than the female signature, thus men and
women must be swapped before using the stable marriage
procedure.

Theorem 3. Consider any stable marriage procedure, say
µ. Given a profile p, consider the new procedure µ′ obtained
by applying µ to gn-rule(p). This new procedure returns a
stable marriage and it is gender neutral. Moreover, if µ is
peer indifferent, then µ′ is peer indifferent as well.

Proof. To prove gender neutrality, we consider three
cases:

• If the male signature is smaller than the female sig-
nature, the gn-rule swaps the men with the women.
Thus we would apply µ to swapped genders.

To prove that the new procedure is gender neutral, we
must prove that, if we swap the men with the women,
the result is the same. If we do this swap, their sig-
natures will be swapped. Thus the male signature will
result larger than the female signature, and therefore
the gn-rule will not swap men and women. Thus pro-
cedure µ will be applied to swapped genders.

• If the male signature is larger than the female signa-
ture, the gn-rule leaves the profile as it is. Thus µ is
applied to profile p.

If we swap the genders, the male signature will result
smaller than the female signature, and therefore the
gn-rule will perform the swap. Thus procedure µ will
be applied to the original profile p.

• If the male and female signatures are identical, the men
and women’s preferences are isomorphic and there is
only one stable matching. Any stable marriage proce-
dure must therefore return this matching, and hence
it is gender neutral.

As for peer indifference, if we start from a profile obtained
by reordering men or women, the signatures will be the same

and thus the gn-rule will perform the same (either swapping
or not). Thus the result of applying the whole procedure to
the reordered profile will be the same as the one obtained
by using the given profile. 2

If we are not concerned about preserving peer indiffer-
ence, or if we start from a non-peer indifferent matching
procedure, we can use a much simpler version of the gn-
rule, where the signatures are obtained directly from the
profile without considering any reordering/renaming of men
or women. This simpler approach is still sufficient to guaran-
tee gender neutrality, but might produce a procedure which
is not peer indifferent.

5. VOTING RULES AND STABLE
MARRIAGE PROCEDURES

We will now see how we can exploit results about voting
rules to build stable marriage procedures which are both
gender neutral and difficult to manipulate.

5.1 A score-based matching procedure: gen-
der neutral but easy to manipulate

Given a profile, consider a set of its stable matchings. For
simplicity, consider the set containing only the male and
female optimal stable matchings. However, there is no rea-
son why we could not consider a larger polynomial size set.
For example, we might consider all stable matchings found
on a path through the stable marriage lattice [16] between
the male and female optimal, or we may simply run twice
any procedure computing a set of stable marriages, swap-
ping genders the second time. We can now use the men and
women’s preferences to rank stable matchings in the consid-
ered set. For example, as in [15], we can score a matching
as the sum of the men’s ranks of their partners and of the
women’s ranks of their partners.

We then choose between the stable matchings in our given
set according to which has the smallest score. Since our set
contains only the male and the female optimal matches, we
choose between the male and female optimal stable match-
ings according to which has the lowest score. If the male
optimal and the female optimal stable matching have the
same score, we use the signature of men and women, as de-
fined in the previous section, to tie-break. It is possible to
show that the resulting matching procedure, which returns
the male optimal or the female optimal stable matching ac-
cording to the scoring rule (or, if they have the same score,
according to the signature) is gender neutral.

Unfortunately, this procedure is easy to manipulate. For a
man, it is sufficient to place his male optimal partner in first
place in his preference list, and his female optimal partner
in last place. If this manipulation does not give the man his
male optimal partner, then there is no manipulation that
will. A woman manipulates the result in a symmetric way.

5.2 Lexicographical minimal regret
Let us now consider a more complex score-based matching

procedure to choose between two (or more) stable matchings
which will be computationally difficult to manipulate. The
intuition behind the procedure is to choose between stable
matchings according to the preferences of the most preferred
men or women. In particular, we will pick the stable match-
ing that is most preferred by the most popular men and
women. Given a voting rule, we order the men using the



women’s preferences and order the women using the men’s
preferences. We then construct a male score vector for a
matching using this ordering of the men (where a more pre-
ferred man is before a less preferred one). The ith element of
the male score vector is the integer j iff the ith man in this
order is married to his jth most preferred woman. A large
male score vector is a measure of dissatisfaction with the
matching from the perspective of the more preferred men.
A female score vector is computed in an analogous manner.

The overall score for a matching is the lexicographically
largest of its male and female score vectors. A large overall
score corresponds to dissatisfaction with the matching from
the perspective of the more preferred men or women. We
then choose the stable matching from our given set which
has the lexicographically least overall score. That is, we
choose the stable matching which carries less regret for the
more preferred men and women.

In the event of a tie, we can use any gender neutral tie-
breaking procedure, such as the one based on signatures
described above. Let us call this procedure the lexicographi-
cal minimal regret stable marriage procedure. In particular,
when voting rule v is used to order the men and women we
will call it a v-based lexicographical minimal regret stable
marriage procedure. It is easy to see that this procedure
is gender neutral. In addition, it is computationally hard
to manipulate. Here we consider using STV [1] to order the
men and women. However, we conjecture that similar results
will hold for stable matching procedures which are derived
from other voting rules which are NP-hard to manipulate.

In the STV rule each voter provides a total order on can-
didates and, initially, an individual’s vote is allocated to
his most preferred candidate. The quota of the election is
the minimum number of votes necessary to get elected. If
no candidate exceeds the quota, then, the candidate with
the fewest votes is eliminated, and his votes are equally dis-
tributed among the second choices of the voters who had
selected him as first choice. This step is repeated until some
candidate exceeds the quota. In the following theorem we
assume a quota of at least half of the number of voters.

Theorem 4. It is NP-complete to decide if an agent can
manipulate the STV-based lexicographical minimal regret sta-
ble marriage procedure.

Proof. We adapt the reduction used to prove that con-
structive manipulation of the STV rule by a single voter is
NP-hard [2]. In our proof, we need to consider how the STV
rule treats ties. For example, ties will occur among all men
and all women, since we will build a profile where every man
and every woman have different first choice. Thus STV will
need to tie break between all the men (and between all the
women). We suppose that in any such tie break, the candi-
date alphabetically last is eliminated. We also suppose that
a man h will try to manipulate the stable marriage proce-
dure by mis-reporting his preferences.

To prove membership in NP, we observe that a manipu-
lation is a polynomial witness. To prove NP-hardness, we
give a reduction from 3-COVER. Given a set S with |S| = n,
subsets and subsets Si with i ∈ [1, m], |Si = 3| and Si ⊂ S,
we ask if there exists an index set I with |I | = n/3 and
S

i∈I
Si = S.

We will construct a profile of preferences for the men so
that the only possibility is for STV to order first one of
only two women, w or y. The manipulator h will try to

vote strategically so that woman y is ordered first. This will
have the consequence that we return the male optimal stable
marriage in which the manipulator marries his first choice
z1. On the other hand, if w is ordered first, we will return
the female optimal stable marriage in which the manipulator
is married to his second choice z2.

The following sets of women participate in the problem:

• two possible winners of the first STV election, w and
y;

• z1 and z2 who are the first two choices of the manipu-
lator;

• “first losers” in this election, ai and bi for i ∈ [1, m];

• “second line” in this election, ci and di for i ∈ [1, m];

• “e-bloc”, ei for i ∈ [0, n];

• “garbage collectors”, gi for i ∈ [1, m];

• “dummy women”, zi,j,k where i ∈ [1, 19] and j and k
depend on i as outlined in the description given shortly
for the men’s preferences (e.g. for i = 1, j = 1 and
k ∈ [1, 12m − 1] but for i ∈ [6, 8], j ∈ [1, m] and
k ∈ [1, 6m + 4j − 6]).

Ignoring the manipulator, the men’s preferences will be con-
structed so that z1, z2 and the dummy women are the first
women eliminated by the STV rule, and that ai and bi are
2m out of the next 3m woman eliminated. In addition, let
I = {i : bi is eliminated before ai}. Then the men’s pref-
erences will be constructed so that STV orders woman y
first if and only if I is a 3-COVER. The manipulator can
ensure bi is eliminated by the STV rule before ai for i ∈ I
by placing ai in the i + 1th position and bi otherwise.

The men’s preferences are constructed as follows (where
preferences are left unspecified, they can be completed in
any order):

• a man n with preference (y, . . .) and ∀k ∈ [1, 12m − 1]
a man with (z1,1,k, y, . . .);

• a man p with preference (w, y, . . .) and ∀k ∈ [1, 12m−2]
a man with (z2,1,k, w, y, . . .);

• a man q with preference (e0, w, y, . . .) and ∀k ∈ [1, 10m+
2n/3 − 1] a man with (z3,1,k, e0, w, y, . . .);

• ∀j ∈ [1, n], a man with preference (ej , w, y, . . .) and
∀k ∈ [1, 12m−3] a man with preference (z4,j,k, ej , w, y,
. . .);

• ∀j ∈ [1, m], a man rj with preference (gj , w, y, . . .)
and ∀k ∈ [1, 12m−1] a man with preference (z5,j,k, gj ,
w, y, . . .);

• ∀j ∈ [1, m], a man with preference (cj , dj , w, y, . . .) and
∀k ∈ [1, 6m+4j−6] a man with preference (z6,j,k, cj , dj ,
w, y, . . .), and for each of the three k s.t. k ∈ Sj , a man
with preference (z7,j,k, cj , ek, w, y, . . .), and one with
preference (z8,j,k, cj , ek, w, y, . . .);

• ∀j ∈ [1, m], a man with preference (dj , cj , w, y, . . .) and
∀k ∈ [1, 6m+4j−2] a man with preference (z9,j,k, dj , cj ,
w, y, . . .), one with preference (z10,j,k, dj , e0, w, y, . . .),
and one with (z11,j,k, dj , e0, w, y, . . .);



• ∀j ∈ [1, m], a man with preference (aj , gj , w, y, . . .) and
∀k ∈ [1, 6m+4j−4] a man with preference (z12,j,k, aj , gj ,
w, y, . . .), one with preference (z13,j,k, aj , cj , w, y, . . .),
one with preference (z14,j,k, aj , bj , w, y, . . .), and one
with preference (z15,j,k, aj , bj , w, y, . . .).

• ∀j ∈ [1, m], a man with preference (bj , gj , w, y, . . .) and
∀k ∈ [1, 6m+4j−4] a man with preference (z16,j,k, bj , gj ,
w, y, . . .), one with preference (z17,j,k, bj , dj , w, y, . . .),
one with preference (z18,j,k, bj , aj , w, y, . . .), and one
with preference (z19,j,k, bj , aj , w, y, . . .).

Note that each woman is ranked first by exactly one man.
The women’s preference will be set up so that the manip-
ulator h is assured at least that he will marry his second
choice, z2 as this will be his female optimal partner. To ma-
nipulate the election, the manipulator needs to put z1 first
in his preferences and to report the rest of his preferences
so that the result returned is the male optimal solution. As
all woman are ranked first by exactly one man, the male
optimal matching marries h with z1.

When we use STV to order the women, z1, z2 and zi,j,k are
alphabetically last so are eliminated first by the tie-breaking
rule. This leaves the following profile:

• 12m men with preference (y, . . .);

• 12m − 1 men with preference (w, y, . . .);

• 10m + 2n/3 men with preference (e0, w, y, . . .);

• ∀j ∈ [1, n], 12m−2 men with preference (ej , w, y, . . .);

• ∀j ∈ [1, m], 12m men with preference (gj , w, y, . . .);

• ∀j ∈ [1, m], 6m+4j−5 men with preference (cj , dj , w, y,
. . .), and for each of the three k such that k ∈ Sj , two
men with preference (cj , ek, w, y, . . .);

• ∀j ∈ [1, m], 6m+4j−1 men with preference (dj , cj , w, y,
. . .), and two men with preference (dj , e0, w, y, . . .),

• ∀j ∈ [1, m], 6m+4j−3 men with preference (aj , gj , w, y,
. . .), a man with preference (aj , cj , w, y, . . .), and two
men with preference (aj , bj , w, y, . . .);

• ∀j ∈ [1, m], 6m+4j−3 men with preference (bj , gj , w, y,
. . .) a man with preference (bj , dj , w, y, . . .), and two
men with preference (bj , aj , w, y, . . .).

At this point, the votes are identical (up to renaming of
the men) to the profile constructed in the proof of Theorem
1 in [2]. Using the same argument as there, it follows that
the manipulator can ensure that STV orders woman y first
instead of w if and only if there is a 3-COVER. The manip-
ulation will place z1 first in h’s preferences. Similar to the
proof of Theorem 1 in [2], the manipulation puts woman aj

in j + 1th place and bj otherwise where j ∈ J and J is any
index set of a 3-COVER.

The women’s preferences are as follows:

• the woman y with preference (n, . . .);

• the woman w with preference (q, . . .);

• the woman z1 with preference (p, . . .);

• the woman z2 with preference (h, . . .);

• the women gi with preference (ri, . . .);

• the other women with any preferences which are first-
different, and which ensure STV orders r0 first and r1

second overall.

Each man is ranked first by exactly one woman. Hence,
the female optimal stable matching is the first choice of the
women. The male score vector of the male optimal sta-
ble matching is (1, 1, . . . , 1). Hence, the overall score vec-
tor of the male optimal stable matching equals the female
score vector of the male optimal stable matching. This is
(1, 2, . . .) if the manipulation is successful and (2, 1, . . .) if
it is not. Similarly, the overall score vector of the female
optimal stable matching equals the male score vector of the
female optimal stable matching. This is (1, 3, . . .). Hence
the lexicographical minimal regret stable marriage proce-
dure will return the male optimal stable matching iff there
is a successful manipulation of the STV rule. Note that the
profile used in this proof is not universally manipulable. The
first choices of the man are all different and each woman
therefore only receives one proposal in the men-proposing
Gale-Shapley algorithm. 2

We can thus see how the proposed matching procedure is
reasonable and appealing. In fact, it allows to discriminate
among stable matchings according to the men and women’s
preferences and it is difficult to manipulate while ensuring
gender neutrality.

6. RELATED WORK
In [18] fairness of a matching procedure is defined in terms

of four axioms, two of which are gender neutrality and peer
indifference. Then, the existence of a matching procedures
satisfying all or a subset of the axioms is considered in terms
of restrictions on preference orderings. Here, instead, we
propose a preprocessing step that allows to obtain a gender
neutral matching procedure from any matching procedure
without imposing any restrictions on the preferences in the
input.

A detailed description of results about manipulation of
stable marriage procedures can be found in [14]. In partic-
ular, several early results [6, 7, 9, 20] indicated the futility
of men lying, focusing later work mostly on strategies in
which the women lie. Gale and Sotomayor [10] presented
the manipulation strategy in which women truncate their
preference lists. Roth and Vate [23] discussed strategic is-
sues when the stable matching is chosen at random, pro-
posed a truncation strategy and showed that every stable
matching can be achieved as an equilibrium in truncation
strategies. We instead do not allow the elimination of men
from a woman’s preference ordering, but permit reordering
of the preference lists.

Teo et al. [25] suggested lying strategies for an individual
woman, and proposed an algorithm to find the best partner
with the male optimal procedure. We instead focus on the
complexity of determining if the procedure can be manipu-
lated to obtain a better result. Moreover, we also provide
a universal manipulation scheme that, under certain condi-
tions on the profile, assures that the female optimal partner
is returned.

Coalition manipulation is considered in [14]. Huang shows
how a coalition of men can get a better result in the men-
proposing Gale-Shapley algorithm. By contrast, we do not



consider a coalition but just a single manipulator, and do
not consider just the Gale-Shapley algorithm.

7. CONCLUSIONS
We have studied the manipulability and gender neutrality

of stable marriage procedures. We first looked at whether,
as with voting rules, computationally complexity might be
a barrier to manipulation. It was known already that one
prominent stable marriage procedure, the Gale-Shapley al-
gorithm, is computationally easy to manipulate. We proved
that, under some simple restrictions on agents’ preferences,
all stable marriage procedures are in fact easy to manipu-
late. Our proof provides an universal manipulation which an
agent can use to improve his result. On the other hand, when
preferences are unrestricted, we proved that there exist sta-
ble marriage procedures which are NP-hard to manipulate.
We also showed how to use a voting rule to choose between
stable matchings. In particular, we gave a stable marriage
procedure which picks the stable matching that is most pre-
ferred by the most popular men and women. This procedure
inherits the computational complexity of the underlying vot-
ing rule. Thus, when the STV voting rule (which is NP-hard
to manipulate) is used to compute the most popular men
and women, the corresponding stable marriage procedure is
NP-hard to manipulate. Another desirable property of sta-
ble marriage procedures is gender neutrality. Our procedure
of turning a voting rule into a stable marriage procedure is
gender neutral.

This study of stable marriage procedures is only an initial
step to understanding if computational complexity might be
a barrier to manipulation. Many questions remain to be an-
swered. For example, if preferences are correlated, are stable
marriage procedures still computationally hard to manipu-
late? As a second example, are there stable marriage proce-
dures which are difficult to manipulate on average? There
are also many interesting and related questions connected
with privacy and mechanism design. For instance, how do
we design a decentralised stable marriage procedure which
is resistant to manipulation and in which the agents do not
share their preference lists? As a second example, how can
side payments be used in stable marriage procedures to pre-
vent manipulation?
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